@article{OskinovaSteinkeHamannetal.2013, author = {Oskinova, Lida and Steinke, M. and Hamann, Wolf-Rainer and Sander, A. and Todt, Helge Tobias and Liermann, Adriane}, title = {One of the most massive stars in the Galaxy may have formed in isolation}, series = {Monthly notices of the Royal Astronomical Society}, volume = {436}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stt1817}, pages = {3357 -- 3365}, year = {2013}, abstract = {Very massive stars, 100 times heavier than the sun, are rare. It is not yet known whether such stars can form in isolation or only in star clusters. The answer to this question is of fundamental importance. The central region of our Galaxy is ideal for investigating very massive stars and clusters located in the same environment. We used archival infrared images to investigate the surroundings of apparently isolated massive stars presently known in the Galactic Centre (GC). We find that two such isolated massive stars display bow shocks and hence may be 'runaways' from their birthplace. Thus, some isolated massive stars in the GC region might have been born in star clusters known in this region. However, no bow shock is detected around the isolated star WR 102ka (Peony nebula star), which is one of the most massive and luminous stars in the Galaxy. This star is located at the centre of an associated circumstellar nebula. To study whether a star cluster may be 'hidden' in the surroundings of WR 102ka, to obtain new and better spectra of this star, and to measure its radial velocity, we obtained observations with the integral-field spectrograph SINFONI at the ESO's Very Large Telescope. Our observations confirm that WR 102ka is one of the most massive stars in the Galaxy and reveal that this star is not associated with a star cluster. We suggest that WR 102ka has been born in relative isolation, outside of any massive star cluster.}, language = {en} } @article{OskinovaKubatovaHamann2016, author = {Oskinova, Lida and Kubatova, Brankica and Hamann, Wolf-Rainer}, title = {Moving inhomogeneous envelopes of stars}, series = {Transport in Porous Media}, volume = {183}, journal = {Transport in Porous Media}, publisher = {Elsevier}, address = {Oxford}, issn = {0022-4073}, doi = {10.1016/j.jqsrt.2016.06.017}, pages = {100 -- 112}, year = {2016}, abstract = {Massive stars are extremely luminous and drive strong winds, blowing a large part of their matter into the galactic environment before they finally explode as a supernova. Quantitative knowledge of massive star feedback is required to understand our Universe as we see it. Traditionally, massive stars have been studied under the assumption that their winds are homogeneous and stationary, largely relying on the Sobolev approximation. However, Observations with the newest instruments, together with progress in model calculations, ultimately dictate a cardinal change of this paradigm: stellar winds are highly inhomogeneous. Hence, we are now advancing to a new stage in our understanding of stellar winds. Using the foundations laid by V.V. Sobolev and his school, we now update and further develop the stellar spectral analysis techniques. New sophisticated 3-D models of radiation transfer in inhomogeneous expanding media elucidate the physics of stellar winds and improve classical empiric mass-loss rate diagnostics. Applications of these new techniques to multiwavelength observations of massive stars yield consistent and robust stellar wind parameters. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @article{OskinovaIgnaceHamannetal.2003, author = {Oskinova, Lida and Ignace, Richard and Hamann, Wolf-Rainer and Pollock, A. M. T. and Brown, John C.}, title = {The conspicuous absence of X-ray emission from carbon-enriched Wolf-Rayet stars}, year = {2003}, abstract = {The carbon-rich WC5 star WR 114 was not detected during a 15.9 ksec XMM-Newton observation, implying an upper limit to the X-ray luminosity of Lx < 2.5 x 1030 ergs-1 and to the X-ray to bolometric luminosity ratio of Lx/Lbol < 4 x 10-9. This confirms indications from earlier less sensitive measurements that there has been no convincing X-ray detection of any single WC star. This lack of detections is reinforced by XMM-Newton and CHANDRA observations of WC stars. Thus the conclusion has to be drawn that the stars with radiatively-driven stellar winds of this particular class are insignificant X-ray sources. We attribute this to photoelectronic absorption by the stellar wind. The high opacity of the metal-rich and dense winds from WC stars puts the radius of optical depth unity at hundreds or thousands of stellar radii for much of the X-ray band. We believe that the essential absence of hot plasma so far out in the wind exacerbated by the large distances and correspondingly high ISM column densities makes the WC stars too faint to be detectable with current technology. The result also applies to many WC stars in binary systems, of which only about 20 \% are identified X-ray sources, presumably due to colliding winds.}, language = {en} } @article{OskinovaHuenemoerderHamannetal.2017, author = {Oskinova, Lida and Huenemoerder, D. P. and Hamann, Wolf-Rainer and Shenar, Tomer and Sander, Andreas Alexander Christoph and Ignace, R. and Todt, Helge Tobias and Hainich, Rainer}, title = {On the Binary Nature of Massive Blue Hypergiants: High-resolution X-Ray Spectroscopy Suggests That Cyg OB2 12 is a Colliding Wind Binary}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {845}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aa7e79}, pages = {11}, year = {2017}, abstract = {The blue hypergiant Cyg OB2 12 (B3Ia(+)) is a representative member of the class of very massive stars in a poorly understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory. PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper levels of the forbidden lines of the He-like ions Si XIV and Mg XII. Comparison between the model and observations reveals that X-ray emission is produced in a dense plasma, which could reside only at the photosphere or in a colliding wind zone between binary components. The observed X-ray spectra are well-fitted by thermal plasma models, with average temperatures in excess of 10 MK. The wind speed in Cyg OB2 12 is not high enough to power such high temperatures, but the collision of two winds in a binary system can be sufficient. We used archival data to investigate the X-ray properties of other blue hypergiants. In general, stars of this class are not detected as X-ray sources. We suggest that our new Chandra observations of Cyg OB2 12 can be best explained if Cyg OB2 12 is a colliding wind binary possessing a late O-type companion. This makes Cyg OB2 12 only the second binary system among the 16 known Galactic hypergiants. This low binary fraction indicates that the blue hypergiants are likely products of massive binary evolution during which they either accreted a significant amount of mass or already merged with their companions.}, language = {en} } @article{OskinovaHamannFeldmeieretal.2009, author = {Oskinova, Lida and Hamann, Wolf-Rainer and Feldmeier, Achim and Ignace, Richard and Chu, You-Hua}, title = {Discovery of X-ray emission from the Wolf-Rayet star WR 142 of oxygen subtype}, issn = {0004-637X}, doi = {10.1088/0004-637x/693/1/L44}, year = {2009}, abstract = {We report the discovery of weak yet hard X-ray emission from the Wolf-Rayet (WR) star WR 142 with the XMM- Newton X-ray telescope. Being of spectral subtype WO2, WR 142 is a massive star in a very advanced evolutionary stage shortly before its explosion as a supernova or. gamma-ray burst. This is the first detection of X-ray emission from a WO- type star. We rule out any serendipitous X-ray sources within approximate to 1 '' of WR 142. WR 142 has an X- ray luminosity of L-X approximate to 7 x 10(30) erg s(-1), which constitutes only less than or similar to 10(-8) of its bolometric luminosity. The hard X-ray spectrum suggests a plasma temperature of about 100 MK. Commonly, X-ray emission from stellar winds is attributed to embedded shocks due to the intrinsic instability of the radiation driving. From qualitative considerations we conclude that this mechanism cannot account for the hardness of the observed radiation. There are no hints for a binary companion. Therefore the only remaining, albeit speculative explanation must refer to magnetic activity. Possibly related, WR 142 seems to rotate extremely fast, as indicated by the unusually round profiles of its optical emission lines. Our detection implies that the wind of WR 142 must be relatively transparent to X-rays, which can be due to strong wind ionization, wind clumping, or nonspherical geometry from rapid rotation.}, language = {en} } @inproceedings{OskinovaHamannFeldmeier2007, author = {Oskinova, Lida and Hamann, Wolf-Rainer and Feldmeier, Achim}, title = {X-raying clumped stellar winds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18133}, year = {2007}, abstract = {X-ray spectroscopy is a sensitive probe of stellar winds. X-rays originate from optically thin shock-heated plasma deep inside the wind and propagate outwards throughout absorbing cool material. Recent analyses of the line ratios from He-like ions in the X-ray spectra of O-stars highlighted problems with this general paradigm: the measured line ratios of highest ions are consistent with the location of the hottest X-ray emitting plasma very close to the base of the wind, perhaps indicating the presence of a corona, while measurements from lower ions conform with the wind-embedded shock model. Generally, to correctly model the emerging Xray spectra, a detailed knowledge of the cool wind opacities based on stellar atmosphere models is prerequisite. A nearly grey stellar wind opacity for the X-rays is deduced from the analyses of high-resolution X-ray spectra. This indicates that the stellar winds are strongly clumped. Furthermore, the nearly symmetric shape of X-ray emission line profiles can be explained if the wind clumps are radially compressed. In massive binaries the orbital variations of X-ray emission allow to probe the opacity of the stellar wind; results support the picture of strong wind clumping. In high-mass X-ray binaries, the stochastic X-ray variability and the extend of the stellar-wind part photoionized by X-rays provide further strong evidence that stellar winds consist of dense clumps.}, language = {en} } @article{OskinovaHamannCassinellietal.2011, author = {Oskinova, Lida and Hamann, Wolf-Rainer and Cassinelli, Joseph P. and Brown, John C. and Todt, Helge Tobias}, title = {X-ray emission from massive stars with magnetic fields}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {332}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {9-10}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0004-6337}, doi = {10.1002/asna.201111602}, pages = {988 -- 993}, year = {2011}, abstract = {We investigate the connections between the magnetic fields and the X-ray emission from massive stars. Our study shows that the X-ray properties of known strongly magnetic stars are diverse: while some comply to the predictions of the magnetically confined wind model, others do not. We conclude that strong, hard, and variable X-ray emission may be a sufficient attribute of magnetic massive stars, but it is not a necessary one. We address the general properties of X-ray emission from "normal" massive stars, especially the long standing mystery about the correlations between the parameters of X-ray emission and fundamental stellar properties. The recent development in stellar structure modeling shows that small-scale surface magnetic fields may be common. We suggest a "hybrid" scenario which could explain the X-ray emission from massive stars by a combination of magnetic mechanisms on the surface and shocks in the stellar wind. The magnetic mechanisms and the wind shocks are triggered by convective motions in sub-photospheric layers. This scenario opens the door for a natural explanation of the well established correlation between bolometric and X-ray luminosities.}, language = {en} } @misc{OskinovaGayleyHamannetal.2012, author = {Oskinova, Lida and Gayley, K. G. and Hamann, Wolf-Rainer and H{\"u}nem{\"o}rder, D. P. and Ignace, R. and Pollock, A. M. T.}, title = {High-Resolution X-Ray Spectroscopy reveals the special nature of Wolf-Rayet star winds (pg 747, 2012)}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {752}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.1088/2041-8205/752/2/L35}, pages = {1}, year = {2012}, language = {en} } @article{OskinovaFeldmeierHamann2004, author = {Oskinova, Lida and Feldmeier, Achim and Hamann, Wolf-Rainer}, title = {X-ray emission lines from inhomogeneous stellar winds}, issn = {0004-6361}, year = {2004}, abstract = {It is commonly adopted that X-rays from O stars are produced deep inside the stellar wind, and transported outwards through the bulk of the expanding matter which attenuates the radiation and affects the shape of emission line profiles. The ability of the X-ray observatories Chandra and XMM-Newton to resolve these lines spectroscopically provided a stringent test for the theory of the X-ray production. It turned out that none of the existing models was able to fit the observations consistently. The possible caveat of these models was the underlying assumption of a smooth stellar wind. Motivated by the evidence that the stellar winds are in fact structured, we present a 2-D numerical model of a stochastic, inhomogeneous wind. Small parcels of hot, X-ray emitting gas are permeated by cool, absorbing wind material which is compressed into thin shell fragments. Wind fragmentation alters the radiative transfer drastically, compared to homogeneous models of the same mass-loss rate. X-rays produced deep inside the wind, which would be totally absorbed in a homogeneous flow, can effectively escape from a fragmented wind. The wind absorption becomes wavelength independent if the individual fragments are optically thick. The X-ray line profiles are flat-topped in the blue part and decline steeply in the red part for the winds with a short acceleration zone. For the winds where the acceleration extends over significant distances, the lines can appear nearly symmetric and only slightly blueshifted, in contrast to the skewed, triangular line profiles typically obtained from homogeneous wind models of high optical depth. We show that profiles from a fragmented wind model can reproduce the observed line profiles from zeta Orionis. The present numerical modeling confirms the results from a previous study, where we derived analytical formulae from a statistical treatment}, language = {en} } @article{OskinovaFeldmeierHamann2003, author = {Oskinova, Lida and Feldmeier, Achim and Hamann, Wolf-Rainer}, title = {X-ray line profiles from structured stellar winds}, isbn = {1-58381-133-8}, year = {2003}, abstract = {Absorbing material compressed in a number of thin shells is effectively less opaque for X-rays than smoothly distributed gas. The calculated X-ray emission line profiles are red-shifted if the emission arises from the starward side of the shells.}, language = {en} } @article{OskinovaFeldmeierHamann2006, author = {Oskinova, Lida and Feldmeier, Achim and Hamann, Wolf-Rainer}, title = {High-resolution X-ray spectroscopy of bright O-type stars}, series = {Monthly notices of the Royal Astronomical Society}, volume = {372}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1111/j.1365-2966.2006.10858.x}, pages = {313 -- 326}, year = {2006}, abstract = {Archival X-ray spectra of the four prominent single, non-magnetic O stars zeta Pup, zeta Ori, xi Per and zeta Oph, obtained in high resolution with Chandra HETGS/MEG have been studied. The resolved X-ray emission line profiles provide information about the shocked, hot gas which emits the X-radiation, and about the bulk of comparably cool stellar wind material which partly absorbs this radiation. In this paper, we synthesize X-ray line profiles with a model of a clumpy stellar wind. We find that the geometrical shape of the wind inhomogeneities is important: better agreement with the observations can be achieved with radially compressed clumps than with spherical clumps. The parameters of the model, i.e. chemical abundances, stellar radius, mass-loss rate and terminal wind velocity, are taken from existing analyses of UV and optical spectra of the programme stars. On this basis, we also calculate the continuum-absorption coefficient of the cool-wind material, using the Potsdam Wolf-Rayet (POWR) model atmosphere code. The radial location of X-ray emitting gas is restricted from analysing the FIR line ratios of helium-like ions. The only remaining free parameter of our model is the typical distance between the clumps; here, we assume that at any point in the wind there is one clump passing by per one dynamical time-scale of the wind. The total emission in a model line is scaled to the observation. There is a good agreement between synthetic and observed line profiles. We conclude that the X-ray emission line profiles in O stars can be explained by hot plasma embedded in a cool wind which is highly clumped in the form of radially compressed shell fragments.}, language = {en} } @article{NicholsHuenemoerderCorcoranetal.2015, author = {Nichols, Joy and Huenemoerder, David P. and Corcoran, Michael F. and Waldron, Wayne and Naze, Yael and Pollock, Andy M. T. and Moffat, Anthony F. J. and Lauer, Jennifer and Shenar, Tomer and Russell, Christopher M. P. and Richardson, Noel D. and Pablo, Herbert and Evans, Nancy Remage and Hamaguchi, Kenji and Gull, Theodore and Hamann, Wolf-Rainer and Oskinova, Lida and Ignace, Rosina and Hoffman, Jennifer L. and Hole, Karen Tabetha and Lomax, Jamie R.}, title = {A COORDINATED X-RAY AND OPTICAL CAMPAIGN OF THE NEAREST MASSIVE ECLIPSING BINARY, delta ORIONIS Aa. II. X-RAY VARIABILITY}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {809}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/809/2/133}, pages = {21}, year = {2015}, abstract = {We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the delta Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of approximate to 479 ks and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5-25 is is confirmed, with a maximum amplitude of about +/- 15\% within a single approximate to 125 ks observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 ks contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S XV, Si XIII, and Ne IX. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi = 0.0 when the secondary delta Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability.}, language = {en} } @article{MartinezNunezSanderGimenezGarciaetal.2015, author = {Martinez-Nunez, Silvia and Sander, Angelika and Gimenez-Garcia, Angel and Gonzalez-Galan, Ana and Torrejon, Jose Miguel and Gonzalez-Fernandez, Carlos and Hamann, Wolf-Rainer}, title = {The donor star of the X-ray pulsar X1908+075}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {578}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201424823}, pages = {9}, year = {2015}, abstract = {High-mass X-ray binaries consist of a massive donor star and a compact object. While several of those systems have been well studied in X-rays, little is known for most of the donor stars as they are often heavily obscured in the optical and ultraviolet regime. There is an opportunity to observe them at infrared wavelengths, however. The goal of this study is to obtain the stellar and wind parameters of the donor star in the X1908+075 high-mass X-ray binary system with a stellar atmosphere model to check whether previous studies from X-ray observations and spectral morphology lead to a sufficient description of the donor star. We obtained H-and K-band spectra of X1908+075 and analysed them with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. For the first time, we calculated a stellar atmosphere model for the donor star, whose main parameters are: M-spec = 15 +/- 6 M-circle dot, T-* = 23(-3)(+6) kK, log g(eff) = 3.0 +/- 0.2 and log L/L-circle dot = 4.81 +/- 0.25. The obtained parameters point towards an early B-type (B0-B3) star, probably in a supergiant phase. Moreover we determined a more accurate distance to the system of 4.85 +/- 0.50 kpc than the previously reported value.}, language = {en} } @misc{LiermannHamannOskinova2014, author = {Liermann, Angelika and Hamann, Wolf-Rainer and Oskinova, Lida}, title = {The quintuplet cluster III. Hertzsprung-Russell diagram and cluster age (vol 540, pg A14, 2012)}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {563}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201117534e}, pages = {2}, year = {2014}, language = {en} } @article{LiermannHamannOskinova2012, author = {Liermann, A. and Hamann, Wolf-Rainer and Oskinova, Lida}, title = {The Quintuplet cluster III. Hertzsprung-Russell diagram and cluster age}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {540}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201117534}, pages = {9}, year = {2012}, abstract = {The Quintuplet, one of three massive stellar clusters in the Galactic center (GC), is located about 30 pc in projection from Sagittarius A*. We aim at the construction of the Hertzsprung-Russell diagram (HRD) of the cluster to study its evolution and to constrain its star-formation history. For this purpose we use the most complete spectral catalog of the Quintuplet stars. Based on the K-band spectra we determine stellar temperatures and luminosities for all stars in the catalog under the assumption of a uniform reddening towards the cluster. We find two groups in the resulting HRD: early-type OB stars and late-type KM stars, well separated from each other. By comparison with Geneva stellar evolution models we derive initial masses exceeding 8 M-circle dot for the OB stars. In the HRD these stars are located along an isochrone corresponding to an age of about 4 Myr. This confirms previous considerations, where a similar age estimate was based on the presence of evolved Wolf-Rayet stars in the cluster. We derive number ratios for the various spectral subtype groups (e.g. N-WR/N-O, N-WC/N-WN) and compare them with predictions of population synthesis models. We find that an instantaneous burst of star formation at about 3.3 to 3.6 Myr ago is the most likely scenario to form the Quintuplet cluster. Furthermore, we apply a mass-luminosity relation to construct the initial mass function (IMF) of the cluster. We find indications for a slightly top-heavy IMF. The late-type stars in the LHO catalog are red giant branch (RGB) stars or red supergiants (RSGs) according to their spectral signatures. Under the assumption that they are located at about the distance of the Galactic center we can derive their luminosities. The comparison with stellar evolution models reveals that the initial masses of these stars are lower than 15 M-circle dot implying that they needed about 15 Myr (RSG) or even more than 30 Myr (RGB) to evolve into their present stage. It might be suspected that these late-type stars do not physically belong to the Quintuplet cluster. Indeed, most of them disqualify as cluster members because their radial velocities differ too much from the cluster average. Nevertheless, five of the brightest RGB/RSG stars from the LHO catalog share the mean radial velocity of the Quintuplet, and thus remain highly suspect for being gravitationally bound members. If so, this would challenge the cluster formation and evolution scenario.}, language = {en} } @article{LeuenhagenHamann1998, author = {Leuenhagen, U. and Hamann, Wolf-Rainer}, title = {Spectral analyses of late-type [WC] central stars of planetary nebulae : more empirical constraints for their evolutionary status}, year = {1998}, language = {en} } @article{KubatovaHamannTodtetal.2015, author = {Kub{\´a}tov{\´a}, Brankica and Hamann, Wolf-Rainer and Todt, Helge Tobias and Sander, A. and Steinke, M. and Hainich, Rainer and Shenar, Tomer}, title = {Macroclumping in WR 136}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87823}, pages = {125 -- 128}, year = {2015}, abstract = {Macroclumping proved to resolve the discordance between different mass-loss rate diagnostics for O-type stars, in particular between Hα and the P v resonance lines. In this paper, we report first results from a corresponding investigation for WR stars. We apply our detailed 3-D Monte Carlo (MC) line formation code to the P v resonance doublet and show, for the Galactic WNL star WR136, that macroclumping is require to bring this line in accordance with the mass-loss rate derived from the emission-line spectrum.}, language = {en} } @article{KubatovaSzecsiSanderetal.2019, author = {Kubatova, Brankica and Szecsi, D. and Sander, Andreas Alexander Christoph and Kubat, Jiř{\´i} and Tramper, F. and Krticka, Jiri and Kehrig, C. and Hamann, Wolf-Rainer and Hainich, Rainer and Shenar, Tomer}, title = {Low-metallicity massive single stars with rotation}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {623}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201834360}, pages = {32}, year = {2019}, abstract = {Context. Metal-poor massive stars are assumed to be progenitors of certain supernovae, gamma-ray bursts, and compact object mergers that might contribute to the early epochs of the Universe with their strong ionizing radiation. However, this assumption remains mainly theoretical because individual spectroscopic observations of such objects have rarely been carried out below the metallicity of the Small Magellanic Cloud. Aims. Here we explore the predictions of the state-of-the-art theories of stellar evolution combined with those of stellar atmospheres about a certain type of metal-poor (0.02 Z(circle dot)) hot massive stars, the chemically homogeneously evolving stars that we call Transparent Wind Ultraviolet INtense (TWUIN) stars. Methods. We computed synthetic spectra corresponding to a broad range in masses (20 130 M-circle dot) and covering several evolutionary phases from the zero-age main-sequence up to the core helium-burning stage. We investigated the influence of mass loss and wind clumping on spectral appearance and classified the spectra according to the Morgan-Keenan (MK) system. Results. We find that TWUIN stars show almost no emission lines during most of their core hydrogen-burning lifetimes. Most metal lines are completely absent, including nitrogen. During their core helium-burning stage, lines switch to emission, and even some metal lines (oxygen and carbon, but still almost no nitrogen) are detected. Mass loss and clumping play a significant role in line formation in later evolutionary phases, particularly during core helium-burning. Most of our spectra are classified as an early-O type giant or supergiant, and we find Wolf-Rayet stars of type WO in the core helium-burning phase. Conclusions. An extremely hot, early-O type star observed in a low-metallicity galaxy could be the result of chemically homogeneous evolution and might therefore be the progenitor of a long-duration gamma-ray burst or a type Ic supernova. TWUIN stars may play an important role in reionizing the Universe because they are hot without showing prominent emission lines during most of their lifetime.}, language = {en} } @misc{KubatovaHamannKubatetal.2019, author = {Kubatova, Brankica and Hamann, Wolf-Rainer and Kubat, Jiri and Oskinova, Lida}, title = {3D Monte Carlo Radiative Transfer in Inhomogeneous Massive Star Winds}, series = {Radiative signatures from the cosmos}, volume = {519}, journal = {Radiative signatures from the cosmos}, publisher = {Astronomical soc pacific}, address = {San Fransisco}, isbn = {978-1-58381-925-8}, issn = {1050-3390}, pages = {209 -- 212}, year = {2019}, abstract = {Already for decades it has been known that the winds of massive stars are inhomogeneous (i.e. clumped). To properly model observed spectra of massive star winds it is necessary to incorporate the 3-D nature of clumping into radiative transfer calculations. In this paper we present our full 3-D Monte Carlo radiative transfer code for inhomogeneous expanding stellar winds. We use a set of parameters to describe dense as well as the rarefied wind components. At the same time, we account for non-monotonic velocity fields. We show how the 3-D density and velocity wind inhomogeneities strongly affect the resonance line formation. We also show how wind clumping can solve the discrepancy between P v and H alpha mass-loss rate diagnostics.}, language = {en} } @misc{KubatovaKubatHamannetal.2017, author = {Kubatova, B. and Kub{\´a}t, Jiř{\´i} and Hamann, Wolf-Rainer and Oskinova, Lida}, title = {Clumping in Massive Star Winds and its Possible Connection to the B[e] Phenomenon}, series = {The B(e) Phenomenon: Forty Years of Studies : proceedings of a conference held at Charles University, Prague, Czech Republic, 27 June-1 July 2016}, volume = {508}, journal = {The B(e) Phenomenon: Forty Years of Studies : proceedings of a conference held at Charles University, Prague, Czech Republic, 27 June-1 July 2016}, publisher = {Astronomical Soceity of the Pacific}, address = {San Fransisco}, isbn = {978-1-58381-900-5}, pages = {45 -- 50}, year = {2017}, abstract = {It has been observationally established that winds of hot massive stars have highly variable characteristics. The variability evident in the winds is believed to be caused by structures on a broad range of spatial scales. Small-scale structures (clumping) in stellar winds of hot stars are possible consequence of an instability appearing in their radiation hydrodynamics. To understand how clumping may influence calculation of theoretical spectra, different clumping properties and their 3D nature have to be taken into account. Properties of clumping have been examined using our 3D radiative transfer calculations. Effects of clumping for the case of the B[e] phenomenon are discussed.}, language = {en} } @article{KoesterkeHamannUrrutia2001, author = {Koesterke, Lars and Hamann, Wolf-Rainer and Urrutia, Tanya}, title = {Line-Profile Variability in the Wolf-Rayet Stars WR 135 and WR 111}, year = {2001}, abstract = {We have obtained time-resolved observations of line-profile variations of the two Wolf-Rayet stars WR 135 and WR 111. The spectra, taken during two consecutive nights, cover a broad range from 4470 to 6590 Ang. The profile variability of the C iii emission line at 5696 Ang in WR 135 is shown in detail. The principal difficulties to constrain the velocity law from the frequency drift of discrete spectral features is discussed, emphasizing the crucial dependence on the adopted location of the line-emission region, and the possible necessity to distinguish between the motion of structures and the flow of the matter. - Full access to the observational data is provided via anonymous file transfer.}, language = {en} } @article{KoesterkeHamannGraefener2002, author = {Koesterke, Lars and Hamann, Wolf-Rainer and Gr{\"a}fener, G{\"o}tz}, title = {Expanding atmospheres in non-LTE : Radiation transfer using short characteristics}, year = {2002}, abstract = {We present our technique for solving the equations of radiation transfer in spherically expanding atmospheres. To ensure an efficient treatment of the Thomson scattering, the mean intensity J is derived by solving the moment equations in turn with the angle-dependent transfer equation. The latter provide the Eddington factors. Two different methods for the solution of the angle dependent equation are compared. Thereby the integration along short characteristics turned out to be superior in our context over the classical differencing scheme. The method is the basis of a non-LTE code suitable for the atmospheres of hot stars with high mass-loss.}, language = {en} } @article{KoesterkeHamannGraefener1999, author = {Koesterke, Lars and Hamann, Wolf-Rainer and Gr{\"a}fener, G{\"o}tz}, title = {Inhomogeneities in Wolf-Rayet atmospheres}, year = {1999}, language = {en} } @article{KoesterkeHamann2002, author = {Koesterke, Lars and Hamann, Wolf-Rainer}, title = {[WC]-type CSPN : clumping and wind-driving}, year = {2002}, abstract = {Many Central Stars of Planetary Nebulae are very similar to massive Wolf-Rayet stars of the carbon sequence with respect to their spectra, chemical composition and wind properties. Therefore their study opens an additional way towards the understanding of the Wolf-Rayet phenomenon. While the study of Line Profile Variation will be difficult, espescially for the very compact early types, the comparision with other hydrogen-deficient Central Stars illuminates the driving mechanism of their winds. We speculate that at least two ingredients are needed. The ionization of their atmpospheres has to be stratified to enable multi-scattering processes and the amount of carbon and oxygen has to be high (more than a few percent by mass).}, language = {en} } @article{KoesterkeHamann1997, author = {Koesterke, Lars and Hamann, Wolf-Rainer}, title = {Spectral analyses of central of planetary nebulae of early WC-type / NGC 6751 and Sanduleak 3}, year = {1997}, language = {en} } @article{KoesterkeHamann1997, author = {Koesterke, Lars and Hamann, Wolf-Rainer}, title = {Quantitative spectral analyses of CSPNs of early [WC]-type}, year = {1997}, language = {en} } @article{KoesterkeHamann1995, author = {Koesterke, Lars and Hamann, Wolf-Rainer}, title = {Spectral analyses of 25 galactic Wolf-Rayet stars of the carbon sequence}, year = {1995}, language = {en} } @article{IgnaceGayleyHamannetal.2013, author = {Ignace, Rico and Gayley, Kenneth G. and Hamann, Wolf-Rainer and Huenemoerder, David P. and Oskinova, Lida and Pollock, Andy M. T. and McFall, Michael}, title = {THE XMM-NEWTON/EPIC X-RAY LIGHT CURVE ANALYSIS OF WR 6}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {775}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/775/1/29}, pages = {12}, year = {2013}, abstract = {We obtained four pointings of over 100 ks each of the well-studied Wolf-Rayet star WR 6 with the XMM-Newton satellite. With a first paper emphasizing the results of spectral analysis, this follow-up highlights the X-ray variability clearly detected in all four pointings. However, phased light curves fail to confirm obvious cyclic behavior on the well-established 3.766 day period widely found at longer wavelengths. The data are of such quality that we were able to conduct a search for event clustering in the arrival times of X-ray photons. However, we fail to detect any such clustering. One possibility is that X-rays are generated in a stationary shock structure. In this context we favor a corotating interaction region (CIR) and present a phenomenological model for X-rays from a CIR structure. We show that a CIR has the potential to account simultaneously for the X-ray variability and constraints provided by the spectral analysis. Ultimately, the viability of the CIR model will require both intermittent long-term X-ray monitoring of WR 6 and better physical models of CIR X-ray production at large radii in stellar winds.}, language = {en} } @article{HuenemoerderGayleyHamannetal.2015, author = {Huenemoerder, David P. and Gayley, K. G. and Hamann, Wolf-Rainer and Ignace, R. and Nichols, J. S. and Oskinova, Lida and Pollock, A. M. T. and Schulz, Norbert S. and Shenar, Tomer}, title = {Probing Wolf-Rayet winds: Chandra/HETG X-ray spectra of WR 6}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {815}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/815/1/29}, pages = {16}, year = {2015}, abstract = {With a deep Chandra/HETGS exposure of WR 6, we have resolved emission lines whose profiles show that the X-rays originate from a uniformly expanding spherical wind of high X-ray-continuum optical depth. The presence of strong helium-like forbidden lines places the source of X-ray emission at tens to hundreds of stellar radii from the photosphere. Variability was present in X-rays and simultaneous optical photometry, but neither were correlated with the known period of the system or with each other. An enhanced abundance of sodium revealed nuclear-processed material, a quantity related to the evolutionary state of the star. The characterization of the extent and nature of the hot plasma in WR 6 will help to pave the way to a more fundamental theoretical understanding of the winds and evolution of massive stars.}, language = {en} } @article{HuenemoerderGayleyHamannetal.2015, author = {Huenemoerder, D. and Gayley, K. and Hamann, Wolf-Rainer and Ignace, R. and Nichols, J. and Oskinova, Lida and Pollock, A. M. T. and Schulz, N.}, title = {High Resolution X-Ray Spectra of WR 6}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88236}, pages = {301 -- 304}, year = {2015}, abstract = {As WR 6 is a putatively single WN4 star, and is relatively bright (V = 6.9), it is an ideal case for studying the wind mechanisms in these extremely luminous stars. To obtain higher resolution spectra at higher energy (above 1 keV) than previously obtained with the XMM/Newton RGS, we have observed WR 6 with the Chandra High Energy Transmission Grating Spectrometer for 450 ks. We have resolved emission lines of S, Si, Mg, Ne, and Fe, which all show a "fin"-shaped prole, characteristic of a self-absorbed uniformly expanding shell. Steep blue edges gives robust maximal expansion velocities of about 2000 km/s, somewhat larger than the 1700km/s derived from UV lines. The He-like lines all indicate that X-ray emitting plasmas are far from the photosphere - even at the higher energies where opacity is lowest { as was also the case for the longer wavelength lines observed with XMM-Newton/RGS. Abundances determined from X-ray spectral modeling indicate enhancements consistent with nucleosynthesis. The star was also variable in X-rays and in simultaneous optical photometry obtained with Chandra aspect camera, but not coherently with the optically known period of 3.765 days.}, language = {en} } @article{HubrigScholzHamannetal.2016, author = {Hubrig, Swetlana and Scholz, Kathleen and Hamann, Wolf-Rainer and Schoeller, M. and Ignace, R. and Ilyin, Ilya and Gayley, K. G. and Oskinova, Lida}, title = {Searching for a magnetic field in Wolf-Rayet stars using FORS 2 spectropolarimetry}, series = {Monthly notices of the Royal Astronomical Society}, volume = {458}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw558}, pages = {3381 -- 3393}, year = {2016}, abstract = {To investigate if magnetic fields are present in Wolf-Rayet stars, we selected a few stars in the Galaxy and one in the Large Magellanic Cloud (LMC). We acquired low-resolution spectropolarimetric observations with the European Southern Observatory FORS 2 (FOcal Reducer low dispersion Spectrograph) instrument during two different observing runs. During the first run in visitor mode, we observed the LMC Wolf-Rayet star BAT99 7 and the stars WR 6, WR 7, WR 18, and WR 23 in our Galaxy. The second run in service mode was focused on monitoring the star WR 6. Linear polarization was recorded immediately after the observations of circular polarization. During our visitor observing run, the magnetic field for the cyclically variable star WR 6 was measured at a significance level of 3.3 sigma (< B-z > = 258 +/- 78 G). Among the other targets, the highest value for the longitudinal magnetic field, < B-z > = 327 +/- 141 G, was measured in the LMC star BAT99 7. Spectropolarimetric monitoring of the star WR 6 revealed a sinusoidal nature of the < B-z > variations with the known rotation period of 3.77 d, significantly adding to the confidence in the detection. The presence of the rotation-modulated magnetic variability is also indicated in our frequency periodogram. The reported field magnitude suffers from significant systematic uncertainties at the factor of 2 level, in addition to the quoted statistical uncertainties, owing to the theoretical approach used to characterize it. Linear polarization measurements showed no line effect in the stars, apart from WR 6. BAT99 7, WR 7, and WR 23 do not show variability of the linear polarization over two nights.}, language = {en} } @phdthesis{HamannPenaGraefeneretal.2003, author = {Hamann, Wolf-Rainer and Pena, M. and Gr{\"a}fener, G{\"o}tz and Ruiz, M. T.}, title = {The central star of the planetary nebula N66 in the Large Magellanic Cloud : a detailed analysis of its dramatic evolution 1983 - 2000}, issn = {0004-6361}, year = {2003}, language = {en} } @inproceedings{HamannOskinovaFeldmeier2007, author = {Hamann, Wolf-Rainer and Oskinova, Lida and Feldmeier, Achim}, title = {Spectrum formation in clumpy stellar winds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17838}, year = {2007}, abstract = {Modeling expanding atmospheres is a difficult task because of the extreme non-LTE situation, the need to account for complex model atoms, especially for the iron-group elements with their millions of lines, and because of the supersonic expansion. Adequate codes have been developed e.g. by Hillier (CMFGEN), the Munich group (Puls, Pauldrach), and in Potsdam (PoWR code, Hamann et al.). While early work was based on the assumption of a smooth and homogeneous spherical stellar wind, the need to account for clumping became obvious about ten years ago. A relatively simple first-order clumping correction was readily implemented into the model codes. However, its simplifying assumptions are severe. Most importantly, the clumps are taken to be optically thin at all frequencies ("microclumping"). We discuss the consequences of this approximation and describe an approach to account for optically thick clumps ("macroclumping"). First results demonstrate that macroclumping can generally reduce the strength of spectral features, depending on their optical thickness. The recently reported discrepancy between the Hα diagnostic and the Pv resonance lines in O star spectra can be resolved without decreasing the mass-loss rates, when macroclumping is taken into account.}, language = {en} } @article{HamannKoesterkeWesselowski1995, author = {Hamann, Wolf-Rainer and Koesterke, Lars and Wesselowski, U.}, title = {Spectral analyses of the galactic Wolf-Rayet stars : hydrogen-helium abundances and improved stellar parameters for the WN class}, year = {1995}, language = {en} } @article{HamannKoesterkeWesselowski1995, author = {Hamann, Wolf-Rainer and Koesterke, Lars and Wesselowski, U.}, title = {Spectral atlas of galactic Wolf-Rayet stars (WN-sequence)}, year = {1995}, language = {en} } @article{HamannKoesterkeGraefener2002, author = {Hamann, Wolf-Rainer and Koesterke, Lars and Gr{\"a}fener, G{\"o}tz}, title = {Spectral analyses of Wolf-Rayet winds}, year = {2002}, abstract = {The analysis of Wolf-Rayet spectra requires adequate model atmospheres which treat the non-LTE radiation transfer in a spherically expanding medium. Present state-of-the-art calculations account for complex model atoms with, typically, a few hundred energy levels and a few thousand spectral lines of He and CNO elements. In the most recent version of our model code, blanketing by millions of lines from iron-group elements is also included. These models have been widely applied for the spectral analysis of WN stars in the Galaxy and LMC. WN spectra can be well reproduced in most cases. WC stars have not yet been analyzed comprehensively, because the agreement with observations becomes satisfactory only when line-blanketed models are applied. The introduction of inhomogeneities (clumping), although treated in a rough approximation, has significantly improved the fit between synthetic and observed spectra with respect to the electron-scattering wings of strong lines. The mass-loss rates obtained from spectral analyses become smaller by a factor 2-3 if clumping is accounted for. A pre-specified velocity law is adopted for our models, but the radiation pressure can be evaluated from our detailed calculation and can be compared a posteriori with the required wind acceleration. Surprisingly we find that the line-blanketed models are not far from being hydrodynamically consistent, thus indicating that radiation pressure is probably the main driving force for the mass-loss from WR stars.}, language = {en} } @article{HamannKoesterkeGraefener2000, author = {Hamann, Wolf-Rainer and Koesterke, Lars and Gr{\"a}fener, G{\"o}tz}, title = {Non-LTE models of WR winds}, year = {2000}, language = {en} } @article{HamannKoesterkeGraefener1999, author = {Hamann, Wolf-Rainer and Koesterke, Lars and Gr{\"a}fener, G{\"o}tz}, title = {Modelling and quantitative analyses of WR spectra : recent progress and results}, year = {1999}, language = {en} } @article{HamannKoesterke1998, author = {Hamann, Wolf-Rainer and Koesterke, Lars}, title = {Spectrum formation in clumped stellar winds : consequences for the analyses of Wolf-Rayet spectra}, year = {1998}, language = {en} } @article{HamannKoesterke1998, author = {Hamann, Wolf-Rainer and Koesterke, Lars}, title = {The nitrogen spectra of Wolf-Rayet stars}, year = {1998}, language = {en} } @article{HamannKoesterke1996, author = {Hamann, Wolf-Rainer and Koesterke, Lars}, title = {Spectral analyses with the standard model : Part II: Wolf-Rayet Stars}, year = {1996}, language = {en} } @article{HamannKoesterke2000, author = {Hamann, Wolf-Rainer and Koesterke, Lars}, title = {WN stars in the LMC : parameters and atmospheric abundances}, year = {2000}, abstract = {The spectra of 18 WN stars in the Large Magellanic Cloud (LMC) are quantitatively analyzed by means of "standard" Wolf-Rayet model atmospheres, using the helium and nitrogen lines as well as the spectral energy distribution. The hydrogen abundance is also determined. Carbon is included for a subset of 4 stars. The studied sample covers all spectral subtypes (WN2 ... WN9) and also includes one WN/WC transition object. The luminosities of the program stars span a wide range ( L/Lsun = 5.0 ... 6.5). Due to the given LMC membership, these results are free from uncertainties inferred from the distance. 50 \% of the studied stars (both, late and early WN subtypes) have rather low luminosity (L/Lsun < 5.5). This puts tough constraints on their evolutionary formation. If coming from single stars, it provides evidence for strong internal mixing processes. The empirical mass-loss rates are scaled down by a factor of about two due to the impact of clumping, compared to previous studies adopting homogeneous winds. There is no obvious strong correlation between the mass-loss rates and other parameters like luminosity, temperature and composition. The stellar parameters for the present LMC sample are not systematically different from those of the Galactic WN stars studied previously with the same techniques, in contrast to the expected metallicity effects.}, language = {en} } @article{HamannKoesterke2000, author = {Hamann, Wolf-Rainer and Koesterke, Lars}, title = {WM stars in the LMC : parameters and atmospheric abundances}, year = {2000}, language = {en} } @article{HamannKoesterke1999, author = {Hamann, Wolf-Rainer and Koesterke, Lars}, title = {Spectral analyses of Wolf-Rayet stars : the impact of clumping}, year = {1999}, language = {en} } @article{HamannJeffreyLeuenhagen1996, author = {Hamann, Wolf-Rainer and Jeffrey, C. S. and Leuenhagen, U.}, title = {Spectral analyses of late type central stars of planetary nebulae}, year = {1996}, language = {en} } @article{HamannHeberJeffrey1996, author = {Hamann, Wolf-Rainer and Heber, Ulrich and Jeffrey, C. S.}, title = {Wolf-Rayet stars of high and low mass}, year = {1996}, language = {en} } @article{HamannGraefenerKoesterke2003, author = {Hamann, Wolf-Rainer and Gr{\"a}fener, G{\"o}tz and Koesterke, Lars}, title = {Wolf-Rayet star parameters from spectral analyses}, isbn = {1-58381-133-8}, year = {2003}, abstract = {The Potsdam Non-LTE code for expanding atmospheres, which accounts for clumping and iron-line blanketing, has been used to establish a grid of model atmospheres for WC stars. A parameter degeneracy is discovered for early-type WC models which do not depend on the "stellar temperature". 15 galactic WC4-7 stars are analyzed, showing a very uniform carbon abundance (He:C=55:40) with only few exceptions.}, language = {en} } @article{HamannGraefenerKoesterke2003, author = {Hamann, Wolf-Rainer and Gr{\"a}fener, G{\"o}tz and Koesterke, Lars}, title = {WR Central Stars}, isbn = {1-583-81148-6}, year = {2003}, abstract = {Wolf-Rayet type central stars have been analyzed with adequate model atmospheres. The obtained stellar parameters and chemical abundances allow for a discussion of their evolutionary origin.}, language = {en} } @article{HamannGraefener2004, author = {Hamann, Wolf-Rainer and Gr{\"a}fener, G{\"o}tz}, title = {Grids of model spectra for WN stars, ready for use}, issn = {0004-6361}, year = {2004}, abstract = {Grids of model atmospheres for Wolf-Rayet stars of the nitrogen sequence (WN subclass) are presented. The calculations account for the expansion of the atmosphere, non-LTE, clumping, and line blanketing from iron-group elements. Observed spectra of single Galactic WN stars can in general be reproduced consistently by this generation of models. The parameters of the presented model grids cover the whole relevant range of stellar temperatures and mass-loss rates. We point out that there is a degeneracy of parameters for very thick winds; their spectra tend to depend only on the ratio \$L/{dot M}^{4/3}\$. Abundances of the calculated grids are for Galactic WN stars without hydrogen and with 20\% hydrogen (by mass), respectively. Model spectra and fluxes are available via internet (http://www.astro.physik.uni- potsdam.de/PoWR.html).}, language = {en} } @article{HamannGraefener2004, author = {Hamann, Wolf-Rainer and Gr{\"a}fener, G{\"o}tz}, title = {A temperature correction method for expanding atmospheres}, year = {2004}, language = {en} }