@article{ZenSaphiannikovaNeheretal.2005, author = {Zen, Achmad and Saphiannikova, Marina and Neher, Dieter and Asawapirom, Udom and Scherf, Ullrich}, title = {Comparative study of the field-effect mobility of a copolymer and a binary blend based on poly(3- alkylthiophene)s}, issn = {0897-4756}, year = {2005}, abstract = {The performance of highly soluble regioregular poly[ (3-hexylthiophene)-co-(3-octylthiophetie)] (P3HTOT) as a semiconducting material in organic field-effect transistors (OFETs) is presented in comparison to that of the corresponding homopolymers. Transistors made from as-prepared layers of P3HTOT exhibit a mobility of ca. 7 x 10(-3) cm(2) V-1 s(-1), which is comparable to the performance of transistors made from as-prepared poly(3-hexylthiophene) (P3HT) and almost 6 times larger than the mobility of transistors prepared with poly(3-octylthiophene) (P3OT). On the other hand, the solubility parameter delta(p) of P3HTOT is close to that of the highly soluble P3OT. Moreover, compared to a physical blend of poly(3-hexylthiophene) and poly(3-octylthiophene), the mobility of P3HTOT devices is almost twice as large and the performance does not degrade upon annealing at elevated temperatures. Therefore, the copolymer approach outlined here may be one promising step toward an optimum balance between a Sufficient processability of the polymers from common organic solvents, a high solid state order, and applicable OFET performances}, language = {en} } @article{ZenPflaumHirschmannetal.2004, author = {Zen, Achmad and Pflaum, J. and Hirschmann, S. and Zhuang, W. and Jaiser, Frank and Asawapirom, Udom and Rabe, J. P. and Scherf, Ullrich and Neher, Dieter}, title = {Effect of molecular weight and annealing of poly (3-hexylthiophene)s on the performance of organic field-effect transistors}, year = {2004}, abstract = {The optical, structural, and electrical properties of thin layers made from poly(3-hexylthiophene) (P3HT) samples of different molecular weights are presented. As reported in a previous paper by Kline et al., Adv. Mater 2003, 15, 1519, the mobilities of these layers are a strong function of the molecular weight, with the largest mobility found for the largest molecular weight. Atomic force microscopy studies reveal a complex polycrystalline morphology which changes considerably upon annealing. X-ray studies show the occurrence of a layered phase for all P3HT fractions, especially after annealing at 1.50 degreesC . However, there is no clear correlation between the differences in the transport properties and the data from structural investigations. In order to reveal the processes limiting the mobility in these layers, the transistor properties were investigated as a function of temperature. The mobility decreases continuously with increasing temperatures; with the same trend pronounced thermochromic effects of the P3HT films occur. Apparently, the polymer chains adopt a more twisted, disordered conformation at higher temperatures, leading to interchain transport barriers. We conclude that the backbone conformation of the majority of the bulk material rather than the crystallinity of the layer is the most crucial parameter controlling the charge transport in these P3HT layers. This interpretation is supported by the significant blue-shift of the solid-state absorption spectra with decreasing molecular weight, which is indicative of a larger distortion of the P3HT backbone in the low-molecular weight P3HT layers}, language = {en} } @article{ZenNeherSilmyetal.2005, author = {Zen, Achmad and Neher, Dieter and Silmy, Kamel and Hollander, A. and Asawapirom, Udom and Scherf, Ullrich}, title = {Improving the performance of organic field effect transistor by optimizing the gate insulator surface}, year = {2005}, abstract = {The effect of oxygen plasma treatment and/or silanization with hexamethyldisilazane (HMDS) on the surface chemistry and the morphology of the SiO2-gate insulator were studied with respect to the performance of organic field effect transistors. Using X-ray photoelectron spectroscopy (XPS), it is shown that silanization leads to the growth of a polysiloxane interfacial layer and that longer silanization times increase the thickness of this layer. Most important, silanization reduces the signal from surface contaminations such as oxidized hydrocarbon molecules. In fact, the lowest concentration of these contaminations was found after a combined oxygen plasma/silanization treatment. The results of these investigations were correlated with the characteristic device parameters of polymer field effect transistors with poly(3-hexylthiophene)s as the semiconducting layer. We found that the field effect mobility correlates with the concentration of contaminations as measured by XPS. We, finally, demonstrate that silanization significantly improves the operational stability of the device in air compared to the untreated devices}, language = {en} } @article{ZenNeherBaueretal.2002, author = {Zen, Achmad and Neher, Dieter and Bauer, C. and Asawapirom, Udom and Scherf, Ullrich and Hagen, R. and Kostromine, S. and Mahrt, R. F.}, title = {Polarization-sensitive photoconductivity in aligned polyfluorene layers}, year = {2002}, language = {en} } @article{ZenBilgeGalbrechtetal.2006, author = {Zen, Achmad and Bilge, Askin and Galbrecht, Frank and Alle, Ronald and Meerholz, Klaus and Grenzer, J{\"o}rg and Neher, Dieter and Scherf, Ullrich and Farrell, Tony}, title = {Solution processable organic field-effect transistors utilizing an alpha,alpha '-dihexylpentathiophene- based swivel cruciform}, doi = {10.1021/Ja0573357}, year = {2006}, language = {en} } @article{ZemanovaZhouKurths2006, author = {Zemanova, Lucia and Zhou, Changsong and Kurths, J{\"u}rgen}, title = {Structural and functional clusters of complex brain networks}, series = {Physica, D, Nonlinear phenomena}, volume = {224}, journal = {Physica, D, Nonlinear phenomena}, number = {1-2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-2789}, doi = {10.1016/j.physd.2006.09.008}, pages = {202 -- 212}, year = {2006}, abstract = {Recent research using the complex network approach has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. It is of importance to understand the implications of such complex network structures in the functional organization of the brain activities. Here we study this problem from the viewpoint of dynamical complex networks. We investigate synchronization dynamics on the corticocortical network of the cat by modeling each node (cortical area) of the network with a sub-network of interacting excitable neurons. We find that the network displays clustered synchronization behavior, and the dynamical clusters coincide with the topological community structures observed in the anatomical network. Our results provide insights into the relationship between the global organization and the functional specialization of the brain cortex.}, language = {en} } @article{ZellmeierBrennerJanietzetal.2018, author = {Zellmeier, M. and Brenner, Thomas J. K. and Janietz, Silvia and Nickel, N. H. and Rappich, J.}, title = {Polythiophenes as emitter layers for crystalline silicon solar cells}, series = {Journal of applied physics}, volume = {123}, journal = {Journal of applied physics}, number = {3}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-8979}, doi = {10.1063/1.5006625}, pages = {5}, year = {2018}, abstract = {We investigated the influence of the emitter (amorphous-Si, a-Si, or polythiophene derivatives: poly(3-hexylthiophene), P3HT, and poly(3-[3,6-dioxaheptyl]-thiophene), P3DOT) and the interface passivation (intrinsic a-Si or SiOX and methyl groups or SiOX) on the c-Si based 1 × 1 cm2 planar hybrid heterojunction solar cell parameters. We observed higher short circuit currents for the P3HT or P3DOT/c-Si solar cells than those obtained for a-Si/c-Si devices, independent of the interface passivation. The obtained VOC of 659 mV for the P3DOT/SiOX/c-Si heterojunction solar cell with hydrophilic 3,6-dioxaheptyl side chains is among the highest reported for c-Si/polythiophene devices. The maximum power conversion efficiency, PCE, was 11\% for the P3DOT/SiOX/c-Si heterojunction solar cell. Additionally, our wafer lifetime measurements reveal a field effect passivation in the wafer induced by the polythiophenes when deposited on c-Si.}, language = {en} } @article{ZeitzReeseBeckmannetal.2021, author = {Zeitz, Maria and Reese, Ronja and Beckmann, Johanna and Krebs-Kanzow, Uta and Winkelmann, Ricarda}, title = {Impact of the melt-albedo feedback on the future evolution of the Greenland Ice Sheet with PISM-dEBM-simple}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {15}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {12}, publisher = {Copernicus}, address = {Katlenburg-Lindau}, issn = {1994-0416}, doi = {10.5194/tc-15-5739-2021}, pages = {5739 -- 5764}, year = {2021}, abstract = {Surface melting of the Greenland Ice Sheet contributes a large amount to current and future sea level rise. Increased surface melt may lower the reflectivity of the ice sheet surface and thereby increase melt rates: the so-called melt-albedo feedback describes this self-sustaining increase in surface melting. In order to test the effect of the melt-albedo feedback in a prognostic ice sheet model, we implement dEBM-simple, a simplified version of the diurnal Energy Balance Model dEBM, in the Parallel Ice Sheet Model (PISM). The implementation includes a simple representation of the melt-albedo feedback and can thereby replace the positive-degree-day melt scheme. Using PISM-dEBM-simple, we find that this feedback increases ice loss through surface warming by 60 \% until 2300 for the high-emission scenario RCP8.5 when compared to a scenario in which the albedo remains constant at its present-day values. With an increase of 90 \% compared to a fixed-albedo scenario, the effect is more pronounced for lower surface warming under RCP2.6. Furthermore, assuming an immediate darkening of the ice surface over all summer months, we estimate an upper bound for this effect to be 70 \% in the RCP8.5 scenario and a more than 4-fold increase under RCP2.6. With dEBM-simple implemented in PISM, we find that the melt-albedo feedback is an essential contributor to mass loss in dynamic simulations of the Greenland Ice Sheet under future warming.}, language = {en} } @article{ZeitzLevermannWinkelmann2020, author = {Zeitz, Maria and Levermann, Anders and Winkelmann, Ricarda}, title = {Sensitivity of ice loss to uncertainty in flow law parameters in an idealized one-dimensional geometry}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {14}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {10}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-14-3537-2020}, pages = {3537 -- 3550}, year = {2020}, abstract = {Acceleration of the flow of ice drives mass losses in both the Antarctic and the Greenland Ice Sheet. The projections of possible future sea-level rise rely on numerical ice-sheet models, which solve the physics of ice flow, melt, and calving. While major advancements have been made by the ice-sheet modeling community in addressing several of the related uncertainties, the flow law, which is at the center of most process-based ice-sheet models, is not in the focus of the current scientific debate. However, recent studies show that the flow law parameters are highly uncertain and might be different from the widely accepted standard values. Here, we use an idealized flow-line setup to investigate how these uncertainties in the flow law translate into uncertainties in flow-driven mass loss. In order to disentangle the effect of future warming on the ice flow from other effects, we perform a suite of experiments with the Parallel Ice Sheet Model (PISM), deliberately excluding changes in the surface mass balance. We find that changes in the flow parameters within the observed range can lead up to a doubling of the flow-driven mass loss within the first centuries of warming, compared to standard parameters. The spread of ice loss due to the uncertainty in flow parameters is on the same order of magnitude as the increase in mass loss due to surface warming. While this study focuses on an idealized flow-line geometry, it is likely that this uncertainty carries over to realistic three-dimensional simulations of Greenland and Antarctica.}, language = {en} } @article{ZeitzHaackerDongesetal.2022, author = {Zeitz, Maria and Haacker, Jan M. and Donges, Jonathan and Albrecht, Torsten and Winkelmann, Ricarda}, title = {Dynamic regimes of the Greenland Ice Sheet emerging from interacting melt-elevation and glacial isostatic adjustment feedbacks}, series = {Earth system dynamics}, volume = {13}, journal = {Earth system dynamics}, number = {3}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {2190-4979}, doi = {10.5194/esd-13-1077-2022}, pages = {1077 -- 1096}, year = {2022}, abstract = {The stability of the Greenland Ice Sheet under global warming is governed by a number of dynamic processes and interacting feedback mechanisms in the ice sheet, atmosphere and solid Earth. Here we study the long-term effects due to the interplay of the competing melt-elevation and glacial isostatic adjustment (GIA) feedbacks for different temperature step forcing experiments with a coupled ice-sheet and solid-Earth model. Our model results show that for warming levels above 2 degrees C, Greenland could become essentially ice-free within several millennia, mainly as a result of surface melting and acceleration of ice flow. These ice losses are mitigated, however, in some cases with strong GIA feedback even promoting an incomplete recovery of the Greenland ice volume. We further explore the full-factorial parameter space determining the relative strengths of the two feedbacks: our findings suggest distinct dynamic regimes of the Greenland Ice Sheets on the route to destabilization under global warming - from incomplete recovery, via quasi-periodic oscillations in ice volume to ice-sheet collapse. In the incomplete recovery regime, the initial ice loss due to warming is essentially reversed within 50 000 years, and the ice volume stabilizes at 61 \%-93 \% of the present-day volume. For certain combinations of temperature increase, atmospheric lapse rate and mantle viscosity, the interaction of the GIA feedback and the melt-elevation feedback leads to self-sustained, long-term oscillations in ice-sheet volume with oscillation periods between 74 000 and over 300 000 years and oscillation amplitudes between 15 \%-70 \% of present-day ice volume. This oscillatory regime reveals a possible mode of internal climatic variability in the Earth system on timescales on the order of 100 000 years that may be excited by or synchronized with orbital forcing or interact with glacial cycles and other slow modes of variability. Our findings are not meant as scenario-based near-term projections of ice losses but rather providing insight into of the feedback loops governing the "deep future" and, thus, long-term resilience of the Greenland Ice Sheet.}, language = {en} } @article{ZeiskeSandbergZarrabietal.2022, author = {Zeiske, Stefan and Sandberg, Oskar J. and Zarrabi, Nasim and Wolff, Christian Michael and Raoufi, Meysam and Pe{\~n}a-Camargo, Francisco and Gutierrez-Partida, Emilio and Meredith, Paul and Stolterfoht, Martin and Armin, Ardalan}, title = {Static disorder in lead halide perovskites}, series = {The journal of physical chemistry letters}, volume = {13}, journal = {The journal of physical chemistry letters}, number = {31}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.2c01652}, pages = {7280 -- 7285}, year = {2022}, abstract = {In crystalline and amorphous semiconductors, the temperature-dependent Urbach energy can be determined from the inverse slope of the logarithm of the absorption spectrum and reflects the static and dynamic energetic disorder. Using recent advances in the sensitivity of photocurrent spectroscopy methods, we elucidate the temperature-dependent Urbach energy in lead halide perovskites containing different numbers of cation components. We find Urbach energies at room temperature to be 13.0 +/- 1.0, 13.2 +/- 1.0, and 13.5 +/- 1.0 meV for single, double, and triple cation perovskite. Static, temperature-independent contributions to the Urbach energy are found to be as low as 5.1 ?+/- 0.5, 4.7 +/- 0.3, and 3.3 +/- 0.9 meV for the same systems. Our results suggest that, at a low temperature, the dominant static disorder in perovskites is derived from zero-point phonon energy rather than structural disorder. This is unusual for solution-processed semiconductors but broadens the potential application of perovskites further to quantum electronics and devices.}, language = {en} } @article{ZeiskeSandbergKurpiersetal.2022, author = {Zeiske, Stefan and Sandberg, Oskar J. and Kurpiers, Jona and Shoaee, Safa and Meredith, Paul and Armin, Ardalan}, title = {Probing charge generation efficiency in thin-film solar cells by integral-mode transient charge extraction}, series = {ACS photonics}, volume = {9}, journal = {ACS photonics}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {2330-4022}, doi = {10.1021/acsphotonics.1c01532}, pages = {1188 -- 1195}, year = {2022}, abstract = {The photogeneration of free charges in light-harvesting devices is a multistep process, which can be challenging to probe due to the complexity of contributing energetic states and the competitive character of different driving mechanisms. In this contribution, we advance a technique, integral-mode transient charge extraction (ITCE), to probe these processes in thin-film solar cells. ITCE combines capacitance measurements with the integral-mode time-of-flight method in the low intensity regime of sandwich-type thin-film devices and allows for the sensitive determination of photogenerated charge-carrier densities. We verify the theoretical framework of our method by drift-diffusion simulations and demonstrate the applicability of ITCE to organic and perovskite semiconductor-based thin-film solar cells. Furthermore, we examine the field dependence of charge generation efficiency and find our ITCE results to be in excellent agreement with those obtained via time-delayed collection field measurements conducted on the same devices.}, language = {en} } @article{ZeimerPietschGrenzeretal.2005, author = {Zeimer, Ute and Pietsch, Ullrich and Grenzer, Joerg and Fricke, J. and Knauer, A. and Weyers, Markus}, title = {Optimised two layer overgrowth of a lateral strain-modulated nanostructure}, issn = {0925-8388}, year = {2005}, abstract = {Recently it has been shown that lateral carrier confinement in an InGaAs quantum well (QW) embedded in GaAs can be achieved by using a laterally patterned InGaP stressor layer on top of the heterostructure. To exploit this effect in a device the structure has to be planarized by a second epitaxial step. It has been shown that the lateral strain modulation almost vanishes after overgrowth with GaAs, whereas overgrowth with a single ternary layer of opposite strain compared to the stressor layer suffers from strain induced decomposition. Here we show that the lateral carrier confinement of the initially free standing nanostructure can almost be maintained using a two step process for overgrowth, where a strained thin ternary layer is grown first followed by GaAs up to complete planarization of the patterned structure. Thickness and composition of the ternary layer are adjusted on the basis of finite element calculations of the strain distribution (FEM). The strain field achieved after overgrowth is probed by X-ray grazing- incidence diffraction (GID). (c) 2005 Elsevier B.V. All rights reserved}, language = {en} } @article{ZeimerGrenzerPietschetal.2001, author = {Zeimer, Ute and Grenzer, J{\"o}rg and Pietsch, Ullrich and Bugge, F. and Smirnitzki, V. and Weyers, Markus}, title = {Investigation of strain-modulated InGaAs-nanostructures by grazing-incidence x-ray diffraction and photoluminescence}, year = {2001}, language = {en} } @article{ZeimerBuggeGramlichetal.2001, author = {Zeimer, Ute and Bugge, F. and Gramlich, S. and Smirnitzki, V. and Weyers, Markus and Tr{\"a}nkle, G. and Grenzer, J{\"o}rg and Pietsch, Ullrich and Cassabois, G. and Emiliani, V. and Linau, Christoph}, title = {Evidence of strain-induced lateral carrier confinement in InGaAs-quantum wells by low-temperature near-field spectroscopy}, year = {2001}, language = {en} } @article{ZeimerBuggeGramlichetal.2000, author = {Zeimer, Ute and Bugge, F. and Gramlich, S. and Smirnitzki, V. and Weyers, Markus and Tr{\"a}nkle, G. and Grenzer, J{\"o}rg and Pietsch, Ullrich and Cassabois, G. and Emiliani, V. and Lienau, C.}, title = {Evidence for strain-induced lateral carrier confinement in InGaAs quantum wells by low-temperature near-field spectroscopy}, year = {2000}, language = {en} } @article{ZeimerBaumbachGrenzeretal.1999, author = {Zeimer, Ute and Baumbach, Tilo and Grenzer, J{\"o}rg and L{\"u}bbert, Daniel and Mazuelas, A. and Pietsch, Ullrich and Erbert, G.}, title = {In-situ characterization of strain distribution in broad-area high-power lasers under operation by high- resolution x-ray diffrcation and topography using synchrotron radiation}, year = {1999}, language = {en} } @article{ZehbeZehbe2016, author = {Zehbe, Rolf and Zehbe, Kerstin}, title = {Strontium doped poly-epsilon-caprolactone composite scaffolds made by reactive foaming}, series = {The European journal of the history of economic thought}, volume = {67}, journal = {The European journal of the history of economic thought}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0928-4931}, doi = {10.1016/j.msec.2016.05.045}, pages = {259 -- 266}, year = {2016}, abstract = {In the reconstruction and regeneration of bone tissue, a primary goal is to initiate bone growth and to stabilize the surrounding bone. In this regard, a potentially useful component in biomaterials for bone tissue engineering is strontium, which acts as cationic active agent, triggering certain intracellular pathways and acting as so called dual action bone agent which inhibits bone resorption while stimulating bone regeneration. In this study we established a novel processing for the foaming of a polymer (poly-epsilon-caprolactone) and simultaneous chemical reaction of a mixture of calcium and strontium hydroxides to the respective carbonates using supercritical carbon dioxide. The resultant porous composite scaffold was optimized in composition and strontium content and was characterized via different spectroscopic (infrared and Raman spectroscopy, energy dispersive X-ray spectroscopy), imaging (SEM, mu CT), mechanical testing and in vitro methods (fluorescence vital staining, MTT-assay). As a result, the composite scaffold showed good in vitro biocompatibility with partly open pore structure and the expected chemistry. First mechanical testing results indicate sufficient mechanical stability to support future in vivo applications. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{ZehbeZaslanskyMochalesetal.2016, author = {Zehbe, Rolf and Zaslansky, Paul and Mochales, Carolina and Mueller, Wolf-Dieter and Fleck, Claudia}, title = {Synchrotron micro tomographic evaluation of multilayered zirconia ceramics-Volumetric effects after indentation}, series = {Journal of the European Ceramic Society}, volume = {36}, journal = {Journal of the European Ceramic Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0955-2219}, doi = {10.1016/j.jeurceramsoc.2015.09.015}, pages = {171 -- 177}, year = {2016}, abstract = {Electrophoretic deposition was used to produce zirconia specimen consisting of alternating layers of fully stabilized cubic zirconia and partially stabilized tetragonal zirconia. In this configuration, the tetragonal stabilized zirconia layers can undergo transformation toughening upon mechanical induced stresses, while the cubic stabilized layers can act as confining element. To understand the volumetric changes due to transformation toughening in these layered materials after indentation, we used an advanced synchrotron-based X-ray mu CT setup and compared the results with surface sensitive methods like Raman spectroscopy, AFM and white light interferometry. The high spatial resolution and the adapted beam energy between the absorption edges of zirconia and yttria allowed discriminating between individual layers due to differences in their yttria content. Furthermore we were able to identify single indents and link volume changes to different physical effects in the different stabilized zirconia parts and visualize the three dimensional volume around only few micrometre sized indents. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{ZehbeMochalesRadziketal.2016, author = {Zehbe, Rolf and Mochales, Carolina and Radzik, Daniela and Mueller, Wolf-Dieter and Fleck, Claudia}, title = {Electrophoretic deposition of multilayered (cubic and tetragonal stabilized) zirconia ceramics for adapted crack deflection}, series = {Journal of the European Ceramic Society}, volume = {36}, journal = {Journal of the European Ceramic Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0955-2219}, doi = {10.1016/j.jeurceramsoc.2015.08.022}, pages = {357 -- 364}, year = {2016}, abstract = {The electrophoretic deposition process was used to produce multi-layered ceramics consisting of alternating layers of fully stabilized cubic zirconia and partially stabilized tetragonal zirconia to make use of their different mechanical behaviour, investigating the possibility to deflect advancing cracks at the interfaces of the different layers. This crack deflection is apparently impacted by a toughening mechanism only found in the tetragonal stabilized zirconia polymorph and is characterized by the stress induced transformation of the metastable tetragonal phase into the monoclinic one, which is accompanied by a volume increase resulting in a closing mechanism for advancing cracks. While improving the electrophoretic deposition process, we investigated the transformation toughening mechanism at the layer interfaces and their effect on crack propagation. Investigations involved a combination of different imaging methods, including light microscopy, white light interferometry, atomic force microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{ZehbeMochalesRadziketal.2015, author = {Zehbe, Rolf and Mochales, Carolina and Radzik, Daniela and Mueller, Wolf-Dieter and Fleck, Claudia}, title = {Electrophoretic deposition of multilayered (cubic and tetragonal stabilized) zirconia ceramics for adapted crack deflection}, series = {Journal of the European Ceramic Society}, volume = {36}, journal = {Journal of the European Ceramic Society}, number = {2}, publisher = {Elsevier}, address = {Oxford}, issn = {0955-2219}, doi = {10.1016/j.jeurceramsoc.2015.08.022}, pages = {357 -- 364}, year = {2015}, abstract = {The electrophoretic deposition process was used to produce multi-layered ceramics consisting of alternating layers of fully stabilized cubic zirconia and partially stabilized tetragonal zirconia to make use of their different mechanical behaviour, investigating the possibility to deflect advancing cracks at the interfaces of the different layers. This crack deflection is apparently impacted by a toughening mechanism only found in the tetragonal stabilized zirconia polymorph and is characterized by the stress induced transformation of the metastable tetragonal phase into the monoclinic one, which is accompanied by a volume increase resulting in a closing mechanism for advancing cracks. While improving the electrophoretic deposition process, we investigated the transformation toughening mechanism at the layer interfaces and their effect on crack propagation. Investigations involved a combination of different imaging methods, including light microscopy, white light interferometry, atomic force microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy.}, language = {en} } @article{ZehbeKolloscheLardongetal.2016, author = {Zehbe, Kerstin and Kollosche, Matthias and Lardong, Sebastian and Kelling, Alexandra and Schilde, Uwe and Taubert, Andreas}, title = {Ionogels Based on Poly(methyl methacrylate) and Metal-Containing Ionic Liquids: Correlation between Structure and Mechanical and Electrical Properties}, series = {International journal of molecular sciences}, volume = {17}, journal = {International journal of molecular sciences}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms17030391}, pages = {16}, year = {2016}, abstract = {Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs.}, language = {en} } @article{ZbilutMitchellGiulianietal.2004, author = {Zbilut, J. P. and Mitchell, J. C. and Giuliani, A. and Colosimo, A. and Marwan, Norbert and Webber, C. L.}, title = {Singular hydrophobicity patterns and net charge : a mesoscopic principle for protein aggregation/folding}, issn = {0378-4371}, year = {2004}, abstract = {A statistical model describing the propensity for protein aggregation is presented. Only amino-acid hydrophobicity values and calculated net charge are used for the model. The combined effects of hydrophobic patterns as computed by the signal analysis technique, recurrence quantification, plus calculated net charge were included in a function emphasizing the effect of singular hydrophobic patches which were found to be statistically significant for predicting aggregation propensity as quantified by fluorescence studies obtained from the literature. These results suggest preliminary evidence for a mesoscopic principle for protein folding/aggregation. (C) 2004 Elsevier B.V. All rights reserved}, language = {en} } @article{ZaritskyCourtoisMunozMateosetal.2014, author = {Zaritsky, Dennis and Courtois, Helene and Munoz-Mateos, Juan-Carlos and Sorce, Jenny and Erroz-Ferrer, S. and Comeron, S. and Gadotti, D. A. and Gil De Paz, A. and Hinz, J. L. and Laurikainen, E. and Kim, T. and Laine, J. and Menendez-Delmestre, K. and Mizusawa, T. and Regan, M. W. and Salo, H. and Seibert, M. and Sheth, K. and Athanassoula, E. and Bosma, A. and Cisternas, M. and Ho, Luis C. and Holwerda, B.}, title = {The baryonic Tully-Fisher relationship for S(4)G galaxies and the "condensed" baryon fraction of galaxies}, series = {The astronomical journal}, volume = {147}, journal = {The astronomical journal}, number = {6}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-6256}, doi = {10.1088/0004-6256/147/6/134}, pages = {11}, year = {2014}, abstract = {We combine data from the Spitzer Survey for Stellar Structure in Galaxies, a recently calibrated empirical stellar mass estimator from Eskew et al., and an extensive database of Hi spectral line profiles to examine the baryonic Tully-Fisher (BTF) relation. We find (1) that the BTF has lower scatter than the classic Tully-Fisher (TF) relation and is better described as a linear relationship, confirming similar previous results, (2) that the inclusion of a radial scale in the BTF decreases the scatter but only modestly, as seen previously for the TF relation, and (3) that the slope of the BTF, which we find to be 3.5 +/- 0.2 (Delta log M-baryon/Delta log v(c)), implies that on average a nearly constant fraction (similar to 0.4) of all baryons expected to be in a halo are "condensed" onto the central region of rotationally supported galaxies. The condensed baryon fraction, M-baryon/M-total, is, to our measurement precision, nearly independent of galaxy circular velocity (our sample spans circular velocities, vc, between 60 and 250 km s(-1), but is extended to v(c) similar to 10 km s(-1) using data from the literature). The observed galaxy-to-galaxy scatter in this fraction is generally <= a factor of 2 despite fairly liberal selection criteria. These results imply that cooling and heating processes, such as cold versus hot accretion, mass loss due to stellar winds, and active galactic nucleus driven feedback, to the degree that they affect the global galactic properties involved in the BTF, are independent of halo mass for galaxies with 10 < v(c) < 250 km s(-1) and typically introduce no more than a factor of two range in the resulting M-baryon/M-total. Recent simulations by Aumer et al. of a small sample of disk galaxies are in excellent agreement with our data, suggesting that current simulations are capable of reproducing the global properties of individual disk galaxies. More detailed comparison to models using the BTF holds great promise, but awaits improved determinations of the stellar masses.}, language = {en} } @article{ZaragozaCardielGomezGonzalezMayyaetal.2022, author = {Zaragoza-Cardiel, Javier and G{\´o}mez-Gonz{\´a}lez, V{\´i}ctor Mauricio Alfonso and Mayya, Yalia Divakara and Ramos-Larios, Gerardo}, title = {Nebular abundance gradient in the Cartwheel galaxy using MUSE data}, series = {Monthly notices of the Royal Astronomical Society}, volume = {514}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac1423}, pages = {1689 -- 1705}, year = {2022}, abstract = {We here present the results from a detailed analysis of nebular abundances of commonly observed ions in the collisional ring galaxy Cartwheel using the Very Large Telescope (VLT) Multi-Unit Spectroscopic Explorer (MUSE) data set. The analysis includes 221 H II regions in the star-forming ring, in addition to 40 relatively fainter H a-emitting regions in the spokes, disc, and the inner ring. The ionic abundances of He, N, O, and Fe are obtained using the direct method (DM) for 9, 20, 20, and 17 ring H II regions, respectively, where the S++ temperature-sensitive line is detected. For the rest of the regions, including all the nebulae between the inner and the outer ring, we obtained O abundances using the strong-line method (SLM). The ring regions have a median 12 + log O/H = 8.19 +/- 0.15, log N/O = -1.57 +/- 0.09 and log Fe/O = -2.24 +/- 0.09 using the DM. Within the range of O abundances seen in the Cartwheel, the N/O and Fe/O values decrease proportionately with increasing O, suggesting local enrichment of O without corresponding enrichment of primary N and Fe. The O abundances of the disc H II regions obtained using the SLM show a well-defined radial gradient. The mean O abundance of the ring H II regions is lower by similar to 0.1 dex as compared to the extrapolation of the radial gradient. The observed trends suggest the preservation of the pre-collisional abundance gradient, displacement of most of the processed elements to the ring, as predicted by the recent simulation by Renaud et al., and post-collisional infall of metal-poor gas in the ring.}, language = {en} } @article{ZapataArteagaMarinaZuoetal.2022, author = {Zapata-Arteaga, Osnat and Marina, Sara and Zuo, Guangzheng and Xu, Kai and D{\"o}rling, Bernhard and Alberto P{\´e}rez, Luis and Sebasti{\´a}n Reparaz, Juan and Mart{\´i}n, Jaime and Kemerink, Martijn and Campoy-Quiles, Mariano}, title = {Design rules for polymer blends with high thermoelectric performance}, series = {Advanced energy materials}, volume = {12}, journal = {Advanced energy materials}, number = {19}, publisher = {Wiley}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202104076}, pages = {11}, year = {2022}, abstract = {A combinatorial study of the effect of in-mixing of various guests on the thermoelectric properties of the host workhorse polymer poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) is presented. Specifically, the composition and thickness for doped films of PBTTT blended with different polymers are varied. Some blends at guest weight fractions around 10-15\% exhibit up to a fivefold increase in power factor compared to the reference material, leading to zT values around 0.1. Spectroscopic analysis of the charge-transfer species, structural characterization using grazing-incidence wide-angle X-ray scattering, differential scanning calorimetry, Raman, and atomic force microscopy, and Monte Carlo simulations are employed to determine that the key to improved performance is for the guest to promote long-range electrical connectivity and low disorder, together with similar highest occupied molecular orbital levels for both materials in order to ensure electronic connectivity are combined.}, language = {en} } @article{ZamponiPenfoldNachtegaaletal.2014, author = {Zamponi, Flavio and Penfold, Thomas J. and Nachtegaal, Maarten and Luebcke, Andrea and Rittmann, Jochen and Milne, Chris J. and Chergui, Majed and van Bokhoven, Jeroen A.}, title = {Probing the dynamics of plasmon-excited hexanethiol-capped gold nanoparticles by picosecond X-ray absorption spectroscopy}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {16}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {42}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c4cp03301a}, pages = {23157 -- 23163}, year = {2014}, abstract = {Picosecond X-ray absorption spectroscopy (XAS) is used to investigate the electronic and structural dynamics initiated by plasmon excitation of 1.8 nm diameter Au nanoparticles (NPs) functionalised with 1-hexanethiol. We show that 100 ps after photoexcitation the transient XAS spectrum is consistent with an 8\% expansion of the Au-Au bond length and a large increase in disorder associated with melting of the NPs. Recovery of the ground state occurs with a time constant of similar to 1.8 ns, arising from thermalisation with the environment. Simulations reveal that the transient spectrum exhibits no signature of charge separation at 100 ps and allows us to estimate an upper limit for the quantum yield (QY) of this process to be <0.1.}, language = {en} } @article{ZamponiAnsarivonKorffSchmisingetal.2009, author = {Zamponi, Flavio and Ansari, Zunaira and von Korff Schmising, Clemens and Rothhardt, Philip and Zhavoronkov, Nickolai and Woerner, Michael and Elsaesser, Thomas and Bargheer, Matias and Trobitzsch-Ryll, Timo and Haschke, Michael}, title = {Femtosecond hard X-ray plasma sources with a kilohertz repetition rate}, issn = {0947-8396}, doi = {10.1007/s00339-009-5171-9}, year = {2009}, abstract = {Laser-driven plasma sources of femtosecond hard X-ray pulses have found widespread application in ultrafast X- ray diffraction. The recent development of plasma sources working at kilohertz repetition rates has allowed for diffraction experiments with strongly improved sensitivity, now revealing subtle fully reversible changes of the geometry of crystal lattices. We provide a brief review of this development and present a novel plasma source with an optimized mechanical and optical design, providing a high flux of several 10(10) photons/s at the Cu-K alpha energy of 8.04 keV and a pulse duration of a parts per thousand currency sign300 fs. First experiments, including the generation of Debye-Scherrer diffraction patterns from Si powder, demonstrate the high performance of this source.}, language = {en} } @article{ZaldenQuirinSchumacheretal.2019, author = {Zalden, Peter and Quirin, Florian and Schumacher, Mathias and Siegel, Jan and Wei, Shuai and Koc, Azize and Nicoul, Matthieu and Trigo, Mariano and Andreasson, Pererik and Enquist, Henrik and Shu, Michael J. and Pardini, Tommaso and Chollet, Matthieu and Zhu, Diling and Lemke, Henrik and Ronneberger, Ider and Larsson, J{\"o}rgen and Lindenberg, Aaron M. and Fischer, Henry E. and Hau-Riege, Stefan and Reis, David A. and Mazzarello, Riccardo and Wuttig, Matthias and Sokolowski-Tinten, Klaus}, title = {Femtosecond x-ray diffraction reveals a liquid-liquid phase transition in phase-change materials}, series = {Science}, volume = {364}, journal = {Science}, number = {6445}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington, DC}, issn = {0036-8075}, doi = {10.1126/science.aaw1773}, pages = {1062 -- 1067}, year = {2019}, abstract = {In phase-change memory devices, a material is cycled between glassy and crystalline states. The highly temperature-dependent kinetics of its crystallization process enables application in memory technology, but the transition has not been resolved on an atomic scale. Using femtosecond x-ray diffraction and ab initio computer simulations, we determined the time-dependent pair-correlation function of phase-change materials throughout the melt-quenching and crystallization process. We found a liquid-liquid phase transition in the phase-change materials Ag4In3Sb67Te26 and Ge15Sb85 at 660 and 610 kelvin, respectively. The transition is predominantly caused by the onset of Peierls distortions, the amplitude of which correlates with an increase of the apparent activation energy of diffusivity. This reveals a relationship between atomic structure and kinetics, enabling a systematic optimization of the memory-switching kinetics.}, language = {en} } @article{ZaksPikovskij2017, author = {Zaks, Michael and Pikovskij, Arkadij}, title = {Chimeras and complex cluster states in arrays of spin-torque oscillators}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-04918-9}, pages = {10}, year = {2017}, abstract = {We consider synchronization properties of arrays of spin-torque nano-oscillators coupled via an RC load. We show that while the fully synchronized state of identical oscillators may be locally stable in some parameter range, this synchrony is not globally attracting. Instead, regimes of different levels of compositional complexity are observed. These include chimera states (a part of the array forms a cluster while other units are desynchronized), clustered chimeras (several clusters plus desynchronized oscillators), cluster state (all oscillators form several clusters), and partial synchronization (no clusters but a nonvanishing mean field). Dynamically, these states are also complex, demonstrating irregular and close to quasiperiodic modulation. Remarkably, when heterogeneity of spin-torque oscillators is taken into account, dynamical complexity even increases: close to the onset of a macroscopic mean field, the dynamics of this field is rather irregular.}, language = {en} } @article{ZaksTomov2016, author = {Zaks, Michael A. and Tomov, Petar}, title = {Onset of time dependence in ensembles of excitable elements with global repulsive coupling}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {93}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.93.020201}, pages = {5}, year = {2016}, abstract = {We consider the effect of global repulsive coupling on an ensemble of identical excitable elements. An increase of the coupling strength destabilizes the synchronous equilibrium and replaces it with many attracting oscillatory states, created in the transcritical heteroclinic bifurcation. The period of oscillations is inversely proportional to the distance from the critical parameter value. If the elements interact with the global field via the first Fourier harmonics of their phases, the stable equilibrium is in one step replaced by the attracting continuum of periodic motions.}, language = {en} } @article{ZaksRosenblumPikovskijetal.1997, author = {Zaks, Michael A. and Rosenblum, Michael and Pikovskij, Arkadij and Osipov, Grigory V. and Kurths, J{\"u}rgen}, title = {Phase synchronization of chaotic oscillations in terms of periodic orbits}, issn = {1054-1500}, year = {1997}, language = {en} } @article{ZaksPikovskijKurths1999, author = {Zaks, Michael A. and Pikovskij, Arkadij and Kurths, J{\"u}rgen}, title = {On the generalized dimensions for the fourier spectrum of the thue-morse sequence}, year = {1999}, language = {en} } @article{ZaksPikovskijKurths1998, author = {Zaks, Michael A. and Pikovskij, Arkadij and Kurths, J{\"u}rgen}, title = {Symbolic dynamics behind the singular continuous power spectra of continuous flows}, year = {1998}, language = {en} } @article{ZaksPikovskijKurths1997, author = {Zaks, Michael A. and Pikovskij, Arkadij and Kurths, J{\"u}rgen}, title = {On the correlation dimension of the spectral measure for the Thue-Morse sequence}, year = {1997}, language = {en} } @article{ZaksPikovskij2019, author = {Zaks, Michael A. and Pikovskij, Arkadij}, title = {Synchrony breakdown and noise-induced oscillation death in ensembles of serially connected spin-torque oscillators}, series = {The European physical journal : B, Condensed matter and complex systems}, volume = {92}, journal = {The European physical journal : B, Condensed matter and complex systems}, number = {7}, publisher = {Springer}, address = {New York}, issn = {1434-6028}, doi = {10.1140/epjb/e2019-100152-2}, pages = {12}, year = {2019}, abstract = {We consider collective dynamics in the ensemble of serially connected spin-torque oscillators governed by the Landau-Lifshitz-Gilbert-Slonczewski magnetization equation. Proximity to homoclinicity hampers synchronization of spin-torque oscillators: when the synchronous ensemble experiences the homoclinic bifurcation, the growth rate per oscillation of small deviations from the ensemble mean diverges. Depending on the configuration of the contour, sufficiently strong common noise, exemplified by stochastic oscillations of the current through the circuit, may suppress precession of the magnetic field for all oscillators. We derive the explicit expression for the threshold amplitude of noise, enabling this suppression.}, language = {en} } @article{ZaksPikovskij2017, author = {Zaks, Michael A. and Pikovskij, Arkadij}, title = {Chimeras and complex cluster states in arrays of spin-torque oscillators}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Macmillan Publishers Limited}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-04918-9}, year = {2017}, abstract = {We consider synchronization properties of arrays of spin-torque nano-oscillators coupled via an RC load. We show that while the fully synchronized state of identical oscillators may be locally stable in some parameter range, this synchrony is not globally attracting. Instead, regimes of different levels of compositional complexity are observed. These include chimera states (a part of the array forms a cluster while other units are desynchronized), clustered chimeras (several clusters plus desynchronized oscillators), cluster state (all oscillators form several clusters), and partial synchronization (no clusters but a nonvanishing mean field). Dynamically, these states are also complex, demonstrating irregular and close to quasiperiodic modulation. Remarkably, when heterogeneity of spin-torque oscillators is taken into account, dynamical complexity even increases: close to the onset of a macroscopic mean field, the dynamics of this field is rather irregular.}, language = {en} } @article{ZaksParkKurths2000, author = {Zaks, Michael A. and Park, Eun Hyoung and Kurths, J{\"u}rgen}, title = {On phase synchronization by periodic force in chaotic oscillators with saddle equilibria}, year = {2000}, language = {en} } @article{ZakrevskyyTitovLomadzeetal.2014, author = {Zakrevskyy, Yuriy and Titov, Evgenii and Lomadze, Nino and Santer, Svetlana}, title = {Phase diagrams of DNA-photosensitive surfactant complexes: Effect of ionic strength and surfactant structure}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {141}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {16}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4899281}, pages = {8}, year = {2014}, abstract = {Realization of all-optically controlled and efficient DNA compaction is the major motivation in the study of interactions between DNA and photosensitive surfactants. In this article, using recently published approach of phase diagram construction [Y. Zakrevskyy, P. Cywinski, M. Cywinska, J. Paasche, N. Lomadze, O. Reich, H.-G. Lohmannsroben, and S. Santer, J. Chem. Phys. 140, 044907 (2014)], a strategy for substantial reduction of compaction agent concentration and simultaneous maintaining the light-induced decompaction efficiency is proposed. The role of ionic strength (NaCl concentration), as a very important environmental parameter, and surfactant structure (spacer length) on the changes of positions of phase transitions is investigated. Increase of ionic strength leads to increase of the surfactant concentration needed to compact DNA molecule. However, elongation of the spacer results to substantial reduction of this concentration. DNA compaction by surfactants with longer tails starts to take place in diluted solutions at charge ratios Z < 1 and is driven by azobenzene-aggregation compaction mechanism, which is responsible for efficient decompaction. Comparison of phase diagrams for different DNA-photosensitive surfactant systems allowed explanation and proposal of a strategy to overcome previously reported limitations of the light-induced decompaction for complexes with increasing surfactant hydrophobicity. (C) 2014 AIP Publishing LLC.}, language = {en} } @article{ZakrevskyyRoxlauBrezesinskietal.2014, author = {Zakrevskyy, Yuriy and Roxlau, Julian and Brezesinski, Gerald and Lomadze, Nino and Santer, Svetlana}, title = {Photosensitive surfactants: Micellization and interaction with DNA}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {140}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {4}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4862678}, pages = {8}, year = {2014}, abstract = {Recently, photosensitive surfactants have re-attracted considerable attention. It has been shown that their association with oppositely charged biologically important polyelectrolytes, such as DNA or microgels, can be efficiently manipulated simply by light exposure. In this article, we investigate the self-assembly of photosensitive surfactants as well as their interactions with DNA by calorimetric and spectroscopic methods. Critical micelle concentration (CMC), standard micellization enthalpy, entropy, and Gibbs energy were determined in different conditions (ionic strengths and temperatures) for a series of cationic surfactants with an azobenzene group in their tail. It is shown, that aggregation forces of photosensitive units play an important role in the micellization giving the major contribution to the micellization enthalpy. The onset of the aggregation can be traced from shift of the absorption peak position in the UV-visible spectrum. Titration UV-visible spectroscopy is used as an alternative, simple, and sensitive approach to estimate CMC. The titration UV-visible spectroscopy was also employed to investigate interactions (CAC: critical aggregation concentration, precipitation, and colloidal stabilization) in the DNA-surfactant complex.}, language = {en} } @article{ZakrevskyyRichterZakrevskaetal.2012, author = {Zakrevskyy, Yuriy and Richter, Marcel and Zakrevska, Svitlana and Lomadze, Nino and von Klitzing, Regine and Santer, Svetlana}, title = {Light-controlled reversible manipulation of microgel particle size using azobenzene-containing surfactant}, series = {Advanced functional materials}, volume = {22}, journal = {Advanced functional materials}, number = {23}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201200617}, pages = {5000 -- 5009}, year = {2012}, abstract = {The light-induced reversible switching of the swelling of microgel particles triggered by photo-isomerization and binding/unbinding of a photosensitive azobenzene-containing surfactant is reported. The interactions between the microgel (N-isopropylacrylamide, co-monomer: allyl acetic acid, crosslinker: N,N'-methylenebisacrylamide) and the surfactant are studied by UV-Vis spectroscopy, dynamic and electrophoretic light scattering measurements. Addition of the surfactant above a critical concentration leads to contraction/collapse of the microgel. UV light irradiation results in trans-cis isomerization of the azobenzene unit incorporated into the surfactant tail and causes an unbinding of the more hydrophilic cis isomer from the microgel and its reversible swelling. The reversible contraction can be realized by blue light irradiation that transfers the surfactant back to the more hydrophobic trans conformation, in which it binds to the microgel. The phase diagram of the surfactant-microgel interaction and transitions (aggregation, contraction, and precipitation) is constructed and allows prediction of changes in the system when the concentration of one or both components is varied. Remote and reversible switching between different states can be realized by either UV or visible light irradiation.}, language = {en} } @article{ZakrevskyyKopyshevLomadzeetal.2011, author = {Zakrevskyy, Yuriy and Kopyshev, Alexey and Lomadze, Nino and Morozova, Elena and Lysyakova, Liudmila and Kasyanenko, Nina and Santer, Svetlana}, title = {DNA compaction by azobenzene-containing surfactant}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {84}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.84.021909}, pages = {9}, year = {2011}, abstract = {We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.}, language = {en} } @article{ZakharovaVadivasovaAnishchenkoetal.2010, author = {Zakharova, Anna and Vadivasova, Tatjana and Anishchenko, Vadim S. and Koseska, Aneta and Kurths, J{\"u}rgen}, title = {Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator}, issn = {1539-3755}, doi = {10.1103/Physreve.81.011106}, year = {2010}, abstract = {We investigate the influence of additive Gaussian white noise on two different bistable self-sustained oscillators: Duffing-Van der Pol oscillator with hard excitation and a model of a synthetic genetic oscillator. In the deterministic case, both oscillators are characterized with a coexistence of a stable limit cycle and a stable equilibrium state. We find that under the influence of noise, their dynamics can be well characterized through the concept of stochastic bifurcation, consisting in a qualitative change of the stationary amplitude distribution. For the Duffing-Van der Pol oscillator analytical results, obtained for a quasiharmonic approach, are compared with the result of direct computer simulations. In particular, we show that the dynamics is different for isochronous and anisochronous systems. Moreover, we find that the increase of noise intensity in the isochronous regime leads to a narrowing of the spectral line. This effect is similar to coherence resonance. However, in the case of anisochronous systems, this effect breaks down and a new phenomenon, anisochronous-based stochastic bifurcation occurs.}, language = {en} } @article{ZakharovaKurthsVadivasovaetal.2011, author = {Zakharova, Anna and Kurths, J{\"u}rgen and Vadivasova, Tatyana and Koseska, Aneta}, title = {Analysing dynamical behavior of cellular networks via stochastic bifurcations}, series = {PLoS one}, volume = {6}, journal = {PLoS one}, number = {5}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0019696}, pages = {12}, year = {2011}, abstract = {The dynamical structure of genetic networks determines the occurrence of various biological mechanisms, such as cellular differentiation. However, the question of how cellular diversity evolves in relation to the inherent stochasticity and intercellular communication remains still to be understood. Here, we define a concept of stochastic bifurcations suitable to investigate the dynamical structure of genetic networks, and show that under stochastic influence, the expression of given proteins of interest is defined via the probability distribution of the phase variable, representing one of the genes constituting the system. Moreover, we show that under changing stochastic conditions, the probabilities of expressing certain concentration values are different, leading to different functionality of the cells, and thus to differentiation of the cells in the various types.}, language = {en} } @article{ZajnulinaBoehmBlowetal.2015, author = {Zajnulina, Marina and B{\"o}hm, Michael and Blow, K. and Rieznik, A. A. and Giannone, Domenico and Haynes, Roger and Roth, Martin M.}, title = {Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {25}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {10}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/1.4930316}, pages = {6}, year = {2015}, abstract = {We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.}, language = {en} } @article{ZajnulinaBoggioBoehmetal.2015, author = {Zajnulina, Marina and Boggio, Jose M. Chavez and B{\"o}hm, Michael and Rieznik, A. A. and Fremberg, Tino and Haynes, Roger and Roth, Martin M.}, title = {Generation of optical frequency combs via four-wave mixing processes for low- and medium-resolution astronomy}, series = {Applied physics : B, Lasers and optics}, volume = {120}, journal = {Applied physics : B, Lasers and optics}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0946-2171}, doi = {10.1007/s00340-015-6121-1}, pages = {171 -- 184}, year = {2015}, abstract = {We investigate the generation of optical frequency combs through a cascade of four-wave mixing processes in nonlinear fibres with optimised parameters. The initial optical field consists of two continuous-wave lasers with frequency separation larger than 40 GHz (312.7 pm at 1531 nm). It propagates through three nonlinear fibres. The first fibre serves to pulse shape the initial sinusoidal-square pulse, while a strong pulse compression down to sub-100 fs takes place in the second fibre which is an amplifying erbium-doped fibre. The last stage is a low-dispersion highly nonlinear fibre where the frequency comb bandwidth is increased and the line intensity is equalised. We model this system using the generalised nonlinear Schrodinger equation and investigate it in terms of fibre lengths, fibre dispersion, laser frequency separation and input powers with the aim to minimise the frequency comb noise. With the support of the numerical results, a frequency comb is experimentally generated, first in the near infra-red and then it is frequency-doubled into the visible spectral range. Using a MUSE-type spectrograph, we evaluate the comb performance for astronomical wavelength calibration in terms of equidistancy of the comb lines and their stability.}, language = {en} } @article{ZaikinKurths2006, author = {Zaikin, Alexey and Kurths, J{\"u}rgen}, title = {Optimal length transportation hypothesis to model proteasome product size distribution}, series = {Journal of biological physics : emphasizing physical principles in biological research ; an international journal for the formulation and application of mathematical models in the biological sciences}, volume = {32}, journal = {Journal of biological physics : emphasizing physical principles in biological research ; an international journal for the formulation and application of mathematical models in the biological sciences}, number = {3-4}, publisher = {Springer}, address = {Dordrecht}, issn = {0092-0606}, doi = {10.1007/s10867-006-9014-z}, pages = {231 -- 243}, year = {2006}, abstract = {This paper discusses translocation features of the 20S proteasome in order to explain typical proteasome length distributions. We assume that the protein transport depends significantly on the fragment length with some optimal length which is transported most efficiently. By means of a simple one-channel model, we show that this hypothesis can explain both the one- and the three-peak length distributions found in experiments. A possible mechanism of such translocation is provided by so-called fluctuation-driven transport.}, language = {en} } @article{ZaikinKurthsSaparinetal.2005, author = {Zaikin, Alexei and Kurths, J{\"u}rgen and Saparin, Peter and Gowin, W. and Prohaska, Steffen}, title = {Modeling bone resorption in 2D CT and 3D mu CT images}, issn = {0218-1274}, year = {2005}, abstract = {We study several algorithms to simulate bone mass loss in two-dimensional and three-dimensional computed tomography bone images. The aim is to extrapolate and predict the bone loss, to provide test objects for newly developed structural measures, and to understand the physical mechanisms behind the bone alteration. Our bone model approach differs from those already reported in the literature by two features. First, we work with original bone images, obtained by computed tomography (CT); second, we use structural measures of complexity to evaluate bone resorption and to compare it with the data provided by CT. This gives us the possibility to test algorithms of bone resorption by comparing their results with experimentally found dependencies of structural measures of complexity, as well as to show efficiency of the complexity measures in the analysis of bone models. For two-dimensional images we suggest two algorithms, a threshold algorithm and a virtual slicing algorithm. The threshold algorithm simulates bone resorption on a boundary between bone and marrow, representing an activity of osteoclasts. The virtual slicing algorithm uses a distribution of the bone material between several virtually created slices to achieve statistically correct results, when the bone-marrow transition is not clearly defined. These algorithms have been tested for original CT 10 mm thick vertebral slices and for simulated 10 mm thick slices constructed from ten I mm thick slices. For three-dimensional data, we suggest a variation of the threshold algorithm and apply it to bone images. The results of modeling have been compared with CT images using structural measures of complexity in two- and three-dimensions. This comparison has confirmed credibility of a virtual slicing modeling algorithm for two-dimensional data and a threshold algorithm for three-dimensional data}, language = {en} } @article{ZaikinTopajGarciaOjalvo2002, author = {Zaikin, Alexei A. and Topaj, Dmitri and Garcia-Ojalvo, Jordi}, title = {Noise-enhanced propagation of bichromatic signals}, year = {2002}, abstract = {We examine the influence of noise on the propagation of harmonic signals with two frequencies through discrete bistable media. We show that random fluctuations enhance propagation of this kind of signals for low coupling strengths, similarly to what happens with purely monochromatic signals. As a more relevant finding, we observe that the frequency being propagated with better efficiency can be selected by tuning the intensity of the noise, in such a way that for large noises the highest frequency is transmitted better than the lower one, whereas for small noises the reverse holds. Such a noise-induced frequency selection can be expected to exist for general multifrequency harmonic signals.}, language = {en} } @article{ZaikinSchimanskyGeier1999, author = {Zaikin, Alexei A. and Schimansky-Geier, Lutz}, title = {Ordering role of additive noise in extended media}, issn = {1373-5411}, year = {1999}, language = {en} }