@misc{ZurellKoenigMalchowetal.2021, author = {Zurell, Damaris and K{\"o}nig, Christian and Malchow, Anne-Kathleen and Kapitza, Simon and Bocedi, Greta and Travis, Justin M. J. and Fandos, Guillermo}, title = {Spatially explicit models for decision-making in animal conservation and restoration}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {2022}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, edition = {4}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-54991}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549915}, pages = {1 -- 16}, year = {2021}, abstract = {Models are useful tools for understanding and predicting ecological patterns and processes. Under ongoing climate and biodiversity change, they can greatly facilitate decision-making in conservation and restoration and help designing adequate management strategies for an uncertain future. Here, we review the use of spatially explicit models for decision support and to identify key gaps in current modelling in conservation and restoration. Of 650 reviewed publications, 217 publications had a clear management application and were included in our quantitative analyses. Overall, modelling studies were biased towards static models (79\%), towards the species and population level (80\%) and towards conservation (rather than restoration) applications (71\%). Correlative niche models were the most widely used model type. Dynamic models as well as the gene-to-individual level and the community-to-ecosystem level were underrepresented, and explicit cost optimisation approaches were only used in 10\% of the studies. We present a new model typology for selecting models for animal conservation and restoration, characterising model types according to organisational levels, biological processes of interest and desired management applications. This typology will help to more closely link models to management goals. Additionally, future efforts need to overcome important challenges related to data integration, model integration and decision-making. We conclude with five key recommendations, suggesting that wider usage of spatially explicit models for decision support can be achieved by 1) developing a toolbox with multiple, easier-to-use methods, 2) improving calibration and validation of dynamic modelling approaches and 3) developing best-practise guidelines for applying these models. Further, more robust decision-making can be achieved by 4) combining multiple modelling approaches to assess uncertainty, and 5) placing models at the core of adaptive management. These efforts must be accompanied by long-term funding for modelling and monitoring, and improved communication between research and practise to ensure optimal conservation and restoration outcomes.}, language = {en} } @article{ZimmermannStoofLeichsenringKruseetal.2021, author = {Zimmermann, Heike and Stoof-Leichsenring, Kathleen R. and Kruse, Stefan and N{\"u}rnberg, Dirk and Tiedemann, Ralf and Herzschuh, Ulrike}, title = {Sedimentary ancient DNA from the subarctic North Pacific}, series = {Paleoceanography and paleoclimatology}, volume = {36}, journal = {Paleoceanography and paleoclimatology}, number = {4}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2572-4525}, doi = {10.1029/2020PA004091}, pages = {18}, year = {2021}, abstract = {We traced diatom composition and diversity through time using diatom-derived sedimentary ancient DNA (sedaDNA) from eastern continental slope sediments off Kamchatka (North Pacific) by applying a short, diatom-specific marker on 63 samples in a DNA metabarcoding approach. The sequences were assigned to diatoms that are common in the area and characteristic of cold water. SedaDNA allowed us to observe shifts of potential lineages from species of the genus Chaetoceros that can be related to different climatic phases, suggesting that pre-adapted ecotypes might have played a role in the long-term success of species in areas of changing environmental conditions. These sedaDNA results complement our understanding of the long-term history of diatom assemblages and their general relationship to environmental conditions of the past. Sea-ice diatoms (Pauliella taeniata [Grunow] Round \& Basson, Attheya septentrionalis [ostrup] R. M. Crawford and Nitzschia frigida [Grunow]) detected during the late glacial and Younger Dryas are in agreement with previous sea-ice reconstructions. A positive correlation between pennate diatom richness and the sea-ice proxy IP25 suggests that sea ice fosters pennate diatom richness, whereas a negative correlation with June insolation and temperature points to unfavorable conditions during the Holocene. A sharp increase in proportions of freshwater diatoms at similar to 11.1 cal kyr BP implies the influence of terrestrial runoff and coincides with the loss of 42\% of diatom sequence variants. We assume that reduced salinity at this time stabilized vertical stratification which limited the replenishment of nutrients in the euphotic zone.}, language = {en} } @article{ZhangCasertaYarmanetal.2021, author = {Zhang, Xiaorong and Caserta, Giorgio and Yarman, Aysu and Supala, Eszter and Tadjoung Waffo, Armel Franklin and Wollenberger, Ulla and Gyurcsanyi, Robert E. and Zebger, Ingo and Scheller, Frieder W.}, title = {"Out of Pocket" protein binding}, series = {Chemosensors}, volume = {9}, journal = {Chemosensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors9060128}, pages = {13}, year = {2021}, abstract = {The epitope imprinting approach applies exposed peptides as templates to synthesize Molecularly Imprinted Polymers (MIPs) for the recognition of the parent protein. While generally the template protein binding to such MIPs is considered to occur via the epitope-shaped cavities, unspecific interactions of the analyte with non-imprinted polymer as well as the detection method used may add to the complexity and interpretation of the target rebinding. To get new insights on the effects governing the rebinding of analytes, we electrosynthesized two epitope-imprinted polymers using the N-terminal pentapeptide VHLTP-amide of human hemoglobin (HbA) as the template. MIPs were prepared either by single-step electrosynthesis of scopoletin/pentapeptide mixtures or electropolymerization was performed after chemisorption of the cysteine extended VHLTP peptide. Rebinding of the target peptide and the parent HbA protein to the MIP nanofilms was quantified by square wave voltammetry using a redox probe gating, surface enhanced infrared absorption spectroscopy, and atomic force microscopy. While binding of the pentapeptide shows large influence of the amino acid sequence, all three methods revealed strong non-specific binding of HbA to both polyscopoletin-based MIPs with even higher affinities than the target peptides.}, language = {en} } @article{YildizLeimkuehler2021, author = {Yildiz, Tugba and Leimk{\"u}hler, Silke}, title = {TusA is a versatile protein that links translation efficiency to cell division in Escherichia coli}, series = {Journal of bacteriology}, volume = {203}, journal = {Journal of bacteriology}, number = {7}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {1098-5530}, doi = {10.1128/JB.00659-20}, pages = {20}, year = {2021}, abstract = {To enable accurate and efficient translation, sulfur modifications are introduced posttranscriptionally into nucleosides in tRNAs. The biosynthesis of tRNA sulfur modifications involves unique sulfur trafficking systems for the incorporation of sulfur atoms in different nucleosides of tRNA. One of the proteins that is involved in inserting the sulfur for 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U34) modifications in tRNAs is the TusA protein. TusA, however, is a versatile protein that is also involved in numerous other cellular pathways. Despite its role as a sulfur transfer protein for the 2-thiouridine formation in tRNA, a fundamental role of TusA in the general physiology of Escherichia coli has also been discovered. Poor viability, a defect in cell division, and a filamentous cell morphology have been described previously for tusA-deficient cells. In this report, we aimed to dissect the role of TusA for cell viability. We were able to show that the lack of the thiolation status of wobble uridine (U-34) nucleotides present on Lys, Gln, or Glu in tRNAs has a major consequence on the translation efficiency of proteins; among the affected targets are the proteins RpoS and Fis. Both proteins are major regulatory factors, and the deregulation of their abundance consequently has a major effect on the cellular regulatory network, with one consequence being a defect in cell division by regulating the FtsZ ring formation.
IMPORTANCE More than 100 different modifications are found in RNAs. One of these modifications is the mnm(5)s(2)U modification at the wobble position 34 of tRNAs for Lys, Gln, and Glu. The functional significance of U34 modifications is substantial since it restricts the conformational flexibility of the anticodon, thus providing translational fidelity. We show that in an Escherichia coli TusA mutant strain, involved in sulfur transfer for the mnm(5)s(2)U34 thio modifications, the translation efficiency of RpoS and Fis, two major cellular regulatory proteins, is altered. Therefore, in addition to the transcriptional regulation and the factors that influence protein stability, tRNA modifications that ensure the translational efficiency provide an additional crucial regulatory factor for protein synthesis.}, language = {en} } @article{YarmanKurbanoğluZebgeretal.2021, author = {Yarman, Aysu and Kurbanoğlu, Sevin{\c{c}} and Zebger, Ingo and Scheller, Frieder W.}, title = {Simple and robust}, series = {Sensors and actuators : B, Chemical : an international journal devoted to research and development of chemical transducers}, volume = {330}, journal = {Sensors and actuators : B, Chemical : an international journal devoted to research and development of chemical transducers}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0925-4005}, doi = {10.1016/j.snb.2020.129369}, pages = {12}, year = {2021}, abstract = {A spectrum of 7562 publications on Molecularly Imprinted Polymers (MIPs) has been presented in literature within the last ten years (Scopus, September 7, 2020). Around 10 \% of the papers published on MIPs describe the recognition of proteins. The straightforward synthesis of MIPs is a significant advantage as compared with the preparation of enzymes or antibodies. MIPs have been synthesized from only one up to six functional monomers while proteins are made up of 20 natural amino acids. Furthermore, they can be synthesized against structures of low immunogenicity and allow multi-analyte measurements via multi-target synthesis. Electrochemical methods allow simple polymer synthesis, removal of the template and readout. Among the different sensor configurations electrochemical MIP-sensors provide the broadest spectrum of protein analytes. The sensitivity of MIP-sensors is sufficiently high for biomarkers in the sub-nanomolar region, nevertheless the cross-reactivity of highly abundant proteins in human serum is still a challenge. MIPs for proteins offer innovative tools not only for clinical and environmental analysis, but also for bioimaging, therapy and protein engineering.}, language = {en} } @article{YanFrokjarEngelbrektetal.2021, author = {Yan, Jiawei and Fr{\o}kj{\ae}r, Emil Egede and Engelbrekt, Christian and Leimk{\"u}hler, Silke and Ulstrup, Jens and Wollenberger, Ulla and Xiao, Xinxin and Zhang, Jingdong}, title = {Voltammetry and single-molecule in situ scanning tunnelling microscopy of the redox metalloenzyme human sulfite oxidase}, series = {ChemElectroChem}, volume = {8}, journal = {ChemElectroChem}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2196-0216}, doi = {10.1002/celc.202001258}, pages = {164 -- 171}, year = {2021}, abstract = {Human sulfite oxidase (hSO) is a homodimeric two-domain enzyme central in the biological sulfur cycle. A pyranopterin molybdenum cofactor (Moco) is the catalytic site and a heme b(5) group located in the N-terminal domain. The two domains are connected by a flexible linker region. Electrons produced at the Moco in sulfite oxidation, are relayed via heme b(5) to electron acceptors or an electrode surface. Inter-domain conformational changes between an open and a closed enzyme conformation, allowing "gated" electron transfer has been suggested. We first recorded cyclic voltammetry (CV) of hSO on single-crystal Au(111)-electrode surfaces modified by self-assembled monolayers (SAMs) both of a short rigid thiol, cysteamine and of a longer structurally flexible thiol, omega-amino-octanethiol (AOT). hSO on cysteamine SAMs displays a well-defined pair of voltammetric peaks around -0.207 V vs. SCE in the absence of sulfite substrate, but no electrocatalysis. hSO on AOT SAMs displays well-defined electrocatalysis, but only "fair" quality voltammetry in the absence of sulfite. We recorded next in situ scanning tunnelling spectroscopy (STS) of hSO on AOT modified Au(111)-electrodes, disclosing, a 2-5 \% surface coverage of strong molecular scale contrasts, assigned to single hSO molecules, notably with no contrast difference in the absence and presence of sulfite. In situ STS corroborated this observation with a sigmoidal tunnelling current/overpotential correlation.}, language = {en} } @article{XuNieWangetal.2021, author = {Xu, Xun and Nie, Yan and Wang, Weiwei and Ullah, Imran and Tung, Wing Tai and Ma, Nan and Lendlein, Andreas}, title = {Generation of 2.5D lung bud organoids from human induced pluripotent stem cells}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {79}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {1}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-219111}, pages = {217 -- 230}, year = {2021}, abstract = {Human induced pluripotent stem cells (hiPSCs) are a promising cell source to generate the patient-specific lung organoid given their superior differentiation potential. However, the current 3D cell culture approach is tedious and time-consuming with a low success rate and high batch-to-batch variability. Here, we explored the establishment of lung bud organoids by systematically adjusting the initial confluence levels and homogeneity of cell distribution. The efficiency of single cell seeding and clump seeding was compared. Instead of the traditional 3D culture, we established a 2.5D organoid culture to enable the direct monitoring of the internal structure via microscopy. It was found that the cell confluence and distribution prior to induction were two key parameters, which strongly affected hiPSC differentiation trajectories. Lung bud organoids with positive expression of NKX 2.1, in a single-cell seeding group with homogeneously distributed hiPSCs at 70\% confluence (SC 70\% hom) or a clump seeding group with heterogeneously distributed cells at 90\% confluence (CL 90\% het), can be observed as early as 9 days post induction. These results suggest that a successful lung bud organoid formation with single-cell seeding of hiPSCs requires a moderate confluence and homogeneous distribution of cells, while high confluence would be a prominent factor to promote the lung organoid formation when seeding hiPSCs as clumps. 2.5D organoids generated with defined culture conditions could become a simple, efficient, and valuable tool facilitating drug screening, disease modeling and personalized medicine.}, language = {en} } @article{XuRazaghiMoghadamNikoloski2021, author = {Xu, Rudan and Razaghi-Moghadam, Zahra and Nikoloski, Zoran}, title = {Maximization of non-idle enzymes improves the coverage of the estimated maximal in vivo enzyme catalytic rates in Escherichia coli}, series = {Bioinformatics}, volume = {37}, journal = {Bioinformatics}, number = {21}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1367-4803}, doi = {10.1093/bioinformatics/btab575}, pages = {3848 -- 3855}, year = {2021}, abstract = {Motivation: Constraint-based modeling approaches allow the estimation of maximal in vivo enzyme catalytic rates that can serve as proxies for enzyme turnover numbers. Yet, genome-scale flux profiling remains a challenge in deploying these approaches to catalogue proxies for enzyme catalytic rates across organisms. Results: Here, we formulate a constraint-based approach, termed NIDLE-flux, to estimate fluxes at a genome-scale level by using the principle of efficient usage of expressed enzymes. Using proteomics data from Escherichia coli, we show that the fluxes estimated by NIDLE-flux and the existing approaches are in excellent qualitative agreement (Pearson correlation > 0.9). We also find that the maximal in vivo catalytic rates estimated by NIDLE-flux exhibits a Pearson correlation of 0.74 with in vitro enzyme turnover numbers. However, NIDLE-flux results in a 1.4-fold increase in the size of the estimated maximal in vivo catalytic rates in comparison to the contenders. Integration of the maximum in vivo catalytic rates with publically available proteomics and metabolomics data provide a better match to fluxes estimated by NIDLE-flux. Therefore, NIDLE-flux facilitates more effective usage of proteomics data to estimate proxies for kcatomes.}, language = {en} } @misc{WolffGastEversetal.2021, author = {Wolff, Martin and Gast, Klaus and Evers, Andreas and Kurz, Michael and Pfeiffer-Marek, Stefania and Sch{\"u}ler, Anja and Seckler, Robert and Thalhammer, Anja}, title = {A Conserved Hydrophobic Moiety and Helix-Helix Interactions Drive the Self-Assembly of the Incretin Analog Exendin-4}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {9}, issn = {1866-8372}, doi = {10.25932/publishup-52208}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-522081}, pages = {22}, year = {2021}, abstract = {Exendin-4 is a pharmaceutical peptide used in the control of insulin secretion. Structural information on exendin-4 and related peptides especially on the level of quaternary structure is scarce. We present the first published association equilibria of exendin-4 directly measured by static and dynamic light scattering. We show that exendin-4 oligomerization is pH dependent and that these oligomers are of low compactness. We relate our experimental results to a structural hypothesis to describe molecular details of exendin-4 oligomers. Discussion of the validity of this hypothesis is based on NMR, circular dichroism and fluorescence spectroscopy, and light scattering data on exendin-4 and a set of exendin-4 derived peptides. The essential forces driving oligomerization of exendin-4 are helix-helix interactions and interactions of a conserved hydrophobic moiety. Our structural hypothesis suggests that key interactions of exendin-4 monomers in the experimentally supported trimer take place between a defined helical segment and a hydrophobic triangle constituted by the Phe22 residues of the three monomeric subunits. Our data rationalize that Val19 might function as an anchor in the N-terminus of the interacting helix-region and that Trp25 is partially shielded in the oligomer by C-terminal amino acids of the same monomer. Our structural hypothesis suggests that the Trp25 residues do not interact with each other, but with C-terminal Pro residues of their own monomers.}, language = {en} } @article{WolffGastEversetal.2021, author = {Wolff, Martin and Gast, Klaus and Evers, Andreas and Kurz, Michael and Pfeiffer-Marek, Stefania and Sch{\"u}ler, Anja and Seckler, Robert and Thalhammer, Anja}, title = {A Conserved Hydrophobic Moiety and Helix-Helix Interactions Drive the Self-Assembly of the Incretin Analog Exendin-4}, series = {Biomolecules}, volume = {11}, journal = {Biomolecules}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2218-273X}, doi = {10.3390/biom11091305}, pages = {20}, year = {2021}, abstract = {Exendin-4 is a pharmaceutical peptide used in the control of insulin secretion. Structural information on exendin-4 and related peptides especially on the level of quaternary structure is scarce. We present the first published association equilibria of exendin-4 directly measured by static and dynamic light scattering. We show that exendin-4 oligomerization is pH dependent and that these oligomers are of low compactness. We relate our experimental results to a structural hypothesis to describe molecular details of exendin-4 oligomers. Discussion of the validity of this hypothesis is based on NMR, circular dichroism and fluorescence spectroscopy, and light scattering data on exendin-4 and a set of exendin-4 derived peptides. The essential forces driving oligomerization of exendin-4 are helix-helix interactions and interactions of a conserved hydrophobic moiety. Our structural hypothesis suggests that key interactions of exendin-4 monomers in the experimentally supported trimer take place between a defined helical segment and a hydrophobic triangle constituted by the Phe22 residues of the three monomeric subunits. Our data rationalize that Val19 might function as an anchor in the N-terminus of the interacting helix-region and that Trp25 is partially shielded in the oligomer by C-terminal amino acids of the same monomer. Our structural hypothesis suggests that the Trp25 residues do not interact with each other, but with C-terminal Pro residues of their own monomers.}, language = {en} } @misc{WojcikCeulemansGaedke2021, author = {Wojcik, Laurie Anne Myriam and Ceulemans, Ruben and Gaedke, Ursula}, title = {Functional diversity buffers the effects of a pulse perturbation on the dynamics of tritrophic food webs}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1251}, issn = {1866-8372}, doi = {10.25932/publishup-55373}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-553730}, pages = {25}, year = {2021}, abstract = {Biodiversity decline causes a loss of functional diversity, which threatens ecosystems through a dangerous feedback loop: This loss may hamper ecosystems' ability to buffer environmental changes, leading to further biodiversity losses. In this context, the increasing frequency of human-induced excessive loading of nutrients causes major problems in aquatic systems. Previous studies investigating how functional diversity influences the response of food webs to disturbances have mainly considered systems with at most two functionally diverse trophic levels. We investigated the effects of functional diversity on the robustness, that is, resistance, resilience, and elasticity, using a tritrophic—and thus more realistic—plankton food web model. We compared a non-adaptive food chain with no diversity within the individual trophic levels to a more diverse food web with three adaptive trophic levels. The species fitness differences were balanced through trade-offs between defense/growth rate for prey and selectivity/half-saturation constant for predators. We showed that the resistance, resilience, and elasticity of tritrophic food webs decreased with larger perturbation sizes and depended on the state of the system when the perturbation occurred. Importantly, we found that a more diverse food web was generally more resistant and resilient but its elasticity was context-dependent. Particularly, functional diversity reduced the probability of a regime shift toward a non-desirable alternative state. The basal-intermediate interaction consistently determined the robustness against a nutrient pulse despite the complex influence of the shape and type of the dynamical attractors. This relationship was strongly influenced by the diversity present and the third trophic level. Overall, using a food web model of realistic complexity, this study confirms the destructive potential of the positive feedback loop between biodiversity loss and robustness, by uncovering mechanisms leading to a decrease in resistance, resilience, and potentially elasticity as functional diversity declines.}, language = {en} } @article{WojcikCeulemansGaedke2021, author = {Wojcik, Laurie Anne Myriam and Ceulemans, Ruben and Gaedke, Ursula}, title = {Functional diversity buffers the effects of a pulse perturbation on the dynamics of tritrophic food webs}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {22}, publisher = {John Wiley \& Sons, Inc.}, address = {Hoboken (New Jersey)}, issn = {2045-7758}, doi = {10.1002/ece3.8214}, pages = {15639 -- 15663}, year = {2021}, abstract = {Biodiversity decline causes a loss of functional diversity, which threatens ecosystems through a dangerous feedback loop: This loss may hamper ecosystems' ability to buffer environmental changes, leading to further biodiversity losses. In this context, the increasing frequency of human-induced excessive loading of nutrients causes major problems in aquatic systems. Previous studies investigating how functional diversity influences the response of food webs to disturbances have mainly considered systems with at most two functionally diverse trophic levels. We investigated the effects of functional diversity on the robustness, that is, resistance, resilience, and elasticity, using a tritrophic—and thus more realistic—plankton food web model. We compared a non-adaptive food chain with no diversity within the individual trophic levels to a more diverse food web with three adaptive trophic levels. The species fitness differences were balanced through trade-offs between defense/growth rate for prey and selectivity/half-saturation constant for predators. We showed that the resistance, resilience, and elasticity of tritrophic food webs decreased with larger perturbation sizes and depended on the state of the system when the perturbation occurred. Importantly, we found that a more diverse food web was generally more resistant and resilient but its elasticity was context-dependent. Particularly, functional diversity reduced the probability of a regime shift toward a non-desirable alternative state. The basal-intermediate interaction consistently determined the robustness against a nutrient pulse despite the complex influence of the shape and type of the dynamical attractors. This relationship was strongly influenced by the diversity present and the third trophic level. Overall, using a food web model of realistic complexity, this study confirms the destructive potential of the positive feedback loop between biodiversity loss and robustness, by uncovering mechanisms leading to a decrease in resistance, resilience, and potentially elasticity as functional diversity declines.}, language = {en} } @phdthesis{Woehlecke2021, author = {Woehlecke, Sandra}, title = {Das erweiterte Fachwissen f{\"u}r den schulischen Kontext als Leitlinie f{\"u}r eine additive fachliche Lehrveranstaltung im Lehramtsstudium Biologie}, doi = {10.25932/publishup-52120}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-521209}, school = {Universit{\"a}t Potsdam}, pages = {304}, year = {2021}, abstract = {Das Fachwissen von Lehrkr{\"a}ften weist f{\"u}r die Auspr{\"a}gung fachdidaktischer Expertise eine hohe Bedeutung auf. Welche Merkmale universit{\"a}re Lehrveranstaltungen aufweisen sollten, um Lehramtsstudierenden ein berufsspezifisches Fachwissen zu vermitteln, ist jedoch {\"u}berwiegend noch unklar. Innerhalb des Projekts PSI-Potsdam wurde auf theoretischer Grundlage das fach{\"u}bergreifende Modell des erweiterten Fachwissens f{\"u}r den schulischen Kontext entwickelt. Als Ansatz zur Verbesserung des Biologie-Lehramtsstudiums diente dieses Modell als Konzeptionsgrundlage f{\"u}r eine additive Lehrveranstaltung. Hierbei werden Lerngelegenheiten geboten, um das universit{\"a}r erworbene Fachwissen {\"u}ber zellbiologische Inhalte auf schulische Kontexte anzuwenden, z.B. durch die Dekonstruktion und anschließende Rekonstruktion von schulischen Lerntexten. Die Wirkung des Seminars wurde in mehreren Zyklen im Forschungsformat der Fachdidaktischen Entwicklungsforschung beforscht. Eine der zentralen Forschungsfragen lautet dabei: Wie kann eine Lerngelegenheit f{\"u}r Lehramtsstudierende der Biologie gestaltet sein, um ein erweitertes Fachwissen f{\"u}r den schulischen Kontext f{\"u}r den zellbiologischen Themenbereich „Struktur und Funktion der Biomembran" zu f{\"o}rdern? Anhand fall{\"u}bergreifender Analysen (n = 29) wird im empirischen Teil aufgezeigt, welche Einstellungen zum Lehramtsstudium in der Stichprobe bestehen. Als ein wichtiges Ergebnis kann hierbei herausgestellt werden, dass sich das Fachinteresse hinsichtlich schulisch und universit{\"a}r vermittelter Inhalte bei den untersuchten Studierenden auffallend unterscheidet, wobei dem Schulwissen ein deutlich h{\"o}heres Interesse entgegengebracht wird. Die Berufsrelevanz fachlicher Inhalte wird seitens der Studierenden h{\"a}ufig am Schulwissen festgemacht. Innerhalb konkreter Einzelfallanalysen (n = 6) wird anhand von Lernpfaden dargestellt, wie sich {\"u}ber mehrere Design-Experimente hinweg fachliche Konzepte entwickelt haben. Bei der Beschreibung wird vor allem auf Schl{\"u}sselstellen und H{\"u}rden im Lernprozess fokussiert. Aus diesen Ergebnissen folgend werden vorgenommene Iterationen f{\"u}r die einzelnen Zyklen beschrieben, die ebenfalls anhand der iterativen Entwicklung der Design-Prinzipien dargelegt werden. Es konnte gezeigt werden, dass die Schl{\"u}sselstellen sehr individuell aufgrund der subjektiv fokussierten Inhalte zu Tage treten. Meist treten sie jedoch im Zusammenhang mit der Verkn{\"u}pfung verschiedener fachlicher Konzepte oder durch kooperative Aufschl{\"u}sselungen von Konzepten auf. Fachliche H{\"u}rden konnten hingegen in Form von fachlich unangemessenen Vorstellungen fall{\"u}bergreifend identifiziert werden. Dies betrifft unter anderem die Vorstellung der Biomembran als Wand, die mit den Vorstellungen einer Schutzfunktion und einer formgebenden Funktion der Biomembran einhergeht. Weiterhin wird beleuchtet, wie das erweiterte Fachwissen f{\"u}r den schulischen Kontext zur Bearbeitung der Lernaufgaben angewendet wurde. Es hat sich gezeigt, dass sich bestimmte Lerngelegenheiten eigenen, um bestimmte Facetten des erweiterten Fachwissens zu f{\"o}rdern. Insgesamt scheint das Modell des erweiterten Fachwissens f{\"u}r den schulischen Kontext {\"a}ußerst geeignet zu sein, um anhand der Facetten und deren Beschreibungen Lerngelegenheiten oder Gestaltungsprinzipien f{\"u}r diese zu konzipieren. F{\"u}r das untersuchte Lehr-Lernarrangement haben sich kleinere Adaptationen des Modells als sinnvoll erwiesen. Hinsichtlich der Methodologie konnten Ableitungen f{\"u}r die Anwendung der fachdidaktischen Entwicklungsforschung f{\"u}r additive fachliche Lehrveranstaltungen dieser Art herausgestellt werden. Um den Professionsbezug der fachwissenschaftlichen Anteile im Lehramtsstudium zu verbessern, ist der weitere Einbezug des erweiterten Fachwissens f{\"u}r den schulischen Kontext in die fachwissenschaftlichen Studienanteile {\"u}beraus w{\"u}nschenswert.}, language = {de} } @article{WendtSenftlebenGrosetal.2021, author = {Wendt, Martin and Senftleben, Nele and Gros, Patrick and Schmitt, Thomas}, title = {Coping with environmental extremes}, series = {Insects : open access journal}, volume = {12}, journal = {Insects : open access journal}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2075-4450}, doi = {10.3390/insects12100896}, pages = {12}, year = {2021}, abstract = {Simple Summary:\& nbsp;High alpine meadows are home to numerous endemic butterfly species. A combination of climate change and changes in agricultural practices has led to a severe decline in many species. A seemingly unaffected representative of this habitat is Erebia pronoe. We studied the behaviour, resource use and population structure of this species to explain its resilience and estimate its future survival potential. This species shows pronounced protandry in combination with serial eclosion. Males were significantly more active and mobile and were also caught significantly more often than females, resulting in a pronounced shift in sex ratio in the predicted population structure. The adults use a wide range of nectar plants and establish homeranges in areas of high habitat quality. Thus, Erebia pronoe adults use a wide array of resources combined with a slight specialisation to avoid niche overlap with closely related species. The resulting ecological flexibility seems to be an adaptation to unpredictable environmental conditions, which should be the result of a long-lasting adaptation process. Moreover, the combination of opportunism and modest specialisation should also be a good basis for coping with future changes caused by climate and land-use change.




A mark-recapture study of the nominotypical Erebia pronoe in the Alps was conducted to survey its ecological demands and characteristics. Population structure analysis revealed a combination of protandry (one-week earlier eclosion of males) and serial eclosion. Significant differences between both sexes were found in population density (males: 580/ha \& PLUSMN; 37 SE; females: 241/ha \& PLUSMN; 66 SE), sex-ratio (2.4) and behaviour (57.7 vs. 11.9\% flying). Both sexes used a wide range of nectar plants (Asteraceae, 77.3\%; Dipsacaceae, 12.3\%; Gentianaceae, 9.7\%). The use of nectar plants shows a non-specific spectrum, which, however, completely avoids overlap with the locally co-occurring species Erebia nivalis. Movement patterns show the establishment of homeranges, which significantly limits the migration potential. Due to its broad ecological niche, E. pronoe will probably be able to react plastically to the consequences of climate change. The formation of high population densities, the unconcerned endangerment status, the unspecific resource spectrum and the sedentary character of the species make E. pronoe a potential indicator of the quality and general resource occurrence of alpine rupicolous grasslands.}, language = {en} } @article{WarmtFenzelHenkeletal.2021, author = {Warmt, Christian and Fenzel, Carolin Kornelia and Henkel, J{\"o}rg and Bier, Frank Fabian}, title = {Using Cy5-dUTP labelling of RPA-amplicons with downstream microarray analysis for the detection of antibiotic resistance genes}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {[London]}, issn = {2045-2322}, doi = {10.1038/s41598-021-99774-z}, pages = {9}, year = {2021}, abstract = {In this report we describe Cy5-dUTP labelling of recombinase-polymerase-amplification (RPA) products directly during the amplification process for the first time. Nucleic acid amplification techniques, especially polymerase-chain-reaction as well as various isothermal amplification methods such as RPA, becomes a promising tool in the detection of pathogens and target specific genes. Actually, RPA even provides more advantages. This isothermal method got popular in point of care diagnostics because of its speed and sensitivity but requires pre-labelled primer or probes for a following detection of the amplicons. To overcome this disadvantages, we performed an labelling of RPA-amplicons with Cy5-dUTP without the need of pre-labelled primers. The amplification results of various multiple antibiotic resistance genes indicating great potential as a flexible and promising tool with high specific and sensitive detection capabilities of the target genes. After the determination of an appropriate rate of 1\% Cy5-dUTP and 99\% unlabelled dTTP we were able to detect the bla(CTX-M15) gene in less than 1.6E-03 ng genomic DNA corresponding to approximately 200 cfu of Escherichia coli cells in only 40 min amplification time.}, language = {en} } @article{WangLiMaetal.2021, author = {Wang, Meng and Li, Panpan and Ma, Yao and Nie, Xiang and Grebe, Markus and Men, Shuzhen}, title = {Membrane sterol composition in Arabidopsis thaliana affects root elongation via auxin biosynthesis}, series = {International journal of molecular sciences}, volume = {22}, journal = {International journal of molecular sciences}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms22010437}, pages = {20}, year = {2021}, abstract = {Plant membrane sterol composition has been reported to affect growth and gravitropism via polar auxin transport and auxin signaling. However, as to whether sterols influence auxin biosynthesis has received little attention. Here, by using the sterol biosynthesis mutant cyclopropylsterol isomerase1-1 (cpi1-1) and sterol application, we reveal that cycloeucalenol, a CPI1 substrate, and sitosterol, an end-product of sterol biosynthesis, antagonistically affect auxin biosynthesis. The short root phenotype of cpi1-1 was associated with a markedly enhanced auxin response in the root tip. Both were neither suppressed by mutations in polar auxin transport (PAT) proteins nor by treatment with a PAT inhibitor and responded to an auxin signaling inhibitor. However, expression of several auxin biosynthesis genes TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 (TAA1) was upregulated in cpi1-1. Functionally, TAA1 mutation reduced the auxin response in cpi1-1 and partially rescued its short root phenotype. In support of this genetic evidence, application of cycloeucalenol upregulated expression of the auxin responsive reporter DR5:GUS (beta-glucuronidase) and of several auxin biosynthesis genes, while sitosterol repressed their expression. Hence, our combined genetic, pharmacological, and sterol application studies reveal a hitherto unexplored sterol-dependent modulation of auxin biosynthesis during Arabidopsis root elongation.}, language = {en} } @article{WandtWinkelbeinerBornhorstetal.2021, author = {Wandt, Viktoria Klara Veronika and Winkelbeiner, Nicola Lisa and Bornhorst, Julia and Witt, Barbara and Raschke, Stefanie and Simon, Luise and Ebert, Franziska and Kipp, Anna Patricia and Schwerdtle, Tanja}, title = {A matter of concern}, series = {Redox Biology}, volume = {41}, journal = {Redox Biology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2213-2317}, doi = {10.1016/j.redox.2021.101877}, pages = {13}, year = {2021}, abstract = {Neurons are post-mitotic cells in the brain and their integrity is of central importance to avoid neurodegeneration. Yet, the inability of self-replenishment of post-mitotic cells results in the need to withstand challenges from numerous stressors during life. Neurons are exposed to oxidative stress due to high oxygen consumption during metabolic activity in the brain. Accordingly, DNA damage can occur and accumulate, resulting in genome instability. In this context, imbalances in brain trace element homeostasis are a matter of concern, especially regarding iron, copper, manganese, zinc, and selenium. Although trace elements are essential for brain physiology, excess and deficient conditions are considered to impair neuronal maintenance. Besides increasing oxidative stress, DNA damage response and repair of oxidative DNA damage are affected by trace elements. Hence, a balanced trace element homeostasis is of particular importance to safeguard neuronal genome integrity and prevent neuronal loss. This review summarises the current state of knowledge on the impact of deficient, as well as excessive iron, copper, manganese, zinc, and selenium levels on neuronal genome stability}, language = {en} } @phdthesis{Verbancic2021, author = {Verbancic, Jana}, title = {Carbon supply and the regulation of primary cell wall synthesis in Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {x, 179}, year = {2021}, abstract = {Cellulose is the most abundant biopolymer on Earth and cell wall (CW) synthesis is one of the major carbon consumers in the plant cell. Structure and several interaction partners of plasma membrane (PM)-bound cellulose synthase (CESA) complexes, CSCs, have been studied extensively, but much less is understood about the signals that activate and translocate CESAs to the PM and how exactly cellulose synthesis is being regulated during the diel cycle. The literature describes CSC regulation possibilities through interactions with accessory proteins upon stress conditions (e.g. CC1), post-translational modifications that regulate CSC speed and their possible anchoring in the PM (e.g. with phosphorylation and S-acylation, respectively). In this thesis, 13CO2 labeling and imaging techniques were employed in the same Arabidopsis seedling growth system to elucidate how and when new carbon is incorporated into cell wall (CW) sugars and UDP-glucose, and to follow CSC behavior during the diel cycle. Additionally, an ubiquitination analysis was performed to investigate a possible mechanism to affect CSC trafficking to and/or from the PM. Carbon is being incorporated into CW glucose at a 3-fold higher rate during the light period in comparison to the night in wild-type seedlings. Furthermore, CSC density at the PM, as an indication of active cellulose synthesizing machinery, is increasing in the light and falling during the night, showing that CW biosynthesis is more active in the light. Therefore, CW synthesis might be regulated by the carbon status of the cell. This regulation is broken in the starchless pgm mutant where light and dark carbon incorporation rates into CW glucose are similar, possibly due to the high soluble sugar content in pgm during the first part of the night. Strikingly, pgm CSC abundance at the PM is constantly low during the whole diel cycle, indicating little or no cellulose synthesis, but can be restored with exogenous sucrose or a longer photoperiod. Ubiquitination was explored as a possible regulating mechanism for translocation of primary CW CSCs from the PM and several potential ubiquitination sites have been identified.. The approach in this thesis enabled to study cellulose/CW synthesis from different angles but in the same growth system, allowing direct comparison of those methodologies, which could help understand the relationship between the amount of available carbon in a plant cell and the cells capacity to synthesize cellulose/CW. Understanding which factors contribute to cellulose synthesis regulation and addressing those fundamental questions can provide essential knowledge to manage the need for increased crop production.}, language = {en} } @phdthesis{Uflewski2021, author = {Uflewski, Michal}, title = {Characterizing the regulation of proton antiport across the thylakoid membrane}, school = {Universit{\"a}t Potsdam}, pages = {122}, year = {2021}, abstract = {Die Energie, die zum Antrieb photochemischer Reaktionen ben{\"o}tigt wird, stammt aus der Ladungstrennung an der Thylakoidmembran. Aufrgrund des Unterschieds in der Protonenkonzentration zwischen dem Stroma der Chloroplasten und dem Thylakoidlumen wird eine Protonenmotorische Kraft (pmf) erzeugt. Die pmf setzt sich aus dem Protonengradienten (ΔpH) und dem Membranpotential (ΔΨ) zusammen, die gemeinsam die ATP-Synthese antreiben. In der Natur schwankt die Energiemenge, die die Photosynthese antreibt, aufgrund h{\"a}ufiger {\"A}nderungen der Lichtintensit{\"a}t. Der Thylakoid-Ionentransport kann den Energiefluss durch einen Photosyntheseapparat an die Lichtverf{\"u}gbarkeit anpassen, indem er die pmf-Zusammensetzung ver{\"a}ndert. Die Dissipation von ΔΨ verringert die Ladungsrekombination am Photosystem II, so dass ein Anstieg der ΔpH-Komponente eine R{\"u}ckkopplung zur Herabregulierung der Photosynthese ausl{\"o}sen kann. Der durch den K+-Austausch-Antiporter 3 (KEA3) gesteuerte K+/H+-Antiport reduziert den ΔpH-Anteil von pmf und d{\"a}mpft dadurch das nicht-photochemische Quenching (NPQ). Infolgedessen erh{\"o}ht sich die Photosyntheseeffizienz beim {\"U}bergang zu geringerer Lichtintensit{\"a}t. Ziel dieser Arbeit war es, Antworten auf Fragen zur Regulierung der KEA3-Aktivit{\"a}t und ihrer Rolle in der Pflanzenentwicklung zu finden. Die vorgestellten Daten zeigen, dass KEA3 in Pflanzen, denen der Chloroplasten-ATP-Synthase-Assembly-Faktor CGL160 fehlt und die eine verminderte ATP-Synthase-Aktivit{\"a}t aufweisen, eine zentrale Rolle bei der Regulierung der Photosynthese und des Pflanzenwachstums unter station{\"a}ren Bedingungen spielt. Das Fehlen von KEA3 in der cgl160-Mutante f{\"u}hrt zu einer starken Beeintr{\"a}chtigung des Wachstums, da die Photosynthese aufgrund des erh{\"o}hten pH-abh{\"a}ngigen NPQs und des verringerten Elektronenflusses durch den Cytochrom b6f-Komplex eingeschr{\"a}nkt ist. Die {\"U}berexpression von KEA3 in der cgl160-Mutante erh{\"o}ht die Ladungsrekombination im Photosystem II und f{\"o}rdert die Photosynthese. In Zeiten geringer ATP-Synthase-Aktivit{\"a}t profitieren die Pflanzen also von der KEA3-Aktivit{\"a}t. KEA3 unterliegt einer Dimerisierung {\"u}ber seinen regulatorischen C-Terminus (RCT). Der RCT reagiert auf Ver{\"a}nderungen der Lichtintensit{\"a}t, da die Pflanzen, die KEA3 ohne diese Dom{\"a}ne exprimieren, einen reduzierten Lichtschutzmechanismus bei Lichtintensit{\"a}tsschwankungen aufweisen. Allerdings fixieren diese Pflanzen w{\"a}hrend der Photosynthese-Induktionsphase mehr Kohlenstoff als Gegenleistung f{\"u}r einen langfristigen Photoprotektor, was die regulierende Rolle von KEA3 in der Pflanzenentwicklung zeigt. Der KEA3-RCT ist dem Thylakoidstroma zugewandt, so dass seine Regulierung von lichtinduzierten Ver{\"a}nderungen in der Stroma-Umgebung abh{\"a}ngt. Die Regulierung der KEA3-Aktivit{\"a}t {\"u}berschneidet sich mit den pH-{\"A}nderungen im Stroma, die bei Lichtschwankungen auftreten. Es hat sich gezeigt, dass ATP und ADP eine Affinit{\"a}t zum heterolog exprimierten KEA3 RCT haben. Eine solche Wechselwirkung verursacht Konformations{\"a}nderungen in der RCT-Struktur. Die Faltung der RCT-Liganden-Interaktion h{\"a}ngt vom pH-Wert der Umgebung ab. Mit einer Kombination aus Bioinformatik und In-vitro-Ansatz wurde die ATP-Bindungsstelle am RCT lokalisiert. Das Einf{\"u}gen einer Punktmutation in der KEA3-RCT Bindungsstelle in planta f{\"u}hrte zu einer Deregulierung der Antiporteraktivit{\"a}t beim {\"U}bergang zu wenig Licht. Die in dieser Arbeit vorgestellten Daten erm{\"o}glichten es uns, die Rolle von KEA3 bei der Anpassung der Photosynthese umfassender zu bewerten und Modelle zur Regulierung der KEA3-Aktivit{\"a}t w{\"a}hrend des {\"U}bergangs zwischen verschiedenen Lichtintensit{\"a}ten vorzuschlagen.}, language = {en} } @article{TungSunWangetal.2021, author = {Tung, Wing Tai and Sun, Xianlei and Wang, Weiwei and Xu, Xun and Ma, Nan and Lendlein, Andreas}, title = {Structure, mechanical properties and degradation behavior of electrospun PEEU fiber meshes and films}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {6}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, number = {10}, publisher = {Springer Nature Switzerland AG}, address = {Cham}, issn = {2059-8521}, doi = {10.1557/s43580-020-00001-0}, pages = {276 -- 282}, year = {2021}, abstract = {The capability of a degradable implant to provide mechanical support depends on its degradation behavior. Hydrolytic degradation was studied for a polyesteretherurethane (PEEU70), which consists of poly(p-dioxanone) (PPDO) and poly(epsilon-caprolactone) (PCL) segments with a weight ratio of 70:30 linked by diurethane junction units. PEEU70 samples prepared in the form of meshes with average fiber diameters of 1.5 mu m (mesh1.5) and 1.2 mu m (mesh1.2), and films were sterilized and incubated in PBS at 37 degrees C with 5 vol\% CO2 supply for 1 to 6 weeks. Degradation features, such as cracks or wrinkles, became apparent from week 4 for all samples. Mass loss was found to be 11 wt\%, 6 wt\%, and 4 wt\% for mesh1.2, mesh1.5, and films at week 6. The elongation at break decreased to under 20\% in two weeks for mesh1.2. In case of the other two samples, this level of degradation was achieved after 4 weeks. The weight average molecular weight of both PEEU70 mesh and film samples decreased to below 30 kg/mol when elongation at break dropped below 20\%. The time period of sustained mechanical stability of PEEU70-based meshes depends on the fiber diameter and molecular weight.}, language = {en} } @phdthesis{Tung2021, author = {Tung, Wing Tai}, title = {Polymeric fibrous scaffold on macro/microscale towards tissue regeneration}, school = {Universit{\"a}t Potsdam}, year = {2021}, language = {en} } @article{Trindade2021, author = {Trindade, In{\^e}s}, title = {License to flower}, series = {Molecular plant}, volume = {14}, journal = {Molecular plant}, number = {5}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1674-2052}, doi = {10.1016/j.molp.2021.04.007}, pages = {719 -- 720}, year = {2021}, language = {en} } @article{Trindade2021, author = {Trindade, In{\^e}s}, title = {A drop of immunity}, series = {Molecular plant}, volume = {14}, journal = {Molecular plant}, number = {9}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1674-2052}, doi = {10.1016/j.molp.2021.07.022}, pages = {1437 -- 1438}, year = {2021}, language = {en} } @article{TranTamuraPhametal.2021, author = {Tran, V. Phuong and Tamura, Yui and Pham, Van-Cuong and Elhussiny, Mohamed Z. and Han, Guofeng and Sur Chowdhury, Vishwajit and Furuse, Mitsuhiro}, title = {Neuropeptide Y modifies a part of diencephalic catecholamine but not indolamine metabolism in chicks depending on feeding status}, series = {Neuropeptides}, volume = {89}, journal = {Neuropeptides}, publisher = {Elsevier}, address = {New York, NY}, issn = {0143-4179}, doi = {10.1016/j.npep.2021.102169}, pages = {9}, year = {2021}, abstract = {The role of the monoaminergic system in the feeding behavior of neonatal chicks has been reported, but the functional relationship between the metabolism of monoamines and appetite-related neuropeptides is still unclear. This study aimed to investigate the changes in catecholamine and indolamine metabolism in response to the central action of neuropeptide Y (NPY) in different feeding statuses and the underlying mechanisms. In Experiment 1, the diencephalic concentrations of amino acids and monoamines following the intracerebroventricular (ICV) injection of NPY (375 pmol/10 mu l/chick), saline solution under ad libitum, and fasting conditions for 30 min were determined. Central NPY significantly decreased L-tyrosine concentration, the precursor of catecholamines under feeding condition, but not under fasting condition. Central NPY significantly increased dopamine metabolites, including 3,4-dihydroxyphenylacetic acid and homovanillic acid (HVA). The concentration of 3-methoxy-4-hydroxyphenylglycol was significantly reduced under feeding condition, but did not change under fasting condition by NPY. However, no effects of NPY on indolamine metabolism were found in either feeding status. Therefore, the mechanism of action of catecholamines with central NPY under feeding condition was elucidated in Experiment 2. Central NPY significantly attenuated diencephalic gene expression of catecholaminergic synthetic enzymes, such as tyrosine hydroxylase, L-aromatic amino acid decarboxylase, and GTP cyclohydrolase I after 30 min of feeding. In Experiment 3, co-injection of alpha-methyl-L-tyrosine, an inhibitor of tyrosine hydroxylase with NPY, moderately attenuated the orexigenic effect of NPY, accompanied by a significant positive correlation between food intake and HVA levels. In Experiment 4, there was a significant interaction between NPY and clorgyline, an inhibitor of monoamine oxidase A with ICV co-injection which implies that co-existence of NPY and clorgyline enhances the orexigenic effect of NPY. In conclusion, central NPY modifies a part of catecholamine metabolism, which is illustrated by the involvement of dopamine transmission and metabolism under feeding but not fasting conditions.}, language = {en} } @article{TongKuekenRazaghiMoghadametal.2021, author = {Tong, Hao and K{\"u}ken, Anika and Razaghi-Moghadam, Zahra and Nikoloski, Zoran}, title = {Characterization of effects of genetic variants via genome-scale metabolic modelling}, series = {Cellular and molecular life sciences : CMLS}, volume = {78}, journal = {Cellular and molecular life sciences : CMLS}, number = {12}, publisher = {Springer International Publishing AG}, address = {Cham}, issn = {1420-682X}, doi = {10.1007/s00018-021-03844-4}, pages = {5123 -- 5138}, year = {2021}, abstract = {Genome-scale metabolic networks for model plants and crops in combination with approaches from the constraint-based modelling framework have been used to predict metabolic traits and design metabolic engineering strategies for their manipulation. With the advances in technologies to generate large-scale genotyping data from natural diversity panels and other populations, genome-wide association and genomic selection have emerged as statistical approaches to determine genetic variants associated with and predictive of traits. Here, we review recent advances in constraint-based approaches that integrate genetic variants in genome-scale metabolic models to characterize their effects on reaction fluxes. Since some of these approaches have been applied in organisms other than plants, we provide a critical assessment of their applicability particularly in crops. In addition, we further dissect the inferred effects of genetic variants with respect to reaction rate constants, abundances of enzymes, and concentrations of metabolites, as main determinants of reaction fluxes and relate them with their combined effects on complex traits, like growth. Through this systematic review, we also provide a roadmap for future research to increase the predictive power of statistical approaches by coupling them with mechanistic models of metabolism.}, language = {en} } @phdthesis{Ting2021, author = {Ting, Michael Kien Yin}, title = {Circadian-regulated dynamics of translation in Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {130}, year = {2021}, language = {en} } @article{TadjoungWaffoMitrovaTiedemannetal.2021, author = {Tadjoung Waffo, Armel Franklin and Mitrova, Biljana and Tiedemann, Kim and Iobbi-Nivol, Chantal and Leimk{\"u}hler, Silke and Wollenberger, Ulla}, title = {Electrochemical trimethylamine n-oxide biosensor with enzyme-based oxygen-scavenging membrane for long-term operation under ambient air}, series = {Biosensors : open access journal}, volume = {11}, journal = {Biosensors : open access journal}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios11040098}, pages = {17}, year = {2021}, abstract = {An amperometric trimethylamine N-oxide (TMAO) biosensor is reported, where TMAO reductase (TorA) and glucose oxidase (GOD) and catalase (Cat) were immobilized on the electrode surface, enabling measurements of mediated enzymatic TMAO reduction at low potential under ambient air conditions. The oxygen anti-interference membrane composed of GOD, Cat and polyvinyl alcohol (PVA) hydrogel, together with glucose concentration, was optimized until the O-2 reduction current of a Clark-type electrode was completely suppressed for at least 3 h. For the preparation of the TMAO biosensor, Escherichia coli TorA was purified under anaerobic conditions and immobilized on the surface of a carbon electrode and covered by the optimized O-2 scavenging membrane. The TMAO sensor operates at a potential of -0.8 V vs. Ag/AgCl (1 M KCl), where the reduction of methylviologen (MV) is recorded. The sensor signal depends linearly on TMAO concentrations between 2 mu M and 15 mM, with a sensitivity of 2.75 +/- 1.7 mu A/mM. The developed biosensor is characterized by a response time of about 33 s and an operational stability over 3 weeks. Furthermore, measurements of TMAO concentration were performed in 10\% human serum, where the lowest detectable concentration is of 10 mu M TMAO.}, language = {en} } @article{StrongScherzCaldwell2021, author = {Strong, Catherine R. C. and Scherz, Mark D. and Caldwell, Michael Wayne}, title = {Deconstructing the Gestalt}, series = {The anatomical record : AR ; advances in integrative anatomy and evolutionary biology ; an official publication of the American Association of Anatomists, AAA}, volume = {304}, journal = {The anatomical record : AR ; advances in integrative anatomy and evolutionary biology ; an official publication of the American Association of Anatomists, AAA}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {1932-8486}, doi = {10.1002/ar.24630}, pages = {2303 -- 2351}, year = {2021}, abstract = {Snakes-a subset of lizards-have traditionally been divided into two major groups based on feeding mechanics: "macrostomy," involving the ingestion of proportionally large prey items; and "microstomy," the lack of this ability. "Microstomy"-considered present in scolecophidian and early-diverging alethinophidian snakes-is generally viewed as a symplesiomorphy shared with non-snake lizards. However, this perspective of "microstomy" as plesiomorphic and morphologically homogenous fails to recognize the complexity of this condition and its evolution across "microstomatan" squamates. To challenge this problematic paradigm, we formalize a new framework for conceptualizing and testing the homology of overall character complexes, or "morphotypes," which underlies our re-assessment of "microstomy." Using micro-computed tomography (micro-CT) scans, we analyze the morphology of the jaws and suspensorium across purported "microstomatan" squamates (scolecophidians, early-diverging alethinophidians, and non-snake lizards) and demonstrate that key components of the jaw complex are not homologous at the level of primary character state identity across these taxa. Therefore, rather than treating "microstomy" as a uniform condition, we instead propose that non-snake lizards, early-diverging alethinophidians, anomalepidids, leptotyphlopids, and typhlopoids each exhibit a unique and nonhomologous jaw morphotype: "minimal-kinesis microstomy," "snout-shifting," "axle-brace maxillary raking," "mandibular raking," and "single-axle maxillary raking," respectively. The lack of synapomorphy among scolecophidians is inconsistent with the notion of scolecophidians representing an ancestral snake condition, and instead reflects a hypothesis of the independent evolution of fossoriality, miniaturization, and "microstomy" in each scolecophidian lineage. We ultimately emphasize that a rigorous approach to comparative anatomy is necessary in constructing evolutionary hypotheses that accurately reflect biological reality.}, language = {en} } @article{StraubePreickNayloretal.2021, author = {Straube, Nicolas and Preick, Michaela and Naylor, Gavin J. P. and Hofreiter, Michael}, title = {Mitochondrial DNA sequencing of a wet-collection syntype demonstrates the importance of type material as genetic resource for lantern shark taxonomy (Chondrichthyes: Etmopteridae)}, series = {Royal Society Open Science}, volume = {8}, journal = {Royal Society Open Science}, number = {9}, publisher = {Royal Society}, address = {London}, issn = {2054-5703}, doi = {10.1098/rsos.210474}, pages = {13}, year = {2021}, abstract = {After initial detection of target archival DNA of a 116-year-old syntype specimen of the smooth lantern shark, Etmopterus pusillus, in a single-stranded DNA library, we shotgun-sequenced additional 9 million reads from this same DNA library. Sequencing reads were used for extracting mitochondrial sequence information for analyses of mitochondrial DNA characteristics and reconstruction of the mitochondrial genome. The archival DNA is highly fragmented. A total of 4599 mitochondrial reads were available for the genome reconstruction using an iterative mapping approach. The resulting genome sequence has 12 times coverage and a length of 16 741 bp. All 37 vertebrate mitochondrial loci plus the control region were identified and annotated. The mitochondrial NADH2 gene was subsequently used to place the syntype haplotype in a network comprising multiple E. pusillus samples from various distant localities as well as sequences from a morphological similar species, the shortfin smooth lantern shark Etmopterus joungi. Results confirm the almost global distribution of E. pusillus and suggest E. joungi to be a junior synonym of E. pusillus. As mitochondrial DNA often represents the only available reference information in non-model organisms, this study illustrates the importance of mitochondrial DNA from an aged, wet collection type specimen for taxonomy.}, language = {en} } @article{StieglerKiemelEccardetal.2021, author = {Stiegler, Jonas and Kiemel, Katrin and Eccard, Jana and Fischer, Christina and Hering, Robert and Ortmann, Sylvia and Strigl, Lea and Tiedemann, Ralph and Ullmann, Wiebke and Blaum, Niels}, title = {Seed traits matter}, series = {Ecology and evolution}, volume = {11}, journal = {Ecology and evolution}, number = {24}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.8440}, pages = {18477 -- 18491}, year = {2021}, abstract = {Although many plants are dispersed by wind and seeds can travel long distances across unsuitable matrix areas, a large proportion relies on co-evolved zoochorous seed dispersal to connect populations in isolated habitat islands. Particularly in agricultural landscapes, where remaining habitat patches are often very small and highly isolated, mobile linkers as zoochorous seed dispersers are critical for the population dynamics of numerous plant species. However, knowledge about the quali- or quantification of such mobile link processes, especially in agricultural landscapes, is still limited. In a controlled feeding experiment, we recorded the seed intake and germination success after complete digestion by the European brown hare (Lepus europaeus) and explored its mobile link potential as an endozoochoric seed disperser. Utilizing a suite of common, rare, and potentially invasive plant species, we disentangled the effects of seed morphological traits on germination success while controlling for phylogenetic relatedness. Further, we measured the landscape connectivity via hares in two contrasting agricultural landscapes (simple: few natural and semi-natural structures, large fields; complex: high amount of natural and semi-natural structures, small fields) using GPS-based movement data. With 34,710 seeds of 44 plant species fed, one of 200 seeds (0.51\%) with seedlings of 33 species germinated from feces. Germination after complete digestion was positively related to denser seeds with comparatively small surface area and a relatively slender and elongated shape, suggesting that, for hares, the most critical seed characteristics for successful endozoochorous seed dispersal minimize exposure of the seed to the stomach and the associated digestive system. Furthermore, we could show that a hare's retention time is long enough to interconnect different habitats, especially grasslands and fields. Thus, besides other seed dispersal mechanisms, this most likely allows hares to act as effective mobile linkers contributing to ecosystem stability in times of agricultural intensification, not only in complex but also in simple landscapes.}, language = {en} } @article{StieglerKiemelEccardetal.2021, author = {Stiegler, Jonas and Kiemel, Katrin and Eccard, Jana and Fischer, Christina and Hering, Robert and Ortmann, Sylvia and Strigl, Lea and Tiedemann, Ralph}, title = {Seed traits matter}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {24}, publisher = {John Wiley \& Sons, Inc.}, issn = {2045-7758}, doi = {10.1002/ece3.8440}, pages = {18477 -- 18491}, year = {2021}, abstract = {Although many plants are dispersed by wind and seeds can travel long distances across unsuitable matrix areas, a large proportion relies on co-evolved zoochorous seed dispersal to connect populations in isolated habitat islands. Particularly in agricultural landscapes, where remaining habitat patches are often very small and highly isolated, mobile linkers as zoochorous seed dispersers are critical for the population dynamics of numerous plant species. However, knowledge about the quali- or quantification of such mobile link processes, especially in agricultural landscapes, is still limited. In a controlled feeding experiment, we recorded the seed intake and germination success after complete digestion by the European brown hare (Lepus europaeus) and explored its mobile link potential as an endozoochoric seed disperser. Utilizing a suite of common, rare, and potentially invasive plant species, we disentangled the effects of seed morphological traits on germination success while controlling for phylogenetic relatedness. Further, we measured the landscape connectivity via hares in two contrasting agricultural landscapes (simple: few natural and semi-natural structures, large fields; complex: high amount of natural and semi-natural structures, small fields) using GPS-based movement data. With 34,710 seeds of 44 plant species fed, one of 200 seeds (0.51\%) with seedlings of 33 species germinated from feces. Germination after complete digestion was positively related to denser seeds with comparatively small surface area and a relatively slender and elongated shape, suggesting that, for hares, the most critical seed characteristics for successful endozoochorous seed dispersal minimize exposure of the seed to the stomach and the associated digestive system. Furthermore, we could show that a hare's retention time is long enough to interconnect different habitats, especially grasslands and fields. Thus, besides other seed dispersal mechanisms, this most likely allows hares to act as effective mobile linkers contributing to ecosystem stability in times of agricultural intensification, not only in complex but also in simple landscapes.}, language = {en} } @misc{StieglerKiemelEccardetal.2021, author = {Stiegler, Jonas and Kiemel, Katrin and Eccard, Jana and Fischer, Christina and Hering, Robert and Ortmann, Sylvia and Strigl, Lea and Tiedemann, Ralph}, title = {Seed traits matter}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-54426}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-544265}, pages = {18477 -- 18491}, year = {2021}, abstract = {Although many plants are dispersed by wind and seeds can travel long distances across unsuitable matrix areas, a large proportion relies on co-evolved zoochorous seed dispersal to connect populations in isolated habitat islands. Particularly in agricultural landscapes, where remaining habitat patches are often very small and highly isolated, mobile linkers as zoochorous seed dispersers are critical for the population dynamics of numerous plant species. However, knowledge about the quali- or quantification of such mobile link processes, especially in agricultural landscapes, is still limited. In a controlled feeding experiment, we recorded the seed intake and germination success after complete digestion by the European brown hare (Lepus europaeus) and explored its mobile link potential as an endozoochoric seed disperser. Utilizing a suite of common, rare, and potentially invasive plant species, we disentangled the effects of seed morphological traits on germination success while controlling for phylogenetic relatedness. Further, we measured the landscape connectivity via hares in two contrasting agricultural landscapes (simple: few natural and semi-natural structures, large fields; complex: high amount of natural and semi-natural structures, small fields) using GPS-based movement data. With 34,710 seeds of 44 plant species fed, one of 200 seeds (0.51\%) with seedlings of 33 species germinated from feces. Germination after complete digestion was positively related to denser seeds with comparatively small surface area and a relatively slender and elongated shape, suggesting that, for hares, the most critical seed characteristics for successful endozoochorous seed dispersal minimize exposure of the seed to the stomach and the associated digestive system. Furthermore, we could show that a hare's retention time is long enough to interconnect different habitats, especially grasslands and fields. Thus, besides other seed dispersal mechanisms, this most likely allows hares to act as effective mobile linkers contributing to ecosystem stability in times of agricultural intensification, not only in complex but also in simple landscapes.}, language = {en} } @article{SteppertSchoenfelderSchultzetal.2021, author = {Steppert, Isabel and Sch{\"o}nfelder, Jessy and Schultz, Carolyn and Kuhlmeier, Dirk}, title = {Rapid in vitro differentiation of bacteria by ion mobility spectrometry}, series = {Applied Microbiology and Biotechnology}, volume = {105}, journal = {Applied Microbiology and Biotechnology}, number = {10}, publisher = {Springer}, address = {New York}, issn = {0175-7598}, doi = {10.1007/s00253-021-11315-w}, pages = {4297 -- 4307}, year = {2021}, abstract = {Rapid screening of infected people plays a crucial role in interrupting infection chains. However, the current methods for identification of bacteria are very tedious and labor intense. Fast on-site screening for pathogens based on volatile organic compounds (VOCs) by ion mobility spectrometry (IMS) could help to differentiate between healthy and potentially infected subjects. As a first step towards this, the feasibility of differentiating between seven different bacteria including resistant strains was assessed using IMS coupled to multicapillary columns (MCC-IMS). The headspace above bacterial cultures was directly drawn and analyzed by MCC-IMS after 90 min of incubation. A cluster analysis software and statistical methods were applied to select discriminative VOC clusters. As a result, 63 VOC clusters were identified, enabling the differentiation between all investigated bacterial strains using canonical discriminant analysis. These 63 clusters were reduced to 7 discriminative VOC clusters by constructing a hierarchical classification tree. Using this tree, all bacteria including resistant strains could be classified with an AUC of 1.0 by receiver-operating characteristic analysis. In conclusion, MCC-IMS is able to differentiate the tested bacterial species, even the non-resistant and their corresponding resistant strains, based on VOC patterns after 90 min of cultivation. Although this result is very promising, in vivo studies need to be performed to investigate if this technology is able to also classify clinical samples. With a short analysis time of 5 min, MCC-IMS is quite attractive for a rapid screening for possible infections in various locations from hospitals to airports. Key Points center dot Differentiation of bacteria by MCC-IMS is shown after 90-min cultivation. center dot Non-resistant and resistant strains can be distinguished. center dot Classification of bacteria is possible based on metabolic features.}, language = {en} } @article{SteppertSteppertSterlaccietal.2021, author = {Steppert, Claus and Steppert, Isabel and Sterlacci, William and Bollinger, Thomas}, title = {Rapid detection of SARS-CoV-2 infection by multicapillary column coupled ion mobility spectrometry (MCC-IMS) of breath}, series = {Journal of breath research : volatiles for medical diagnosis ; official journal of the International Association for Breath Research (IABR) and the International Society for Breath Odor Research (ISBOR)}, volume = {15}, journal = {Journal of breath research : volatiles for medical diagnosis ; official journal of the International Association for Breath Research (IABR) and the International Society for Breath Odor Research (ISBOR)}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1752-7163}, doi = {10.1088/1752-7163/abe5ca}, pages = {8}, year = {2021}, abstract = {There is an urgent need for screening of patients with a communicable viral disease to cut infection chains. Recently, we demonstrated that ion mobility spectrometry coupled with a multicapillary column (MCC-IMS) is able to identify influenza-A infections in patients' breath. With a decreasing influenza epidemic and upcoming SARS-CoV-2 infections we proceeded further and analyzed patients with suspected SARS-CoV-2 infections. In this study, the nasal breath of 75 patients (34 male, 41 female, aged 64.4 +/- 15.4 years) was investigated by MCC-IMS for viral infections. Fourteen were positively diagnosed with influenza-A infection and sixteen with SARS-CoV-2 by reverse transcription polymerase chain reaction (RT-PCR) of nasopharyngeal swabs. In one patient RT-PCR was highly suspicious of SARS-CoV-2 but initially inconclusive. The remaining 44 patients served as controls. Breath fingerprints for specific infections were assessed by a combination of cluster analysis and multivariate statistics. There were no significant differences in gender or age according to the groups. In the cross validation of the discriminant analysis 72 of the 74 clearly defined patients could be correctly classified to the respective group. Even the inconclusive patient could be mapped to the SARS-CoV-2 group by applying the discrimination functions. Conclusion: SARS-CoV-2 infection and influenza-A infection can be detected with the help of MCC-IMS in breath in this pilot study. As this method provides a fast non-invasive diagnosis it should be further developed in a larger cohort for screening of communicable viral diseases. A validation study is ongoing during the second wave of COVID-19. Trial registration: ClinicalTrial.gov, NCT04282135 Registered 20 February 2020-Retrospectively registered,}, language = {en} } @inproceedings{StephanBarbirzRobinsonetal.2021, author = {Stephan, Mareike Sophia and Barbirz, Stefanie and Robinson, Tom and Yandrapalli, Naresh and Dimova, Rumiana}, title = {Bacterial mimetic systems for studying bacterial inactivation and infection}, series = {Biophysical journal : BJ / ed. by the Biophysical Society}, volume = {120}, booktitle = {Biophysical journal : BJ / ed. by the Biophysical Society}, number = {3}, publisher = {Cell Press}, address = {Cambridge}, issn = {0006-3495}, doi = {10.1016/j.bpj.2020.11.1087}, pages = {148A -- 148A}, year = {2021}, language = {en} } @article{StarkBachGuill2021, author = {Stark, Markus and Bach, Moritz and Guill, Christian}, title = {Patch isolation and periodic environmental disturbances have idiosyncratic effects on local and regional population variabilities in meta-food chains}, series = {Theoretical ecology}, volume = {14}, journal = {Theoretical ecology}, number = {3}, publisher = {Springer}, address = {Dordrecht}, issn = {1874-1738}, doi = {10.1007/s12080-021-00510-0}, pages = {489 -- 500}, year = {2021}, abstract = {While habitat loss is a known key driver of biodiversity decline, the impact of other landscape properties, such as patch isolation, is far less clear. When patch isolation is low, species may benefit from a broader range of foraging opportunities, but are at the same time adversely affected by higher predation pressure from mobile predators. Although previous approaches have successfully linked such effects to biodiversity, their impact on local and metapopulation dynamics has largely been ignored. Since population dynamics may also be affected by environmental disturbances that temporally change the degree of patch isolation, such as periodic changes in habitat availability, accurate assessment of its link with isolation is highly challenging. To analyze the effect of patch isolation on the population dynamics on different spatial scales, we simulate a three-species meta-food chain on complex networks of habitat patches and assess the average variability of local populations and metapopulations, as well as the level of synchronization among patches. To evaluate the impact of periodic environmental disturbances, we contrast simulations of static landscapes with simulations of dynamic landscapes in which 30 percent of the patches periodically become unavailable as habitat. We find that increasing mean patch isolation often leads to more asynchronous population dynamics, depending on the parameterization of the food chain. However, local population variability also increases due to indirect effects of increased dispersal mortality at high mean patch isolation, consequently destabilizing metapopulation dynamics and increasing extinction risk. In dynamic landscapes, periodic changes of patch availability on a timescale much slower than ecological interactions often fully synchronize the dynamics. Further, these changes not only increase the variability of local populations and metapopulations, but also mostly overrule the effects of mean patch isolation. This may explain the often small and inconclusive impact of mean patch isolation in natural ecosystems.}, language = {en} } @phdthesis{Stark2021, author = {Stark, Markus}, title = {Implications of local and regional processes on the stability of metacommunities in diverse ecosystems}, doi = {10.25932/publishup-52639}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-526399}, school = {Universit{\"a}t Potsdam}, pages = {x, 167}, year = {2021}, abstract = {Anthropogenic activities such as continuous landscape changes threaten biodiversity at both local and regional scales. Metacommunity models attempt to combine these two scales and continuously contribute to a better mechanistic understanding of how spatial processes and constraints, such as fragmentation, affect biodiversity. There is a strong consensus that such structural changes of the landscape tend to negatively effect the stability of metacommunities. However, in particular the interplay of complex trophic communities and landscape structure is not yet fully understood. In this present dissertation, a metacommunity approach is used based on a dynamic and spatially explicit model that integrates population dynamics at the local scale and dispersal dynamics at the regional scale. This approach allows the assessment of complex spatial landscape components such as habitat clustering on complex species communities, as well as the analysis of population dynamics of a single species. In addition to the impact of a fixed landscape structure, periodic environmental disturbances are also considered, where a periodical change of habitat availability, temporally alters landscape structure, such as the seasonal drying of a water body. On the local scale, the model results suggest that large-bodied animal species, such as predator species at high trophic positions, are more prone to extinction in a state of large patch isolation than smaller species at lower trophic levels. Increased metabolic losses for species with a lower body mass lead to increased energy limitation for species on higher trophic levels and serves as an explanation for a predominant loss of these species. This effect is particularly pronounced for food webs, where species are more sensitive to increased metabolic losses through dispersal and a change in landscape structure. In addition to the impact of species composition in a food web for diversity, the strength of local foraging interactions likewise affect the synchronization of population dynamics. A reduced predation pressure leads to more asynchronous population dynamics, beneficial for the stability of population dynamics as it reduces the risk of correlated extinction events among habitats. On the regional scale, two landscape aspects, which are the mean patch isolation and the formation of local clusters of two patches, promote an increase in \$\beta\$-diversity. Yet, the individual composition and robustness of the local species community equally explain a large proportion of the observed diversity patterns. A combination of periodic environmental disturbance and patch isolation has a particular impact on population dynamics of a species. While the periodic disturbance has a synchronizing effect, it can even superimpose emerging asynchronous dynamics in a state of large patch isolation and unifies trends in synchronization between different species communities. In summary, the findings underline a large local impact of species composition and interactions on local diversity patterns of a metacommunity. In comparison, landscape structures such as fragmentation have a negligible effect on local diversity patterns, but increase their impact for regional diversity patterns. In contrast, at the level of population dynamics, regional characteristics such as periodic environmental disturbance and patch isolation have a particularly strong impact and contribute substantially to the understanding of the stability of population dynamics in a metacommunity. These studies demonstrate once again the complexity of our ecosystems and the need for further analysis for a better understanding of our surrounding environment and more targeted conservation of biodiversity.}, language = {en} } @phdthesis{Spinti2021, author = {Spinti, Daniela}, title = {Proteasomal protein turnover during defense priming in Arabidopsis}, doi = {10.25932/publishup-50590}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-505909}, school = {Universit{\"a}t Potsdam}, pages = {x, 164}, year = {2021}, abstract = {The ubiquitin-proteasome-system (UPS) is a cellular cascade involving three enzymatic steps for protein ubiquitination to target them to the 26S proteasome for proteolytic degradation. Several components of the UPS have been shown to be central for regulation of defense responses during infections with phytopathogenic bacteria. Upon recognition of the pathogen, local defense is induced which also primes the plant to acquire systemic resistance (SAR) for enhanced immune responses upon challenging infections. Here, ubiquitinated proteins were shown to accumulate locally and systemically during infections with Psm and after treatment with the SAR-inducing metabolites salicylic acid (SA) and pipecolic acid (Pip). The role of the 26S proteasome in local defense has been described in several studies, but the potential role during SAR remains elusive and was therefore investigated in this project by characterizing the Arabidopsis proteasome mutants rpt2a-2 and rpn12a-1 during priming and infections with Pseudomonas. Bacterial replication assays reveal decreased basal and systemic immunity in both mutants which was verified on molecular level showing impaired activation of defense- and SAR-genes. rpt2a-2 and rpn12a-1 accumulate wild type like levels of camalexin but less SA. Endogenous SA treatment restores local PR gene expression but does not rescue the SAR-phenotype. An RNAseq experiment of Col-0 and rpt2a-2 reveal weak or absent induction of defense genes in the proteasome mutant during priming. Thus, a functional 26S proteasome was found to be required for induction of SAR while compensatory mechanisms can still be initiated. E3-ubiquitin ligases conduct the last step of substrate ubiquitination and thereby convey specificity to proteasomal protein turnover. Using RNAseq, 11 E3-ligases were found to be differentially expressed during priming in Col-0 of which plant U-box 54 (PUB54) and ariadne 12 (ARI12) were further investigated to gain deeper understanding of their potential role during priming. PUB54 was shown to be expressed during priming and /or triggering with virulent Pseudomonas. pub54 I and pub54-II mutants display local and systemic defense comparable to Col-0. The heavy-metal associated protein 35 (HMP35) was identified as potential substrate of PUB54 in yeast which was verified in vitro and in vivo. PUB54 was shown to be an active E3-ligase exhibiting auto-ubiquitination activity and performing ubiquitination of HMP35. Proteasomal turnover of HMP35 was observed indicating that PUB54 targets HMP35 for ubiquitination and subsequent proteasomal degradation. Furthermore, hmp35-I benefits from increased resistance in bacterial replication assays. Thus, HMP35 is potentially a negative regulator of defense which is targeted and ubiquitinated by PUB54 to regulate downstream defense signaling. ARI12 is transcriptionally activated during priming or triggering and hyperinduced during priming and triggering. Gene expression is not inducible by the defense related hormone salicylic acid (SA) and is dampened in npr1 and fmo1 mutants consequently depending on functional SA- and Pip-pathways, respectively. ARI12 accumulates systemically after priming with SA, Pip or Pseudomonas. ari12 mutants are not altered in resistance but stable overexpression leads to increased resistance in local and systemic tissue. During priming and triggering, unbalanced ARI12 levels (i.e. knock out or overexpression) leads to enhanced FMO1 activation indicating a role of ARI12 in Pip-mediated SAR. ARI12 was shown to be an active E3-ligase with auto-ubiquitination activity likely required for activation with an identified ubiquitination site at K474. Mass spectrometrically identified potential substrates were not verified by additional experiments yet but suggest involvement of ARI12 in regulation of ROS in turn regulating Pip-dependent SAR pathways. Thus, data from this project provide strong indications about the involvement of the 26S proteasome in SAR and identified a central role of the two so far barely described E3-ubiquitin ligases PUB54 and ARI12 as novel components of plant defense.}, language = {en} } @misc{SpikesRodriguezSilvaBennettetal.2021, author = {Spikes, Montrai and Rodr{\´i}guez-Silva, Rodet and Bennett, Kerri-Ann and Br{\"a}ger, Stefan and Josaphat, James and Torres-Pineda, Patricia and Ernst, Anja and Havenstein, Katja and Schlupp, Ingo and Tiedemann, Ralph}, title = {A phylogeny of the genus Limia (Teleostei: Poeciliidae) suggests a single-lake radiation nested in a Caribbean-wide allopatric speciation scenario}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-54888}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548882}, pages = {1 -- 8}, year = {2021}, abstract = {Objective The Caribbean is an important global biodiversity hotspot. Adaptive radiations there lead to many speciation events within a limited period and hence are particularly prominent biodiversity generators. A prime example are freshwater fish of the genus Limia, endemic to the Greater Antilles. Within Hispaniola, nine species have been described from a single isolated site, Lake Mirago{\^a}ne, pointing towards extraordinary sympatric speciation. This study examines the evolutionary history of the Limia species in Lake Mirago{\^a}ne, relative to their congeners throughout the Caribbean. Results For 12 Limia species, we obtained almost complete sequences of the mitochondrial cytochrome b gene, a well-established marker for lower-level taxonomic relationships. We included sequences of six further Limia species from GenBank (total N  = 18 species). Our phylogenies are in concordance with other published phylogenies of Limia. There is strong support that the species found in Lake Mirago{\^a}ne in Haiti are monophyletic, confirming a recent local radiation. Within Lake Mirago{\^a}ne, speciation is likely extremely recent, leading to incomplete lineage sorting in the mtDNA. Future studies using multiple unlinked genetic markers are needed to disentangle the relationships within the Lake Mirago{\^a}ne clade.}, language = {en} } @article{SpikesRodriguezSilvaBennettetal.2021, author = {Spikes, Montrai and Rodr{\´i}guez-Silva, Rodet and Bennett, Kerri-Ann and Br{\"a}ger, Stefan and Josaphat, James and Torres-Pineda, Patricia and Ernst, Anja and Havenstein, Katja and Schlupp, Ingo and Tiedemann, Ralph}, title = {A phylogeny of the genus Limia (Teleostei: Poeciliidae) suggests a single-lake radiation nested in a Caribbean-wide allopatric speciation scenario}, series = {BMC Research Notes}, volume = {14}, journal = {BMC Research Notes}, publisher = {BMC Research Notes / Biomed Central}, address = {London}, issn = {1756-0500}, doi = {10.1186/s13104-021-05843-x}, pages = {1 -- 8}, year = {2021}, abstract = {Objective The Caribbean is an important global biodiversity hotspot. Adaptive radiations there lead to many speciation events within a limited period and hence are particularly prominent biodiversity generators. A prime example are freshwater fish of the genus Limia, endemic to the Greater Antilles. Within Hispaniola, nine species have been described from a single isolated site, Lake Mirago{\^a}ne, pointing towards extraordinary sympatric speciation. This study examines the evolutionary history of the Limia species in Lake Mirago{\^a}ne, relative to their congeners throughout the Caribbean. Results For 12 Limia species, we obtained almost complete sequences of the mitochondrial cytochrome b gene, a well-established marker for lower-level taxonomic relationships. We included sequences of six further Limia species from GenBank (total N  = 18 species). Our phylogenies are in concordance with other published phylogenies of Limia. There is strong support that the species found in Lake Mirago{\^a}ne in Haiti are monophyletic, confirming a recent local radiation. Within Lake Mirago{\^a}ne, speciation is likely extremely recent, leading to incomplete lineage sorting in the mtDNA. Future studies using multiple unlinked genetic markers are needed to disentangle the relationships within the Lake Mirago{\^a}ne clade.}, language = {en} } @article{SoeriyadiOngleyKehretal.2021, author = {Soeriyadi, Angela H. and Ongley, Sarah E. and Kehr, Jan-Christoph and Pickford, Russel and Dittmann, Elke and Neilan, Brett A.}, title = {Tailoring enzyme stringency masks the multispecificity of a lyngbyatoxin (indolactam alkaloid) nonribosomal peptide synthetase}, series = {ChemBioChem}, volume = {23}, journal = {ChemBioChem}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4227}, doi = {10.1002/cbic.202100574}, pages = {6}, year = {2021}, abstract = {Indolactam alkaloids are activators of protein kinase C (PKC) and are of pharmacological interest for the treatment of pathologies involving PKC dysregulation. The marine cyanobacterial nonribosomal peptide synthetase (NRPS) pathway for lyngbyatoxin biosynthesis, which we previously expressed in E. coli, was studied for its amenability towards the biosynthesis of indolactam variants. Modification of culture conditions for our E. coli heterologous expression host and analysis of pathway products suggested the native lyngbyatoxin pathway NRPS does possess a degree of relaxed specificity. Site-directed mutagenesis of two positions within the adenylation domain (A-domain) substrate-binding pocket was performed, resulting in an alteration of substrate preference between valine, isoleucine, and leucine. We observed relative congruence of in vitro substrate activation by the LtxA NRPS to in vivo product formation. While there was a preference for isoleucine over leucine, the substitution of alternative tailoring domains may unveil the true in vivo effects of the mutations introduced herein.}, language = {en} } @article{ShikangalahMapaniMapaureetal.2021, author = {Shikangalah, Rosemary and Mapani, Benjamin and Mapaure, Isaac and Herzschuh, Ulrike}, title = {Responsiveness of Dichrostachys cinerea to seasonal variations in temperature and rainfall in central Namibia}, series = {Flora}, volume = {286}, journal = {Flora}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0367-2530}, doi = {10.1016/j.flora.2021.151974}, pages = {7}, year = {2021}, abstract = {Woody plants provide natural archives of climatic variation which can be investigated by applying dendroclimatological methods. Such studies are limited in Southern Africa but have great potential of improving our understanding of past climates and plant functional adaptations in the region. This study therefore investigated the responsiveness of Dichrostachys cinerea to seasonal variations in temperature and rainfall at two sites in central Namibia, Waterberg and Kuzikus. Dichrostachys cinerea is one of the encroacher species thriving well in Namibia. A moving correlation and response function analysis were used to test its responsiveness to seasonal climatic variations over time. Dichrostachys cinerea growth rings showed relationships to late summer warming, lasting up to half of the rainy season. The results also revealed that past temperatures had been fluctuating and their influence on growth rings had been intensifying over the years, but to varying extents between the two sites. Temperature was a more important determinant of ring growth at the drier site (Kuzikus), while rainfall was more important at the wetter site (Waterberg). Growth ring responsiveness to rainfall was not immediate but showed a rather lagged pattern. We conclude that D. cinerea differentially responds to variations in rainfall and temperature across short climatic gradients. This study showed that the species, due to its somewhat wide ecological amplitude, has great potential for dendroclimatological studies in tropical regions.}, language = {en} } @misc{SenBoginMondaletal.2021, author = {Sen, Jaydip and Bogin, Barry and Mondal, Nitish and Dey, Sima and Roy, Shreysai}, title = {Groundwater arsenic contamination in the Bengal Delta Plain is an important public health issue}, series = {Human Biology and Public Health}, volume = {2021}, journal = {Human Biology and Public Health}, number = {1}, editor = {Scheffler, Christiane and Koziel, Slawomir and Hermanussen, Michael and Bogin, Barry}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph.v1.7}, pages = {1 -- 31}, year = {2021}, abstract = {There is a close association between human biology, epidemiology and public health. Exposure to toxic elements is one area of such associations and global concerns. The Bengal Delta Plain (BDP) is a region where contamination of ground water by arsenic has assumed epidemic proportions. Apart from dermatological manifestations, chronic exposure to arsenic causes a heavy toll through several carcinogenic and non-carcinogenic disorders. This article provides a global overview of groundwater arsenic contamination in the BDP region, especially the sources, speciation, and mobility of arsenic, and critically reviews the effects of arsenic on human health. The present review also provides a summary of comprehensive knowledge on various measures required for mitigation and social consequences of the problem of arsenic contaminated groundwater in the BDP region.}, language = {en} } @article{SeepRazaghiMoghadamNikoloski2021, author = {Seep, Lea and Razaghi-Moghadam, Zahra and Nikoloski, Zoran}, title = {Reaction lumping in metabolic networks for application with thermodynamic metabolic flux analysis}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-021-87643-8}, pages = {11}, year = {2021}, abstract = {Thermodynamic metabolic flux analysis (TMFA) can narrow down the space of steady-state flux distributions, but requires knowledge of the standard Gibbs free energy for the modelled reactions. The latter are often not available due to unknown Gibbs free energy change of formation ,Delta fG0, of metabolites. To optimize the usage of data on thermodynamics in constraining a model, reaction lumping has been proposed to eliminate metabolites with unknown Delta fG0. However, the lumping procedure has not been formalized nor implemented for systematic identification of lumped reactions. Here, we propose, implement, and test a combined procedure for reaction lumping, applicable to genome-scale metabolic models. It is based on identification of groups of metabolites with unknown Delta fG0 whose elimination can be conducted independently of the others via: (1) group implementation, aiming to eliminate an entire such group, and, if this is infeasible, (2) a sequential implementation to ensure that a maximal number of metabolites with unknown Delta fG0 are eliminated. Our comparative analysis with genome-scale metabolic models of Escherichia coli, Bacillus subtilis, and Homo sapiens shows that the combined procedure provides an efficient means for systematic identification of lumped reactions. We also demonstrate that TMFA applied to models with reactions lumped according to the proposed procedure lead to more precise predictions in comparison to the original models. The provided implementation thus ensures the reproducibility of the findings and their application with standard TMFA.}, language = {en} } @article{SedaghatmehrThirumalaikumarKamranfaretal.2021, author = {Sedaghatmehr, Mastoureh and Thirumalaikumar, Venkatesh P. and Kamranfar, Iman and Schulz, Karina and M{\"u}ller-R{\"o}ber, Bernd and Sampathkumar, Arun and Balazadeh, Salma}, title = {Autophagy complements metalloprotease FtsH6 in degrading plastid heat shock protein HSP21 during heat stress recovery}, series = {The journal of experimental botany : an official publication of the Society for Experimental Biology and of the Federation of European Societies of Plant Physiology}, volume = {72}, journal = {The journal of experimental botany : an official publication of the Society for Experimental Biology and of the Federation of European Societies of Plant Physiology}, number = {21}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erab304}, pages = {7498 -- 7513}, year = {2021}, abstract = {Moderate and temporary heat stresses prime plants to tolerate, and survive, a subsequent severe heat stress. Such acquired thermotolerance can be maintained for several days under normal growth conditions, and can create a heat stress memory. We recently demonstrated that plastid-localized small heat shock protein 21 ( HSP21) is a key component of heat stress memory in Arabidopsis thaliana. A sustained high abundance of HSP21 during the heat stress recovery phase extends heat stress memory. The level of HSP21 is negatively controlled by plastid-localized metalloprotease FtsH6 during heat stress recovery. Here, we demonstrate that autophagy, a cellular recycling mechanism, exerts additional control over HSP21 degradation. Genetic and chemical disruption of both metalloprotease activity and autophagy trigger superior HSP21 accumulation, thereby improving memory. Furthermore, we provide evidence that autophagy cargo receptor ATG8-INTERACTING PROTEIN1 (ATI1) is associated with heat stress memory. ATI1 bodies co-localize with both autophagosomes and HSP21, and their abundance and transport to the vacuole increase during heat stress recovery. Together, our results provide new insights into the module for control of the regulation of heat stress memory, in which two distinct protein degradation pathways act in concert to degrade HSP21, thereby enabling cells to recover from the heat stress effect at the cost of reducing the heat stress memory.}, language = {en} } @article{SchneebergerSchulzeScheffleretal.2021, author = {Schneeberger, Karin and Schulze, Michael and Scheffler, Ingo and Caspers, Barbara A.}, title = {Evidence of female preference for odor of distant over local males in a bat with female dispersal}, series = {Behavioral ecology : the official journal of the International Society for Behavioral Ecology}, volume = {32}, journal = {Behavioral ecology : the official journal of the International Society for Behavioral Ecology}, number = {4}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1045-2249}, doi = {10.1093/beheco/arab003}, pages = {657 -- 661}, year = {2021}, abstract = {Geographic variation of sexually selected male traits is common in animals. Female choice also varies geographically and several studies found female preference for local males, which is assumed to lead to local adaptation and, therefore, increases fitness. As females are the nondispersing sex in most mammalian taxa, this preference for local males might be explained by the learning of male characteristics. Studies on the preference of females in female-dispersing species are lacking so far. To find out whether such females would also show preferences for local males, we conducted a study on greater sac-winged bats (Saccopteryx bilineata), a species where females disperse and males stay in their natal colony. Male greater sac-winged bats possess a wing pouch that is filled with odoriferous secretion and fanned toward females during courtship display. In a combination of chemical analysis and behavioral preference tests, we analyzed whether the composition of wing sac secretion varies between two geographically distinct populations (300 km), and whether females show a preference for local or distant male scent. Using gas chromatography, we found significant differences in the composition of the wing sac odors between the two geographically distinct populations. In addition, the behavioral preference experiments revealed that females of both populations preferred the scent of geographically distant males over local males. The wing sac odor might thus be used to guarantee optimal outbreeding when dispersing to a new colony. This is-to our knowledge-the first study on odor preference of females of a species with female-biased dispersal.}, language = {en} } @article{SchneebergerEccard2021, author = {Schneeberger, Karin and Eccard, Jana}, title = {Experience of social density during early life is associated with attraction to conspecific odour in the common vole (Microtus arvalis)}, series = {Ethology : international journal of behavioural biology}, volume = {127}, journal = {Ethology : international journal of behavioural biology}, number = {10}, publisher = {Wiley-Blackwell}, address = {Berlin}, issn = {0179-1613}, doi = {10.1111/eth.13211}, pages = {908 -- 913}, year = {2021}, abstract = {Social organisation in species with fluctuating population sizes can change with density. Therefore, information on (future) density obtained during early life stages may be associated with social behaviour. Olfactory cues may carry important social information. We investigated whether early life experience of different experimental densities was subsequently associated with differences in attraction to adult conspecific odours. We used common voles (Microtus arvalis), a rodent species undergoing extreme density fluctuations. We found that individuals originating from high experimental density populations kept in large outdoor enclosures invested more time in inspecting conspecific olfactory cues than individuals from low-density populations. Generally, voles from both treatments spent more time with the olfactory cues than expected by chance and did not differ in their latency to approach the odour samples. Our findings indicate either that early experience affects odour sensitivity or that animals evaluate the social information contained in conspecific odours differently, depending on their early life experience of conspecific density.}, language = {en} } @article{SchmidtReilJeskeetal.2021, author = {Schmidt, Sabrina and Reil, Daniela and Jeske, Kathrin and Drewes, Stephan and Rosenfeld, Ulrike and Fischer, Stefan and Spierling, Nastasja G. and Labutin, Anton and Heckel, Gerald and Jacob, Jens and Ulrich, Rainer G. and Imholt, Christian}, title = {Spatial and temporal dynamics and molecular evolution of Tula orthohantavirus in German vole populations}, series = {Viruses / Molecular Diversity Preservation International (MDPI)}, volume = {13}, journal = {Viruses / Molecular Diversity Preservation International (MDPI)}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1999-4915}, doi = {10.3390/v13061132}, pages = {17}, year = {2021}, abstract = {Tula orthohantavirus (TULV) is a rodent-borne hantavirus with broad geographical distribution in Europe. Its major reservoir is the common vole (Microtus arvalis), but TULV has also been detected in closely related vole species. Given the large distributional range and high amplitude population dynamics of common voles, this host-pathogen complex presents an ideal system to study the complex mechanisms of pathogen transmission in a wild rodent reservoir. We investigated the dynamics of TULV prevalence and the subsequent potential effects on the molecular evolution of TULV in common voles of the Central evolutionary lineage. Rodents were trapped for three years in four regions of Germany and samples were analyzed for the presence of TULV-reactive antibodies and TULV RNA with subsequent sequence determination. The results show that individual (sex) and population-level factors (abundance) of hosts were significant predictors of local TULV dynamics. At the large geographic scale, different phylogenetic TULV clades and an overall isolation-by-distance pattern in virus sequences were detected, while at the small scale (<4 km) this depended on the study area. In combination with an overall delayed density dependence, our results highlight that frequent, localized bottleneck events for the common vole and TULV do occur and can be offset by local recolonization dynamics.}, language = {en} } @article{SchefflerRogolIancuetal.2021, author = {Scheffler, Christiane and Rogol, Alan D. and Iancu, Mirela and Hanc, Tomasz and Moelyo, Annang Giri and Suchomlinov, Andrej and Lebedeva, Lidia and Limony, Yehuda and Musalek, Martin and Veldre, Gudrun and Godina, Elena Z. and Kirchengast, Sylvia and Mumm, Rebekka and Groth, Detlef and Tutkuviene, Janina and B{\"o}ker, Sonja and Ozer, Basak Koca and Navazo, Barbara and Spake, Laure and Koziel, Slawomir and Hermanussen, Michael}, title = {Growth during times of fear and emotional stress}, series = {Human biology and public health}, journal = {Human biology and public health}, number = {2}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph.v2.15}, year = {2021}, abstract = {Twenty-one scientists met for this year's virtual conference on Auxology held at the University Potsdam, Germany, to discuss child and adolescent growth during times of fear and emotional stress. Growth within the broad range of normal for age and sex is considered a sign of good general health whereas fear and emotional stress can lead to growth faltering. Stunting is a sign of social disadvantage and poor parental education. Adverse childhood experiences affect child development, particularly in families with low parental education and low socioeconomic status. Negative effects were also shown in Indian children exposed prenatally and in early postnatal life to the cyclone Aila in 2009. Distrust, fears and fake news regarding the current Corona pandemic received particular attention though the effects generally appeared weak. Mean birth weight was higher; rates of low, very and extremely low birth weight were lower. Other topics discussed by the participants, were the influences of economic crises on birth weight, the measurement of self-confidence and its impact on growth, the associations between obesity, peer relationship, and behavior among Turkish adolescents, height trends in Indonesia, physiological neonatal weight loss, methods for assessing biological maturation in sportsmen, and a new method for skeletal age determination. The participants also discussed the association between acute myocardial infarction and somatotype in Estonia, rural-urban growth differences in Mongolian children, socio-environmental conditions and sexual dimorphism, biological mortality bias, and new statistical techniques for describing inhomogeneity in the association of bivariate variables, and for detecting and visualizing extensive interactions among variables.}, language = {en} } @article{SchefflerNguyenHermanussen2021, author = {Scheffler, Christiane and Nguyen, Thi Hong and Hermanussen, Michael}, title = {Vietnamese migrants are as tall as they want to be}, series = {Human biology and public health}, journal = {Human biology and public health}, number = {2}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph.v2.12}, year = {2021}, abstract = {Background: Members of the same social group tent to have the same body height. Migrants tend to adjust in height to their host communities. Objectives: Social-Economic-Political-Emotional (SEPE) factors influence growth. We hypothesized that Vietnamese young adult migrants in Germany (1) are taller than their parents, (2) are as tall as their German peers, and (3) are as tall as predicted by height expectation at age 13 years. Sample: The study was conducted in 30 male and 54 female Vietnamese migrants (mean age 26.23 years. SD=4.96) in Germany in 2020. Methods: Information on age, sex, body height, school and education, job, height and ethnicity of best friend, migration history and cultural identification, parental height and education, and recalled information on their personal height expectations at age 13 years were obtained by questionnaire. The data were analyzed by St. Nicolas House Analysis (SNHA) and multiple regression. Results: Vietnamese young adults are taller than their parents (females 3.85cm, males 7.44cm), but do not fully attain height of their German peers. The body height is positively associated with the height of best friend (p < 0.001), the height expectation at age 13 year (p < 0.001), and father's height (p=0.001). Conclusion: Body height of Vietnamese migrants in Germany reflects competitive growth and strategic growth adjustments. The magnitude of this intergenerational trend supports the concept that human growth depends on SEPE factors.}, language = {en} }