@article{ZehbeMochalesRadziketal.2015, author = {Zehbe, Rolf and Mochales, Carolina and Radzik, Daniela and Mueller, Wolf-Dieter and Fleck, Claudia}, title = {Electrophoretic deposition of multilayered (cubic and tetragonal stabilized) zirconia ceramics for adapted crack deflection}, series = {Journal of the European Ceramic Society}, volume = {36}, journal = {Journal of the European Ceramic Society}, number = {2}, publisher = {Elsevier}, address = {Oxford}, issn = {0955-2219}, doi = {10.1016/j.jeurceramsoc.2015.08.022}, pages = {357 -- 364}, year = {2015}, abstract = {The electrophoretic deposition process was used to produce multi-layered ceramics consisting of alternating layers of fully stabilized cubic zirconia and partially stabilized tetragonal zirconia to make use of their different mechanical behaviour, investigating the possibility to deflect advancing cracks at the interfaces of the different layers. This crack deflection is apparently impacted by a toughening mechanism only found in the tetragonal stabilized zirconia polymorph and is characterized by the stress induced transformation of the metastable tetragonal phase into the monoclinic one, which is accompanied by a volume increase resulting in a closing mechanism for advancing cracks. While improving the electrophoretic deposition process, we investigated the transformation toughening mechanism at the layer interfaces and their effect on crack propagation. Investigations involved a combination of different imaging methods, including light microscopy, white light interferometry, atomic force microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy.}, language = {en} } @article{ZehbeKolloscheLardongetal.2016, author = {Zehbe, Kerstin and Kollosche, Matthias and Lardong, Sebastian and Kelling, Alexandra and Schilde, Uwe and Taubert, Andreas}, title = {Ionogels Based on Poly(methyl methacrylate) and Metal-Containing Ionic Liquids: Correlation between Structure and Mechanical and Electrical Properties}, series = {International journal of molecular sciences}, volume = {17}, journal = {International journal of molecular sciences}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms17030391}, pages = {16}, year = {2016}, abstract = {Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs.}, language = {en} } @article{ZbilutMitchellGiulianietal.2004, author = {Zbilut, J. P. and Mitchell, J. C. and Giuliani, A. and Colosimo, A. and Marwan, Norbert and Webber, C. L.}, title = {Singular hydrophobicity patterns and net charge : a mesoscopic principle for protein aggregation/folding}, issn = {0378-4371}, year = {2004}, abstract = {A statistical model describing the propensity for protein aggregation is presented. Only amino-acid hydrophobicity values and calculated net charge are used for the model. The combined effects of hydrophobic patterns as computed by the signal analysis technique, recurrence quantification, plus calculated net charge were included in a function emphasizing the effect of singular hydrophobic patches which were found to be statistically significant for predicting aggregation propensity as quantified by fluorescence studies obtained from the literature. These results suggest preliminary evidence for a mesoscopic principle for protein folding/aggregation. (C) 2004 Elsevier B.V. All rights reserved}, language = {en} } @article{ZaritskyCourtoisMunozMateosetal.2014, author = {Zaritsky, Dennis and Courtois, Helene and Munoz-Mateos, Juan-Carlos and Sorce, Jenny and Erroz-Ferrer, S. and Comeron, S. and Gadotti, D. A. and Gil De Paz, A. and Hinz, J. L. and Laurikainen, E. and Kim, T. and Laine, J. and Menendez-Delmestre, K. and Mizusawa, T. and Regan, M. W. and Salo, H. and Seibert, M. and Sheth, K. and Athanassoula, E. and Bosma, A. and Cisternas, M. and Ho, Luis C. and Holwerda, B.}, title = {The baryonic Tully-Fisher relationship for S(4)G galaxies and the "condensed" baryon fraction of galaxies}, series = {The astronomical journal}, volume = {147}, journal = {The astronomical journal}, number = {6}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-6256}, doi = {10.1088/0004-6256/147/6/134}, pages = {11}, year = {2014}, abstract = {We combine data from the Spitzer Survey for Stellar Structure in Galaxies, a recently calibrated empirical stellar mass estimator from Eskew et al., and an extensive database of Hi spectral line profiles to examine the baryonic Tully-Fisher (BTF) relation. We find (1) that the BTF has lower scatter than the classic Tully-Fisher (TF) relation and is better described as a linear relationship, confirming similar previous results, (2) that the inclusion of a radial scale in the BTF decreases the scatter but only modestly, as seen previously for the TF relation, and (3) that the slope of the BTF, which we find to be 3.5 +/- 0.2 (Delta log M-baryon/Delta log v(c)), implies that on average a nearly constant fraction (similar to 0.4) of all baryons expected to be in a halo are "condensed" onto the central region of rotationally supported galaxies. The condensed baryon fraction, M-baryon/M-total, is, to our measurement precision, nearly independent of galaxy circular velocity (our sample spans circular velocities, vc, between 60 and 250 km s(-1), but is extended to v(c) similar to 10 km s(-1) using data from the literature). The observed galaxy-to-galaxy scatter in this fraction is generally <= a factor of 2 despite fairly liberal selection criteria. These results imply that cooling and heating processes, such as cold versus hot accretion, mass loss due to stellar winds, and active galactic nucleus driven feedback, to the degree that they affect the global galactic properties involved in the BTF, are independent of halo mass for galaxies with 10 < v(c) < 250 km s(-1) and typically introduce no more than a factor of two range in the resulting M-baryon/M-total. Recent simulations by Aumer et al. of a small sample of disk galaxies are in excellent agreement with our data, suggesting that current simulations are capable of reproducing the global properties of individual disk galaxies. More detailed comparison to models using the BTF holds great promise, but awaits improved determinations of the stellar masses.}, language = {en} } @article{ZaragozaCardielGomezGonzalezMayyaetal.2022, author = {Zaragoza-Cardiel, Javier and G{\´o}mez-Gonz{\´a}lez, V{\´i}ctor Mauricio Alfonso and Mayya, Yalia Divakara and Ramos-Larios, Gerardo}, title = {Nebular abundance gradient in the Cartwheel galaxy using MUSE data}, series = {Monthly notices of the Royal Astronomical Society}, volume = {514}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac1423}, pages = {1689 -- 1705}, year = {2022}, abstract = {We here present the results from a detailed analysis of nebular abundances of commonly observed ions in the collisional ring galaxy Cartwheel using the Very Large Telescope (VLT) Multi-Unit Spectroscopic Explorer (MUSE) data set. The analysis includes 221 H II regions in the star-forming ring, in addition to 40 relatively fainter H a-emitting regions in the spokes, disc, and the inner ring. The ionic abundances of He, N, O, and Fe are obtained using the direct method (DM) for 9, 20, 20, and 17 ring H II regions, respectively, where the S++ temperature-sensitive line is detected. For the rest of the regions, including all the nebulae between the inner and the outer ring, we obtained O abundances using the strong-line method (SLM). The ring regions have a median 12 + log O/H = 8.19 +/- 0.15, log N/O = -1.57 +/- 0.09 and log Fe/O = -2.24 +/- 0.09 using the DM. Within the range of O abundances seen in the Cartwheel, the N/O and Fe/O values decrease proportionately with increasing O, suggesting local enrichment of O without corresponding enrichment of primary N and Fe. The O abundances of the disc H II regions obtained using the SLM show a well-defined radial gradient. The mean O abundance of the ring H II regions is lower by similar to 0.1 dex as compared to the extrapolation of the radial gradient. The observed trends suggest the preservation of the pre-collisional abundance gradient, displacement of most of the processed elements to the ring, as predicted by the recent simulation by Renaud et al., and post-collisional infall of metal-poor gas in the ring.}, language = {en} } @article{ZapataArteagaMarinaZuoetal.2022, author = {Zapata-Arteaga, Osnat and Marina, Sara and Zuo, Guangzheng and Xu, Kai and D{\"o}rling, Bernhard and Alberto P{\´e}rez, Luis and Sebasti{\´a}n Reparaz, Juan and Mart{\´i}n, Jaime and Kemerink, Martijn and Campoy-Quiles, Mariano}, title = {Design rules for polymer blends with high thermoelectric performance}, series = {Advanced energy materials}, volume = {12}, journal = {Advanced energy materials}, number = {19}, publisher = {Wiley}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202104076}, pages = {11}, year = {2022}, abstract = {A combinatorial study of the effect of in-mixing of various guests on the thermoelectric properties of the host workhorse polymer poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) is presented. Specifically, the composition and thickness for doped films of PBTTT blended with different polymers are varied. Some blends at guest weight fractions around 10-15\% exhibit up to a fivefold increase in power factor compared to the reference material, leading to zT values around 0.1. Spectroscopic analysis of the charge-transfer species, structural characterization using grazing-incidence wide-angle X-ray scattering, differential scanning calorimetry, Raman, and atomic force microscopy, and Monte Carlo simulations are employed to determine that the key to improved performance is for the guest to promote long-range electrical connectivity and low disorder, together with similar highest occupied molecular orbital levels for both materials in order to ensure electronic connectivity are combined.}, language = {en} } @article{ZamponiPenfoldNachtegaaletal.2014, author = {Zamponi, Flavio and Penfold, Thomas J. and Nachtegaal, Maarten and Luebcke, Andrea and Rittmann, Jochen and Milne, Chris J. and Chergui, Majed and van Bokhoven, Jeroen A.}, title = {Probing the dynamics of plasmon-excited hexanethiol-capped gold nanoparticles by picosecond X-ray absorption spectroscopy}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {16}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {42}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c4cp03301a}, pages = {23157 -- 23163}, year = {2014}, abstract = {Picosecond X-ray absorption spectroscopy (XAS) is used to investigate the electronic and structural dynamics initiated by plasmon excitation of 1.8 nm diameter Au nanoparticles (NPs) functionalised with 1-hexanethiol. We show that 100 ps after photoexcitation the transient XAS spectrum is consistent with an 8\% expansion of the Au-Au bond length and a large increase in disorder associated with melting of the NPs. Recovery of the ground state occurs with a time constant of similar to 1.8 ns, arising from thermalisation with the environment. Simulations reveal that the transient spectrum exhibits no signature of charge separation at 100 ps and allows us to estimate an upper limit for the quantum yield (QY) of this process to be <0.1.}, language = {en} } @article{ZamponiAnsarivonKorffSchmisingetal.2009, author = {Zamponi, Flavio and Ansari, Zunaira and von Korff Schmising, Clemens and Rothhardt, Philip and Zhavoronkov, Nickolai and Woerner, Michael and Elsaesser, Thomas and Bargheer, Matias and Trobitzsch-Ryll, Timo and Haschke, Michael}, title = {Femtosecond hard X-ray plasma sources with a kilohertz repetition rate}, issn = {0947-8396}, doi = {10.1007/s00339-009-5171-9}, year = {2009}, abstract = {Laser-driven plasma sources of femtosecond hard X-ray pulses have found widespread application in ultrafast X- ray diffraction. The recent development of plasma sources working at kilohertz repetition rates has allowed for diffraction experiments with strongly improved sensitivity, now revealing subtle fully reversible changes of the geometry of crystal lattices. We provide a brief review of this development and present a novel plasma source with an optimized mechanical and optical design, providing a high flux of several 10(10) photons/s at the Cu-K alpha energy of 8.04 keV and a pulse duration of a parts per thousand currency sign300 fs. First experiments, including the generation of Debye-Scherrer diffraction patterns from Si powder, demonstrate the high performance of this source.}, language = {en} } @article{ZaldenQuirinSchumacheretal.2019, author = {Zalden, Peter and Quirin, Florian and Schumacher, Mathias and Siegel, Jan and Wei, Shuai and Koc, Azize and Nicoul, Matthieu and Trigo, Mariano and Andreasson, Pererik and Enquist, Henrik and Shu, Michael J. and Pardini, Tommaso and Chollet, Matthieu and Zhu, Diling and Lemke, Henrik and Ronneberger, Ider and Larsson, J{\"o}rgen and Lindenberg, Aaron M. and Fischer, Henry E. and Hau-Riege, Stefan and Reis, David A. and Mazzarello, Riccardo and Wuttig, Matthias and Sokolowski-Tinten, Klaus}, title = {Femtosecond x-ray diffraction reveals a liquid-liquid phase transition in phase-change materials}, series = {Science}, volume = {364}, journal = {Science}, number = {6445}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington, DC}, issn = {0036-8075}, doi = {10.1126/science.aaw1773}, pages = {1062 -- 1067}, year = {2019}, abstract = {In phase-change memory devices, a material is cycled between glassy and crystalline states. The highly temperature-dependent kinetics of its crystallization process enables application in memory technology, but the transition has not been resolved on an atomic scale. Using femtosecond x-ray diffraction and ab initio computer simulations, we determined the time-dependent pair-correlation function of phase-change materials throughout the melt-quenching and crystallization process. We found a liquid-liquid phase transition in the phase-change materials Ag4In3Sb67Te26 and Ge15Sb85 at 660 and 610 kelvin, respectively. The transition is predominantly caused by the onset of Peierls distortions, the amplitude of which correlates with an increase of the apparent activation energy of diffusivity. This reveals a relationship between atomic structure and kinetics, enabling a systematic optimization of the memory-switching kinetics.}, language = {en} } @article{ZaksPikovskij2017, author = {Zaks, Michael and Pikovskij, Arkadij}, title = {Chimeras and complex cluster states in arrays of spin-torque oscillators}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-04918-9}, pages = {10}, year = {2017}, abstract = {We consider synchronization properties of arrays of spin-torque nano-oscillators coupled via an RC load. We show that while the fully synchronized state of identical oscillators may be locally stable in some parameter range, this synchrony is not globally attracting. Instead, regimes of different levels of compositional complexity are observed. These include chimera states (a part of the array forms a cluster while other units are desynchronized), clustered chimeras (several clusters plus desynchronized oscillators), cluster state (all oscillators form several clusters), and partial synchronization (no clusters but a nonvanishing mean field). Dynamically, these states are also complex, demonstrating irregular and close to quasiperiodic modulation. Remarkably, when heterogeneity of spin-torque oscillators is taken into account, dynamical complexity even increases: close to the onset of a macroscopic mean field, the dynamics of this field is rather irregular.}, language = {en} } @article{ZaksTomov2016, author = {Zaks, Michael A. and Tomov, Petar}, title = {Onset of time dependence in ensembles of excitable elements with global repulsive coupling}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {93}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.93.020201}, pages = {5}, year = {2016}, abstract = {We consider the effect of global repulsive coupling on an ensemble of identical excitable elements. An increase of the coupling strength destabilizes the synchronous equilibrium and replaces it with many attracting oscillatory states, created in the transcritical heteroclinic bifurcation. The period of oscillations is inversely proportional to the distance from the critical parameter value. If the elements interact with the global field via the first Fourier harmonics of their phases, the stable equilibrium is in one step replaced by the attracting continuum of periodic motions.}, language = {en} } @article{ZaksRosenblumPikovskijetal.1997, author = {Zaks, Michael A. and Rosenblum, Michael and Pikovskij, Arkadij and Osipov, Grigory V. and Kurths, J{\"u}rgen}, title = {Phase synchronization of chaotic oscillations in terms of periodic orbits}, issn = {1054-1500}, year = {1997}, language = {en} } @article{ZaksPikovskijKurths1999, author = {Zaks, Michael A. and Pikovskij, Arkadij and Kurths, J{\"u}rgen}, title = {On the generalized dimensions for the fourier spectrum of the thue-morse sequence}, year = {1999}, language = {en} } @article{ZaksPikovskijKurths1998, author = {Zaks, Michael A. and Pikovskij, Arkadij and Kurths, J{\"u}rgen}, title = {Symbolic dynamics behind the singular continuous power spectra of continuous flows}, year = {1998}, language = {en} } @article{ZaksPikovskijKurths1997, author = {Zaks, Michael A. and Pikovskij, Arkadij and Kurths, J{\"u}rgen}, title = {On the correlation dimension of the spectral measure for the Thue-Morse sequence}, year = {1997}, language = {en} } @article{ZaksPikovskij2019, author = {Zaks, Michael A. and Pikovskij, Arkadij}, title = {Synchrony breakdown and noise-induced oscillation death in ensembles of serially connected spin-torque oscillators}, series = {The European physical journal : B, Condensed matter and complex systems}, volume = {92}, journal = {The European physical journal : B, Condensed matter and complex systems}, number = {7}, publisher = {Springer}, address = {New York}, issn = {1434-6028}, doi = {10.1140/epjb/e2019-100152-2}, pages = {12}, year = {2019}, abstract = {We consider collective dynamics in the ensemble of serially connected spin-torque oscillators governed by the Landau-Lifshitz-Gilbert-Slonczewski magnetization equation. Proximity to homoclinicity hampers synchronization of spin-torque oscillators: when the synchronous ensemble experiences the homoclinic bifurcation, the growth rate per oscillation of small deviations from the ensemble mean diverges. Depending on the configuration of the contour, sufficiently strong common noise, exemplified by stochastic oscillations of the current through the circuit, may suppress precession of the magnetic field for all oscillators. We derive the explicit expression for the threshold amplitude of noise, enabling this suppression.}, language = {en} } @article{ZaksPikovskij2017, author = {Zaks, Michael A. and Pikovskij, Arkadij}, title = {Chimeras and complex cluster states in arrays of spin-torque oscillators}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Macmillan Publishers Limited}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-04918-9}, year = {2017}, abstract = {We consider synchronization properties of arrays of spin-torque nano-oscillators coupled via an RC load. We show that while the fully synchronized state of identical oscillators may be locally stable in some parameter range, this synchrony is not globally attracting. Instead, regimes of different levels of compositional complexity are observed. These include chimera states (a part of the array forms a cluster while other units are desynchronized), clustered chimeras (several clusters plus desynchronized oscillators), cluster state (all oscillators form several clusters), and partial synchronization (no clusters but a nonvanishing mean field). Dynamically, these states are also complex, demonstrating irregular and close to quasiperiodic modulation. Remarkably, when heterogeneity of spin-torque oscillators is taken into account, dynamical complexity even increases: close to the onset of a macroscopic mean field, the dynamics of this field is rather irregular.}, language = {en} } @article{ZaksParkKurths2000, author = {Zaks, Michael A. and Park, Eun Hyoung and Kurths, J{\"u}rgen}, title = {On phase synchronization by periodic force in chaotic oscillators with saddle equilibria}, year = {2000}, language = {en} } @article{ZakrevskyyTitovLomadzeetal.2014, author = {Zakrevskyy, Yuriy and Titov, Evgenii and Lomadze, Nino and Santer, Svetlana}, title = {Phase diagrams of DNA-photosensitive surfactant complexes: Effect of ionic strength and surfactant structure}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {141}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {16}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4899281}, pages = {8}, year = {2014}, abstract = {Realization of all-optically controlled and efficient DNA compaction is the major motivation in the study of interactions between DNA and photosensitive surfactants. In this article, using recently published approach of phase diagram construction [Y. Zakrevskyy, P. Cywinski, M. Cywinska, J. Paasche, N. Lomadze, O. Reich, H.-G. Lohmannsroben, and S. Santer, J. Chem. Phys. 140, 044907 (2014)], a strategy for substantial reduction of compaction agent concentration and simultaneous maintaining the light-induced decompaction efficiency is proposed. The role of ionic strength (NaCl concentration), as a very important environmental parameter, and surfactant structure (spacer length) on the changes of positions of phase transitions is investigated. Increase of ionic strength leads to increase of the surfactant concentration needed to compact DNA molecule. However, elongation of the spacer results to substantial reduction of this concentration. DNA compaction by surfactants with longer tails starts to take place in diluted solutions at charge ratios Z < 1 and is driven by azobenzene-aggregation compaction mechanism, which is responsible for efficient decompaction. Comparison of phase diagrams for different DNA-photosensitive surfactant systems allowed explanation and proposal of a strategy to overcome previously reported limitations of the light-induced decompaction for complexes with increasing surfactant hydrophobicity. (C) 2014 AIP Publishing LLC.}, language = {en} } @article{ZakrevskyyRoxlauBrezesinskietal.2014, author = {Zakrevskyy, Yuriy and Roxlau, Julian and Brezesinski, Gerald and Lomadze, Nino and Santer, Svetlana}, title = {Photosensitive surfactants: Micellization and interaction with DNA}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {140}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {4}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4862678}, pages = {8}, year = {2014}, abstract = {Recently, photosensitive surfactants have re-attracted considerable attention. It has been shown that their association with oppositely charged biologically important polyelectrolytes, such as DNA or microgels, can be efficiently manipulated simply by light exposure. In this article, we investigate the self-assembly of photosensitive surfactants as well as their interactions with DNA by calorimetric and spectroscopic methods. Critical micelle concentration (CMC), standard micellization enthalpy, entropy, and Gibbs energy were determined in different conditions (ionic strengths and temperatures) for a series of cationic surfactants with an azobenzene group in their tail. It is shown, that aggregation forces of photosensitive units play an important role in the micellization giving the major contribution to the micellization enthalpy. The onset of the aggregation can be traced from shift of the absorption peak position in the UV-visible spectrum. Titration UV-visible spectroscopy is used as an alternative, simple, and sensitive approach to estimate CMC. The titration UV-visible spectroscopy was also employed to investigate interactions (CAC: critical aggregation concentration, precipitation, and colloidal stabilization) in the DNA-surfactant complex.}, language = {en} } @article{ZakrevskyyRichterZakrevskaetal.2012, author = {Zakrevskyy, Yuriy and Richter, Marcel and Zakrevska, Svitlana and Lomadze, Nino and von Klitzing, Regine and Santer, Svetlana}, title = {Light-controlled reversible manipulation of microgel particle size using azobenzene-containing surfactant}, series = {Advanced functional materials}, volume = {22}, journal = {Advanced functional materials}, number = {23}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201200617}, pages = {5000 -- 5009}, year = {2012}, abstract = {The light-induced reversible switching of the swelling of microgel particles triggered by photo-isomerization and binding/unbinding of a photosensitive azobenzene-containing surfactant is reported. The interactions between the microgel (N-isopropylacrylamide, co-monomer: allyl acetic acid, crosslinker: N,N'-methylenebisacrylamide) and the surfactant are studied by UV-Vis spectroscopy, dynamic and electrophoretic light scattering measurements. Addition of the surfactant above a critical concentration leads to contraction/collapse of the microgel. UV light irradiation results in trans-cis isomerization of the azobenzene unit incorporated into the surfactant tail and causes an unbinding of the more hydrophilic cis isomer from the microgel and its reversible swelling. The reversible contraction can be realized by blue light irradiation that transfers the surfactant back to the more hydrophobic trans conformation, in which it binds to the microgel. The phase diagram of the surfactant-microgel interaction and transitions (aggregation, contraction, and precipitation) is constructed and allows prediction of changes in the system when the concentration of one or both components is varied. Remote and reversible switching between different states can be realized by either UV or visible light irradiation.}, language = {en} } @article{ZakrevskyyKopyshevLomadzeetal.2011, author = {Zakrevskyy, Yuriy and Kopyshev, Alexey and Lomadze, Nino and Morozova, Elena and Lysyakova, Liudmila and Kasyanenko, Nina and Santer, Svetlana}, title = {DNA compaction by azobenzene-containing surfactant}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {84}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.84.021909}, pages = {9}, year = {2011}, abstract = {We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.}, language = {en} } @article{ZakharovaVadivasovaAnishchenkoetal.2010, author = {Zakharova, Anna and Vadivasova, Tatjana and Anishchenko, Vadim S. and Koseska, Aneta and Kurths, J{\"u}rgen}, title = {Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator}, issn = {1539-3755}, doi = {10.1103/Physreve.81.011106}, year = {2010}, abstract = {We investigate the influence of additive Gaussian white noise on two different bistable self-sustained oscillators: Duffing-Van der Pol oscillator with hard excitation and a model of a synthetic genetic oscillator. In the deterministic case, both oscillators are characterized with a coexistence of a stable limit cycle and a stable equilibrium state. We find that under the influence of noise, their dynamics can be well characterized through the concept of stochastic bifurcation, consisting in a qualitative change of the stationary amplitude distribution. For the Duffing-Van der Pol oscillator analytical results, obtained for a quasiharmonic approach, are compared with the result of direct computer simulations. In particular, we show that the dynamics is different for isochronous and anisochronous systems. Moreover, we find that the increase of noise intensity in the isochronous regime leads to a narrowing of the spectral line. This effect is similar to coherence resonance. However, in the case of anisochronous systems, this effect breaks down and a new phenomenon, anisochronous-based stochastic bifurcation occurs.}, language = {en} } @article{ZakharovaKurthsVadivasovaetal.2011, author = {Zakharova, Anna and Kurths, J{\"u}rgen and Vadivasova, Tatyana and Koseska, Aneta}, title = {Analysing dynamical behavior of cellular networks via stochastic bifurcations}, series = {PLoS one}, volume = {6}, journal = {PLoS one}, number = {5}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0019696}, pages = {12}, year = {2011}, abstract = {The dynamical structure of genetic networks determines the occurrence of various biological mechanisms, such as cellular differentiation. However, the question of how cellular diversity evolves in relation to the inherent stochasticity and intercellular communication remains still to be understood. Here, we define a concept of stochastic bifurcations suitable to investigate the dynamical structure of genetic networks, and show that under stochastic influence, the expression of given proteins of interest is defined via the probability distribution of the phase variable, representing one of the genes constituting the system. Moreover, we show that under changing stochastic conditions, the probabilities of expressing certain concentration values are different, leading to different functionality of the cells, and thus to differentiation of the cells in the various types.}, language = {en} } @article{ZajnulinaBoehmBlowetal.2015, author = {Zajnulina, Marina and B{\"o}hm, Michael and Blow, K. and Rieznik, A. A. and Giannone, Domenico and Haynes, Roger and Roth, Martin M.}, title = {Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {25}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {10}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/1.4930316}, pages = {6}, year = {2015}, abstract = {We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.}, language = {en} } @article{ZajnulinaBoggioBoehmetal.2015, author = {Zajnulina, Marina and Boggio, Jose M. Chavez and B{\"o}hm, Michael and Rieznik, A. A. and Fremberg, Tino and Haynes, Roger and Roth, Martin M.}, title = {Generation of optical frequency combs via four-wave mixing processes for low- and medium-resolution astronomy}, series = {Applied physics : B, Lasers and optics}, volume = {120}, journal = {Applied physics : B, Lasers and optics}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0946-2171}, doi = {10.1007/s00340-015-6121-1}, pages = {171 -- 184}, year = {2015}, abstract = {We investigate the generation of optical frequency combs through a cascade of four-wave mixing processes in nonlinear fibres with optimised parameters. The initial optical field consists of two continuous-wave lasers with frequency separation larger than 40 GHz (312.7 pm at 1531 nm). It propagates through three nonlinear fibres. The first fibre serves to pulse shape the initial sinusoidal-square pulse, while a strong pulse compression down to sub-100 fs takes place in the second fibre which is an amplifying erbium-doped fibre. The last stage is a low-dispersion highly nonlinear fibre where the frequency comb bandwidth is increased and the line intensity is equalised. We model this system using the generalised nonlinear Schrodinger equation and investigate it in terms of fibre lengths, fibre dispersion, laser frequency separation and input powers with the aim to minimise the frequency comb noise. With the support of the numerical results, a frequency comb is experimentally generated, first in the near infra-red and then it is frequency-doubled into the visible spectral range. Using a MUSE-type spectrograph, we evaluate the comb performance for astronomical wavelength calibration in terms of equidistancy of the comb lines and their stability.}, language = {en} } @article{ZaikinKurths2006, author = {Zaikin, Alexey and Kurths, J{\"u}rgen}, title = {Optimal length transportation hypothesis to model proteasome product size distribution}, series = {Journal of biological physics : emphasizing physical principles in biological research ; an international journal for the formulation and application of mathematical models in the biological sciences}, volume = {32}, journal = {Journal of biological physics : emphasizing physical principles in biological research ; an international journal for the formulation and application of mathematical models in the biological sciences}, number = {3-4}, publisher = {Springer}, address = {Dordrecht}, issn = {0092-0606}, doi = {10.1007/s10867-006-9014-z}, pages = {231 -- 243}, year = {2006}, abstract = {This paper discusses translocation features of the 20S proteasome in order to explain typical proteasome length distributions. We assume that the protein transport depends significantly on the fragment length with some optimal length which is transported most efficiently. By means of a simple one-channel model, we show that this hypothesis can explain both the one- and the three-peak length distributions found in experiments. A possible mechanism of such translocation is provided by so-called fluctuation-driven transport.}, language = {en} } @article{ZaikinKurthsSaparinetal.2005, author = {Zaikin, Alexei and Kurths, J{\"u}rgen and Saparin, Peter and Gowin, W. and Prohaska, Steffen}, title = {Modeling bone resorption in 2D CT and 3D mu CT images}, issn = {0218-1274}, year = {2005}, abstract = {We study several algorithms to simulate bone mass loss in two-dimensional and three-dimensional computed tomography bone images. The aim is to extrapolate and predict the bone loss, to provide test objects for newly developed structural measures, and to understand the physical mechanisms behind the bone alteration. Our bone model approach differs from those already reported in the literature by two features. First, we work with original bone images, obtained by computed tomography (CT); second, we use structural measures of complexity to evaluate bone resorption and to compare it with the data provided by CT. This gives us the possibility to test algorithms of bone resorption by comparing their results with experimentally found dependencies of structural measures of complexity, as well as to show efficiency of the complexity measures in the analysis of bone models. For two-dimensional images we suggest two algorithms, a threshold algorithm and a virtual slicing algorithm. The threshold algorithm simulates bone resorption on a boundary between bone and marrow, representing an activity of osteoclasts. The virtual slicing algorithm uses a distribution of the bone material between several virtually created slices to achieve statistically correct results, when the bone-marrow transition is not clearly defined. These algorithms have been tested for original CT 10 mm thick vertebral slices and for simulated 10 mm thick slices constructed from ten I mm thick slices. For three-dimensional data, we suggest a variation of the threshold algorithm and apply it to bone images. The results of modeling have been compared with CT images using structural measures of complexity in two- and three-dimensions. This comparison has confirmed credibility of a virtual slicing modeling algorithm for two-dimensional data and a threshold algorithm for three-dimensional data}, language = {en} } @article{ZaikinTopajGarciaOjalvo2002, author = {Zaikin, Alexei A. and Topaj, Dmitri and Garcia-Ojalvo, Jordi}, title = {Noise-enhanced propagation of bichromatic signals}, year = {2002}, abstract = {We examine the influence of noise on the propagation of harmonic signals with two frequencies through discrete bistable media. We show that random fluctuations enhance propagation of this kind of signals for low coupling strengths, similarly to what happens with purely monochromatic signals. As a more relevant finding, we observe that the frequency being propagated with better efficiency can be selected by tuning the intensity of the noise, in such a way that for large noises the highest frequency is transmitted better than the lower one, whereas for small noises the reverse holds. Such a noise-induced frequency selection can be expected to exist for general multifrequency harmonic signals.}, language = {en} } @article{ZaikinSchimanskyGeier1999, author = {Zaikin, Alexei A. and Schimansky-Geier, Lutz}, title = {Ordering role of additive noise in extended media}, issn = {1373-5411}, year = {1999}, language = {en} } @article{ZaikinRosenblumScheffczyketal.1997, author = {Zaikin, Alexei A. and Rosenblum, Michael and Scheffczyk, Christian and Engbert, Ralf and Krampe, Ralf-Thomas and Kurths, J{\"u}rgen}, title = {Modeling qualitative changes in bimanual movements}, year = {1997}, language = {en} } @article{ZaikinRosenblumLandaetal.1998, author = {Zaikin, Alexei A. and Rosenblum, Michael and Landa, Polina S. and Kurths, J{\"u}rgen}, title = {On-off itermittency phenomena in a pendulum with a randomly vibrating suspension axis}, year = {1998}, language = {en} } @article{ZaikinRosenblumLandaetal.1997, author = {Zaikin, Alexei A. and Rosenblum, Michael and Landa, Polina S. and Kurths, J{\"u}rgen}, title = {Control of noise-induced oscillations of a pendulum with a rondomly vibrating suspension axis}, year = {1997}, language = {en} } @article{ZaikinMuraliKurths2001, author = {Zaikin, Alexei A. and Murali, K. and Kurths, J{\"u}rgen}, title = {Simple electronic circuit model for doubly stochastic resonance}, year = {2001}, abstract = {We have recently reported the phenomenon of doubly stochastic resonance [Phys. Rev. Lett. 85, 227 (2000)], a synthesis of noise-induced transition and stochastic resonance. The essential feature of this phenomenon is that multiplicative noise induces a bimodality and additive noise causes stochastic resonance behavior in the induced structure. In the present paper we outline possible applications of this effect and design a simple lattice of electronic circuits for the experimental realization of doubly stochastic resonance.}, language = {en} } @article{ZaikinLopezBaltanasetal.2002, author = {Zaikin, Alexei A. and L{\´o}pez, L and Baltan{\´a}s, J. P. and Kurths, J{\"u}rgen and Sanjuan, Miguel Angel Fern{\´a}ndez}, title = {Vibrational resonance in noise-induced structure}, year = {2002}, abstract = {We report on the effect of vibrational resonance in a spatially extended system of coupled noisy oscillators under the action of two periodic forces, a low-frequency one (signal) and a high-frequency one (carrier). Vibrational resonance manifests itself in the fact that for optimally selected values of high-frequency force amplitude, the response of the system to a low-frequency signal is optimal. This phenomenon is a synthesis of two effects, a noise- induced phase transition leading to bistability, and a conventional vibrational resonance, resulting in the optimization of signal processing. Numerical simulations, which demonstrate this effect for an extended system, can be understood by means of a zero-dimensional "effective" model. The behavior of this "effective" model is also confirmed by an experimental realization of an electronic circuit.}, language = {en} } @article{ZaikinKurthsSchimanskyGeier2000, author = {Zaikin, Alexei A. and Kurths, J{\"u}rgen and Schimansky-Geier, Lutz}, title = {Doubly stochastic resonance}, year = {2000}, abstract = {We report the effect of doubly stochastic resonance which appears in nonlinear extended systems if the influence of noise is twofold: A multiplicative noise induces bimodality of the mean field of the coupled network and an independent additive noise governs the dynamic behavior in response to small periodic driving. For optimally selected values of the additive noise intensity stochastic resonance is observed, which is manifested by a maximal coherence between the dynamics of the mean field and the periodic input. Numerical simulations of the signal-to-noise ratio and theoretical results from an effective two state model are in good quantitative agreement.}, language = {en} } @article{ZaikinKurths2001, author = {Zaikin, Alexei A. and Kurths, J{\"u}rgen}, title = {Additive noise in noise-induced nonequilibrium transitions}, issn = {1054-1500}, year = {2001}, language = {en} } @article{ZaikinKurths2000, author = {Zaikin, Alexei A. and Kurths, J{\"u}rgen}, title = {Additive noise and noise-induced nonequilibrium phase transitions}, isbn = {1-563-96826-6}, year = {2000}, language = {en} } @article{ZaikinKurths1999, author = {Zaikin, Alexei A. and Kurths, J{\"u}rgen}, title = {Modeling Cognitive Control in Simple Movements}, isbn = {1-563-96863-0}, year = {1999}, language = {en} } @article{ZaikinGarciaOjalvoSchimanskyGeieretal.2002, author = {Zaikin, Alexei A. and Garc{\´i}a-Ojalvo, Jordi and Schimansky-Geier, Lutz and Kurths, J{\"u}rgen}, title = {Noise induced propagation in monostable media}, year = {2002}, abstract = {We show that external fluctuations are able to induce propagation of harmonic signals through monostable media. This property is based on the phenomenon of doubly stochastic resonance, where the joint action of multiplicative noise and spatial coupling induces bistability in an otherwise monostable extended medium, and additive noise resonantly enhances the response of the system to a harmonic forcing. Under these conditions, propagation of the harmonic signal through the unforced medium i observed for optimal intensities of the two noises. This noise-induced propagation is studied and quantified in a simple model of coupled nonlinear electronic circuits.}, language = {en} } @article{ZaikinGarciaOjalvoSchimanskyGeier1999, author = {Zaikin, Alexei A. and Garcia-Ojalvo, Jordi and Schimansky-Geier, Lutz}, title = {Nonequilibrium first-order phase transition inducd by additive noise}, year = {1999}, language = {en} } @article{ZachariasChenWagner2017, author = {Zacharias, Michael and Chen, Xuhui and Wagner, Stefan}, title = {Attenuation of TeV gamma-rays by the starlight photon field of the host galaxy}, series = {Monthly notices of the Royal Astronomical Society}, volume = {465}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw3032}, pages = {3767 -- 3774}, year = {2017}, abstract = {The absorption of TeV gamma-ray photons produced in relativistic jets by surrounding soft photon fields is a long-standing problem of jet physics. In some cases, the most likely emission site close to the central black hole is ruled out because of the high opacity caused by strong optical and infrared photon sources, such as the broad-line region. Mostly neglected for jet modelling is the absorption of gamma-rays in the starlight photon field of the host galaxy. Analysing the absorption for arbitrary locations and observation angles of the gamma-ray emission site within the host galaxy, we find that the distance to the galaxy centre, the observation angle, and the distribution of starlight in the galaxy are crucial for the amount of absorption. We derive the absorption value for a sample of 20 TeV-detected blazars with a redshift z(r) < 0.2. The absorption value of the gamma-ray emission located in the galaxy centre may be as high as 20 per cent, with an average value of 6 per cent. This is important in order to determine the intrinsic blazar parameters. We see no significant trends in our sample between the degree of absorption and host properties, such as starlight emissivity, galactic size, half-light radius, and redshift. While the uncertainty of the spectral properties of the extragalactic background light exceeds the effect of absorption by stellar light from the host galaxy in distant objects, the latter is a dominant effect in nearby sources. It may also be revealed in a differential comparison of sources with similar redshifts.}, language = {en} } @article{ZablBoucheSchroetteretal.2019, author = {Zabl, Johannes and Bouche, Nicolas F. and Schroetter, Ilane and Wendt, Martin and Finley, Hayley and Schaye, Joop and Conseil, Simon and Contini, Thierry and Marino, Raffaella Anna and Mitchell, Peter and Muzahid, Sowgat and Pezzulli, Gabriele and Wisotzki, Lutz}, title = {MusE GAs FLOw and Wind (MEGAFLOW)}, series = {Monthly notices of the Royal Astronomical Society}, volume = {485}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz392}, pages = {1961 -- 1980}, year = {2019}, abstract = {We use the MusE GAs FLOw and Wind (MEGAFLOW) survey to study the kinematics of extended disc-like structures of cold gas around z approximate to 1 star-forming galaxies. The combination of VLT/MUSE and VLT/UVES observations allows us to connect the kinematics of the gas measured through MgII quasar absorption spectroscopy to the kinematics and orientation of the associated galaxies constrained through integral field spectroscopy. Confirming previous results, we find that the galaxy-absorber pairs of the MEGAFLOW survey follow a strong bimodal distribution, consistent with a picture of MgII absorption being predominantly present in outflow cones and extended disc-like structures. This allows us to select a bona-fide sample of galaxy-absorber pairs probing these discs for impact paramometers of 10-70 kpc. We test the hypothesis that the disc-like gas is co-rotating with the galaxy discs, and find that for seven out of nine pairs the absorption velocity shares the sign of the disc velocity, disfavouring random orbits. We further show that the data are roughly consistent with inflow velocities and angular momenta predicted by simulations, and that the corresponding mass accretion rates are sufficient to balance the star formation rates.}, language = {en} } @article{YusupovFruebingBrehmeretal.1995, author = {Yusupov, R. G. and Fr{\"u}bing, Peter and Brehmer, Ludwig and Mislavski, B. V.}, title = {Langmuir Filme des Polymers "NAFION" als sensibles Element eines Feuchtesensors}, year = {1995}, language = {de} } @article{YuanZhangQiuetal.2022, author = {Yuan, Jun and Zhang, Chujun and Qiu, Beibei and Liu, Wei and So, Shu Kong and Mainville, Mathieu and Leclerc, Mario and Shoaee, Safa and Neher, Dieter and Zou, Yingping}, title = {Effects of energetic disorder in bulk heterojunction organic solar cells}, series = {Energy \& environmental science}, volume = {15}, journal = {Energy \& environmental science}, number = {7}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1754-5692}, doi = {10.1039/d2ee00271j}, pages = {2806 -- 2818}, year = {2022}, abstract = {Organic solar cells (OSCs) have progressed rapidly in recent years through the development of novel organic photoactive materials, especially non-fullerene acceptors (NFAs). Consequently, OSCs based on state-of-the-art NFAs have reached significant milestones, such as similar to 19\% power conversion efficiencies (PCEs) and small energy losses (less than 0.5 eV). Despite these significant advances, understanding of the interplay between molecular structure and optoelectronic properties lags significantly behind. For example, despite the theoretical framework for describing the energetic disorder being well developed for the case of inorganic semiconductors, the question of the applicability of classical semiconductor theories in analyzing organic semiconductors is still under debate. A general observation in the inorganic field is that inorganic photovoltaic materials possessing a polycrystalline microstructure exhibit suppressed disorder properties and better charge carrier transport compared to their amorphous analogs. Accordingly, this principle extends to the organic semiconductor field as many organic photovoltaic materials are synthesized to pursue polycrystalline-like features. Yet, there appears to be sporadic examples that exhibit an opposite trend. However, full studies decoupling energetic disorder from aggregation effects have largely been left out. Hence, the potential role of the energetic disorder in OSCs has received little attention. Interestingly, recently reported state-of-the-art NFA-based devices could achieve a small energetic disorder and high PCE at the same time; and interest in this investigation related to the disorder properties in OSCs was revived. In this contribution, progress in terms of the correlation between molecular design and energetic disorder is reviewed together with their effects on the optoelectronic mechanism and photovoltaic performance. Finally, the specific challenges and possible solutions in reducing the energetic disorder of OSCs from the viewpoint of materials and devices are proposed.}, language = {en} } @article{YoungUedaGuehretal.2018, author = {Young, Linda and Ueda, Kiyoshi and G{\"u}hr, Markus and Bucksbaum, Philip H. and Simon, Marc and Mukamel, Shaul and Rohringer, Nina and Prince, Kevin C. and Masciovecchio, Claudio and Meyer, Michael and Rudenko, Artem and Rolles, Daniel and Bostedt, Christoph and Fuchs, Matthias and Reis, David A. and Santra, Robin and Kapteyn, Henry and Murnane, Margaret and Ibrahim, Heide and Legare, Francois and Vrakking, Marc and Isinger, Marcus and Kroon, David and Gisselbrecht, Mathieu and W{\"o}rner, Hans Jakob and Leone, Stephen R.}, title = {Roadmap of ultrafast x-ray atomic and molecular physics}, series = {Journal of physics : B, Atomic, molecular and optical physics}, volume = {51}, journal = {Journal of physics : B, Atomic, molecular and optical physics}, number = {3}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0953-4075}, doi = {10.1088/1361-6455/aa9735}, pages = {45}, year = {2018}, abstract = {X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (10(20) W cm(-2)) of x-rays at wavelengths down to similar to 1 Angstrom, and HHG provides unprecedented time resolution (similar to 50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scales can be referenced to the chemically significant carbon K-edge at a photon energy of similar to 280 eV (44 Angstroms) and the bond length in methane of similar to 1 Angstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and Angstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at Angstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since its discovery roughly 30 years ago, showcasing experiments in AMO physics and other applications. Here we capture the perspectives of 17 leading groups and organize the contributions into four categories: ultrafast molecular dynamics, multidimensional x-ray spectroscopies; high-intensity x-ray phenomena; attosecond x-ray science.}, language = {en} } @article{YorkJacksonBrowneetal.2005, author = {York, T. and Jackson, N. and Browne, Ian W. A. and Wucknitz, Olaf and Skelton, J. E.}, title = {The Hubble constant from the gravitational lens CLASS B0218+357 using the Advanced Camera for Surveys}, issn = {0035-8711}, year = {2005}, abstract = {We present deep optical observations of the gravitational lens system CLASS B0218 + 357, from which we derive an estimate for the Hubble constant (H-0). Extensive radio observations using the VLA, MERLIN, the VLBA and VLBI have reduced the degeneracies between H-0 and the mass model parameters in this lens to one involving only the position of the radio-quiet lensing galaxy with respect to the lensed images. B0218 + 357 has an image separation of only 334 mas, so optical observations have, up until now, been unable to resolve the lens galaxy from the bright lensed images. Using the new Advanced Camera for Surveys (ACS), installed on the Hubble Space Telescope in 2002, we have obtained deep optical images of the lens system and surrounding field. These observations have allowed us to determine the separation between the lens galaxy centre and the brightest image, and so estimate H-0. We find an optical galaxy position, and hence an H0 value, that varies depending on our approach to the spiral arms in B0218 + 357. If the most prominent spiral arms are left unmasked, we find H-0 = 70 +/- 5 km s(-1) Mpc(-1) (95 per cent confidence). If the spiral arms are masked out, we find H-0 = 61 +/- 7 km s(-1) Mpc(-1) (95 per cent confidence)}, language = {en} } @article{YoonLangerScheithauer2004, author = {Yoon, S.-C. and Langer, Norbert and Scheithauer, S.}, title = {Effects of rotation on the helium burning shell source in accreting white dwarfs}, issn = {0004-6361}, year = {2004}, abstract = {We investigate the effects of rotation on the behavior of the helium-burning shell source in accreting carbon- oxygen white dwarfs, in the context of the single degenerate Chandrasekhar mass progenitor scenario for type la supernovae (SNe Ia). We model the evolution of helium-accreting white dwarfs of initially 1 M-circle dot, assuming four different constant accretion rates (2, 3, 5 and 10 x 10(-7) M-circle dot/yr). In a one-dimensional approximation, we compute the mass accretion and subsequent nuclear fusion of helium into carbon and oxygen, as well as angular momentum accretion, angular momentum transport inside the white dwarf, and rotationally induced chemical mixing. Our models show two major effects of rotation: a) The helium-burning nuclear shell source in the rotating models is much more stable than in corresponding non-rotating models - which increases the likelihood that accreting white dwarfs reach the stage of central carbon ignition. This effect is mainly due to rotationally induced mixing at the CO/He interface which widens the shell source, and due to the centrifugal force lowering the density and degeneracy at the shell source location. b) The C/O-ratio in the layers which experience helium shell burning - which may affect the energy of an SN Ia explosion - is strongly decreased by the rotationally induced mixing of a-particles into the carbon-rich layers. We discuss implications of our results for the evolution of SNe la progenitors}, language = {en} } @article{YoonLopezVafinetal.2017, author = {Yoon, P. H. and Lopez, R. A. and Vafin, Sergei and Kim, S. and Schlickeiser, R.}, title = {Spontaneous emission of Alfvenic fluctuations}, series = {Plasma physics and controlled fusion}, volume = {59}, journal = {Plasma physics and controlled fusion}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0741-3335}, doi = {10.1088/1361-6587/aa77c3}, pages = {8}, year = {2017}, abstract = {Low-frequency fluctuations are pervasively observed in the solar wind. The present paper theoretically calculates the steady state spectra of low-frequency electromagnetic (EM) fluctuations of the Alfvenic type for thermal equilibrium plasma. The analysis is based upon a recently formulated theory of spontaneously emitted EM fluctuations in magnetized thermal plasmas. It is found that the fluctuations in the magnetosonic mode branch is constant, while the kinetic Alfvenic mode spectrum is dependent on a form factor that is a function of perpendicular wave number. Potential applicability of the present work in the wider context of heliospheric research is also discussed.}, language = {en} } @article{YochelisBetaGov2020, author = {Yochelis, Arik and Beta, Carsten and Gov, Nir S.}, title = {Excitable solitons}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {101}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Physical Society}, address = {Melville, NY}, issn = {2470-0045}, doi = {10.1103/PhysRevE.101.022213}, pages = {6}, year = {2020}, abstract = {Excitable pulses are among the most widespread dynamical patterns that occur in many different systems, ranging from biological cells to chemical reactions and ecological populations. Traditionally, the mutual annihilation of two colliding pulses is regarded as their prototypical signature. Here we show that colliding excitable pulses may exhibit solitonlike crossover and pulse nucleation if the system obeys a mass conservation constraint. In contrast to previous observations in systems without mass conservation, these alternative collision scenarios are robustly observed over a wide range of parameters. We demonstrate our findings using a model of intracellular actin waves since, on time scales of wave propagations over the cell scale, cells obey conservation of actin monomers. The results provide a key concept to understand the ubiquitous occurrence of actin waves in cells, suggesting why they are so common, and why their dynamics is robust and long-lived.}, language = {en} }