@phdthesis{Zapata2019, author = {Zapata, Sebastian Henao}, title = {Paleozoic to Pliocene evolution of the Andean retroarc between 26 and 28°S: interactions between tectonics, climate, and upper plate architecture}, doi = {10.25932/publishup-43903}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439036}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2019}, abstract = {Interactions and feedbacks between tectonics, climate, and upper plate architecture control basin geometry, relief, and depositional systems. The Andes is part of a longlived continental margin characterized by multiple tectonic cycles which have strongly modified the Andean upper plate architecture. In the Andean retroarc, spatiotemporal variations in the structure of the upper plate and tectonic regimes have resulted in marked along-strike variations in basin geometry, stratigraphy, deformational style, and mountain belt morphology. These along-strike variations include high-elevation plateaus (Altiplano and Puna) associated with a thin-skin fold-and-thrust-belt and thick-skin deformation in broken foreland basins such as the Santa Barbara system and the Sierras Pampeanas. At the confluence of the Puna Plateau, the Santa Barbara system and the Sierras Pampeanas, major along-strike changes in upper plate architecture, mountain belt morphology, basement exhumation, and deformation style can be recognized. I have used a source to sink approach to unravel the spatiotemporal tectonic evolution of the Andean retroarc between 26 and 28°S. I obtained a large low-temperature thermochronology data set from basement units which includes apatite fission track, apatite U-Th-Sm/He, and zircon U-Th/He (ZHe) cooling ages. Stratigraphic descriptions of Miocene units were temporally constrained by U-Pb LA-ICP-MS zircon ages from interbedded pyroclastic material. Modeled ZHe ages suggest that the basement of the study area was exhumed during the Famatinian orogeny (550-450 Ma), followed by a period of relative tectonic quiescence during the Paleozoic and the Triassic. The basement experienced horst exhumation during the Cretaceous development of the Salta rift. After initial exhumation, deposition of thick Cretaceous syn-rift strata caused reheating of several basement blocks within the Santa Barbara system. During the Eocene-Oligocene, the Andean compressional setting was responsible for the exhumation of several disconnected basement blocks. These exhumed blocks were separated by areas of low relief, in which humid climate and low erosion rates facilitated the development of etchplains on the crystalline basement. The exhumed basement blocks formed an Eocene to Oligocene broken foreland basin in the back-bulge depozone of the Andean foreland. During the Early Miocene, foreland basin strata filled up the preexisting Paleogene topography. The basement blocks in lower relief positions were reheated; associated geothermal gradients were higher than 25°C/km. Miocene volcanism was responsible for lateral variations on the amount of reheating along the Campo-Arenal basin. Around 12 Ma, a new deformational phase modified the drainage network and fragmented the lacustrine system. As deformation and rock uplift continued, the easily eroded sedimentary cover was efficiently removed and reworked by an ephemeral fluvial system, preventing the development of significant relief. After ~6 Ma, the low erodibility of the basement blocks which began to be exposed caused relief increase, leading to the development of stable fluvial systems. Progressive relief development modified atmospheric circulation, creating a rainfall gradient. After 3 Ma, orographic rainfall and high relief lead to the development of proximal fluvial-gravitational depositional systems in the surrounding basins.}, language = {en} } @phdthesis{Yan2019, author = {Yan, Runyu}, title = {Nitrogen-doped and porous carbons towards new energy storage mechanisms for supercapacitors with high energy density}, doi = {10.25932/publishup-43141}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431413}, school = {Universit{\"a}t Potsdam}, pages = {152}, year = {2019}, abstract = {Supercapacitors are electrochemical energy storage devices with rapid charge/discharge rate and long cycle life. Their biggest challenge is the inferior energy density compared to other electrochemical energy storage devices such as batteries. Being the most widely spread type of supercapacitors, electrochemical double-layer capacitors (EDLCs) store energy by electrosorption of electrolyte ions on the surface of charged electrodes. As a more recent development, Na-ion capacitors (NICs) are expected to be a more promising tactic to tackle the inferior energy density due to their higher-capacity electrodes and larger operating voltage. The charges are simultaneously stored by ion adsorption on the capacitive-type cathode surface and via faradic process in the battery-type anode, respectively. Porous carbon electrodes are of great importance in these devices, but the paramount problems are the facile synthetic routes for high-performance carbons and the lack of fundamental understanding of the energy storage mechanisms. Therefore, the aim of the present dissertation is to develop novel synthetic methods for (nitrogen-doped) porous carbon materials with superior performance, and to reveal a deeper understanding energy storage mechanisms of EDLCs and NICs. The first part introduces a novel synthetic method towards hierarchical ordered meso-microporous carbon electrode materials for EDLCs. The large amount of micropores and highly ordered mesopores endow abundant sites for charge storage and efficient electrolyte transport, respectively, giving rise to superior EDLC performance in different electrolytes. More importantly, the controversial energy storage mechanism of EDLCs employing ionic liquid (IL) electrolytes is investigated by employing a series of porous model carbons as electrodes. The results not only allow to conclude on the relations between the porosity and ion transport dynamics, but also deliver deeper insights into the energy storage mechanism of IL-based EDLCs which is different from the one usually dominating in solvent-based electrolytes leading to compression double-layers. The other part focuses on anodes of NICs, where novel synthesis of nitrogen-rich porous carbon electrodes and their sodium storage mechanism are investigated. Free-standing fibrous nitrogen-doped carbon materials are synthesized by electrospinning using the nitrogen-rich monomer (hexaazatriphenylene-hexacarbonitrile, C18N12) as the precursor followed by condensation at high temperature. These fibers provide superior capacity and desirable charge/discharge rate for sodium storage. This work also allows insights into the sodium storage mechanism in nitrogen-doped carbons. Based on this mechanism, further optimization is done by designing a composite material composed of nitrogen-rich carbon nanoparticles embedded in conductive carbon matrix for a better charge/discharge rate. The energy density of the assembled NICs significantly prevails that of common EDLCs while maintaining the high power density and long cycle life.}, language = {en} } @phdthesis{Wozny2019, author = {Wozny, Florian}, title = {Three empirical essays in health economics}, doi = {10.25932/publishup-46991}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469910}, school = {Universit{\"a}t Potsdam}, pages = {200}, year = {2019}, abstract = {Modern health care systems are characterized by pronounced prevention and cost-optimized treatments. This dissertation offers novel empirical evidence on how useful such measures can be. The first chapter analyzes how radiation, a main pollutant in health care, can negatively affect cognitive health. The second chapter focuses on the effect of Low Emission Zones on public heath, as air quality is the major external source of health problems. Both chapters point out potentials for preventive measures. Finally, chapter three studies how changes in treatment prices affect the reallocation of hospital resources. In the following, I briefly summarize each chapter and discuss implications for health care systems as well as other policy areas. Based on the National Educational Panel Study that is linked to data on radiation, chapter one shows that radiation can have negative long-term effects on cognitive skills, even at subclinical doses. Exploiting arguably exogenous variation in soil contamination in Germany due to the Chernobyl disaster in 1986, the findings show that people exposed to higher radiation perform significantly worse in cognitive tests 25 years later. Identification is ensured by abnormal rainfall within a critical period of ten days. The results show that the effect is stronger among older cohorts than younger cohorts, which is consistent with radiation accelerating cognitive decline as people get older. On average, a one-standarddeviation increase in the initial level of CS137 (around 30 chest x-rays) is associated with a decrease in the cognitive skills by 4.1 percent of a standard deviation (around 0.05 school years). Chapter one shows that sub-clinical levels of radiation can have negative consequences even after early childhood. This is of particular importance because most of the literature focuses on exposure very early in life, often during pregnancy. However, population exposed after birth is over 100 times larger. These results point to substantial external human capital costs of radiation which can be reduced by choices of medical procedures. There is a large potential for reductions because about one-third of all CT scans are assumed to be not medically justified (Brenner and Hall, 2007). If people receive unnecessary CT scans because of economic incentives, this chapter points to additional external costs of health care policies. Furthermore, the results can inform the cost-benefit trade-off for medically indicated procedures. Chapter two provides evidence about the effectiveness of Low Emission Zones. Low Emission Zones are typically justified by improvements in population health. However, there is little evidence about the potential health benefits from policy interventions aiming at improving air quality in inner-cities. The chapter ask how the coverage of Low Emission Zones air pollution and hospitalization, by exploiting variation in the roll out of Low Emission Zones in Germany. It combines information on the geographic coverage of Low Emission Zones with rich panel data on the universe of German hospitals over the period from 2006 to 2016 with precise information on hospital locations and the annual frequency of detailed diagnoses. In order to establish that our estimates of Low Emission Zones' health impacts can indeed be attributed to improvements in local air quality, we use data from Germany's official air pollution monitoring system and assign monitor locations to Low Emission Zones and test whether measures of air pollution are affected by the coverage of a Low Emission Zone. Results in chapter two confirm former results showing that the introduction of Low Emission Zones improved air quality significantly by reducing NO2 and PM10 concentrations. Furthermore, the chapter shows that hospitals which catchment areas are covered by a Low Emission Zone, diagnose significantly less air pollution related diseases, in particular by reducing the incidents of chronic diseases of the circulatory and the respiratory system. The effect is stronger before 2012, which is consistent with a general improvement in the vehicle fleet's emission standards. Depending on the disease, a one-standard-deviation increase in the coverage of a hospitals catchment area covered by a Low Emission Zone reduces the yearly number of diagnoses up to 5 percent. These findings have strong implications for policy makers. In 2015, overall costs for health care in Germany were around 340 billion euros, of which 46 billion euros for diseases of the circulatory system, making it the most expensive type of disease caused by 2.9 million cases (Statistisches Bundesamt, 2017b). Hence, reductions in the incidence of diseases of the circulatory system may directly reduce society's health care costs. Whereas chapter one and two study the demand-side in health care markets and thus preventive potential, chapter three analyzes the supply-side. By exploiting the same hospital panel data set as in chapter two, chapter three studies the effect of treatment price shocks on the reallocation of hospital resources in Germany. Starting in 2005, the implementation of the German-DRG-System led to general idiosyncratic treatment price shocks for individual hospitals. Thus far there is little evidence of the impact of general price shocks on the reallocation of hospital resources. Additionally, I add to the exiting literature by showing that price shocks can have persistent effects on hospital resources even when these shocks vanish. However, simple OLS regressions would underestimate the true effect, due to endogenous treatment price shocks. I implement a novel instrument variable strategy that exploits the exogenous variation in the number of days of snow in hospital catchment areas. A peculiarity of the reform allowed variation in days of snow to have a persistent impact on treatment prices. I find that treatment price increases lead to increases in input factors such as nursing staff, physicians and the range of treatments offered but to decreases in the treatment volume. This indicates supplier-induced demand. Furthermore, the probability of hospital mergers and privatization decreases. Structural differences in pre-treatment characteristics between hospitals enhance these effects. For instance, private and larger hospitals are more affected. IV estimates reveal that OLS results are biased towards zero in almost all dimensions because structural hospital differences are correlated with the reallocation of hospital resources. These results are important for several reasons. The G-DRG-Reform led to a persistent polarization of hospital resources, as some hospitals were exposed to treatment price increases, while others experienced reductions. If hospitals increase the treatment volume as a response to price reductions by offering unnecessary therapies, it has a negative impact on population wellbeing and public spending. However, results show a decrease in the range of treatments if prices decrease. Hospitals might specialize more, thus attracting more patients. From a policy perspective it is important to evaluate if such changes in the range of treatments jeopardize an adequate nationwide provision of treatments. Furthermore, the results show a decrease in the number of nurses and physicians if prices decrease. This could partly explain the nursing crisis in German hospitals. However, since hospitals specialize more they might be able to realize efficiency gains which justify reductions in input factors without loses in quality. Further research is necessary to provide evidence for the impact of the G-DRG-Reform on health care quality. Another important aspect are changes in the organizational structure. Many public hospitals have been privatized or merged. The findings show that this is at least partly driven by the G-DRG-Reform. This can again lead to a lack in services offered in some regions if merged hospitals specialize more or if hospitals are taken over by ecclesiastical organizations which do not provide all treatments due to moral conviction. Overall, this dissertation reveals large potential for preventive health care measures and helps to explain reallocation processes in the hospital sector if treatment prices change. Furthermore, its findings have potentially relevant implications for other areas of public policy. Chapter one identifies an effect of low dose radiation on cognitive health. As mankind is searching for new energy sources, nuclear power is becoming popular again. However, results of chapter one point to substantial costs of nuclear energy which have not been accounted yet. Chapter two finds strong evidence that air quality improvements by Low Emission Zones translate into health improvements, even at relatively low levels of air pollution. These findings may, for instance, be of relevance to design further policies targeted at air pollution such as diesel bans. As pointed out in chapter three, the implementation of DRG-Systems may have unintended side-effects on the reallocation of hospital resources. This may also apply to other providers in the health care sector such as resident doctors.}, language = {en} } @phdthesis{Wolf2019, author = {Wolf, Mathias Johannes}, title = {The role of partial melting on trace element and isotope systematics of granitic melts}, doi = {10.25932/publishup-42370}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423702}, school = {Universit{\"a}t Potsdam}, pages = {iv, 129}, year = {2019}, abstract = {Partial melting is a first order process for the chemical differentiation of the crust (Vielzeuf et al., 1990). Redistribution of chemical elements during melt generation crucially influences the composition of the lower and upper crust and provides a mechanism to concentrate and transport chemical elements that may also be of economic interest. Understanding of the diverse processes and their controlling factors is therefore not only of scientific interest but also of high economic importance to cover the demand for rare metals. The redistribution of major and trace elements during partial melting represents a central step for the understanding how granite-bound mineralization develops (Hedenquist and Lowenstern, 1994). The partial melt generation and mobilization of ore elements (e.g. Sn, W, Nb, Ta) into the melt depends on the composition of the sedimentary source and melting conditions. Distinct source rocks have different compositions reflecting their deposition and alteration histories. This specific chemical "memory" results in different mineral assemblages and melting reactions for different protolith compositions during prograde metamorphism (Brown and Fyfe, 1970; Thompson, 1982; Vielzeuf and Holloway, 1988). These factors do not only exert an important influence on the distribution of chemical elements during melt generation, they also influence the volume of melt that is produced, extraction of the melt from its source, and its ascent through the crust (Le Breton and Thompson, 1988). On a larger scale, protolith distribution and chemical alteration (weathering), prograde metamorphism with partial melting, melt extraction, and granite emplacement are ultimately depending on a (plate-)tectonic control (Romer and Kroner, 2016). Comprehension of the individual stages and their interaction is crucial in understanding how granite-related mineralization forms, thereby allowing estimation of the mineralization potential of certain areas. Partial melting also influences the isotope systematics of melt and restite. Radiogenic and stable isotopes of magmatic rocks are commonly used to trace back the source of intrusions or to quantify mixing of magmas from different sources with distinct isotopic signatures (DePaolo and Wasserburg, 1979; Lesher, 1990; Chappell, 1996). These applications are based on the fundamental requirement that the isotopic signature in the melt reflects that of the bulk source from which it is derived. Different minerals in a protolith may have isotopic compositions of radiogenic isotopes that deviate from their whole rock signature (Ayres and Harris, 1997; Knesel and Davidson, 2002). In particular, old minerals with a distinct parent-to-daughter (P/D) ratio are expected to have a specific radiogenic isotope signature. As the partial melting reaction only involves selective phases in a protolith, the isotopic signature of the melt reflects that of the minerals involved in the melting reaction and, therefore, should be different from the bulk source signature. Similar considerations hold true for stable isotopes.}, language = {en} } @phdthesis{Willig2019, author = {Willig, Lisa}, title = {Ultrafast magneto-optical studies of remagnetisation dynamics in transition metals}, doi = {10.25932/publishup-44194}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441942}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 113, XVII}, year = {2019}, abstract = {Ultrafast magnetisation dynamics have been investigated intensely for two decades. The recovery process after demagnetisation, however, was rarely studied experimentally and discussed in detail. The focus of this work lies on the investigation of the magnetisation on long timescales after laser excitation. It combines two ultrafast time resolved methods to study the relaxation of the magnetic and lattice system after excitation with a high fluence ultrashort laser pulse. The magnetic system is investigated by time resolved measurements of the magneto-optical Kerr effect. The experimental setup has been implemented in the scope of this work. The lattice dynamics were obtained with ultrafast X-ray diffraction. The combination of both techniques leads to a better understanding of the mechanisms involved in magnetisation recovery from a non-equilibrium condition. Three different groups of samples are investigated in this work: Thin Nickel layers capped with nonmagnetic materials, a continuous sample of the ordered L10 phase of Iron Platinum and a sample consisting of Iron Platinum nanoparticles embedded in a carbon matrix. The study of the remagnetisation reveals a general trend for all of the samples: The remagnetisation process can be described by two time dependences. A first exponential recovery that slows down with an increasing amount of energy absorbed in the system until an approximately linear time dependence is observed. This is followed by a second exponential recovery. In case of low fluence excitation, the first recovery is faster than the second. With increasing fluence the first recovery is slowed down and can be described as a linear function. If the pump-induced temperature increase in the sample is sufficiently high, a phase transition to a paramagnetic state is observed. In the remagnetisation process, the transition into the ferromagnetic state is characterised by a distinct transition between the linear and exponential recovery. From the combination of the transient lattice temperature Tp(t) obtained from ultrafast X-ray measurements and magnetisation M(t) gained from magneto-optical measurements we construct the transient magnetisation versus temperature relations M(Tp). If the lattice temperature remains below the Curie temperature the remagnetisation curve M(Tp) is linear and stays below the M(T) curve in equilibrium in the continuous transition metal layers. When the sample is heated above phase transition, the remagnetisation converges towards the static temperature dependence. For the granular Iron Platinum sample the M(Tp) curves for different fluences coincide, i.e. the remagnetisation follows a similar path irrespective of the initial laser-induced temperature jump.}, language = {en} } @phdthesis{Walczak2019, author = {Walczak, Ralf}, title = {Molecular design of nitrogen-doped nanoporous noble carbon materials for gas adsorption}, doi = {10.25932/publishup-43524}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435241}, school = {Universit{\"a}t Potsdam}, pages = {II, 155}, year = {2019}, abstract = {In den modernen Gesellschaften f{\"u}hrt ein stetig steigender Energiebedarf zu dem zunehmenden Verbrauch fossiler Brennstoffe wie Kohle, {\"O}l, und Gas. Die Verbrennung dieser kohlenstoffbasierten Brennstoffe f{\"u}hrt unweigerlich zur Freisetzung von Treibhausgasen, vor allem von CO2. Die CO2 Aufnahme unmittelbar bei den Verbrennungsanlagen oder direkt aus der Luft, zusammen mit Regulierung von CO2 produzierenden Energiesektoren (z.B. K{\"u}hlanlagen), k{\"o}nnen den CO2 Ausstoß reduzieren. Allerdings f{\"u}hren insbesondere bei der CO2 Aufnahme die geringen CO2 Konzentrationen und die Aufnahme konkurrierender Gase zu niedrigen CO2 Kapazit{\"a}ten und Selektivit{\"a}ten. Das Zusammenspiel der Gastmolek{\"u}le mit por{\"o}sen Materialien ist dabei essentiell. Por{\"o}se Kohlenstoffmaterialien besitzen attraktive Eigenschaften, unter anderem elektrische Leitf{\"a}higkeit, einstellbare Porosit{\"a}t, als auch chemische und thermische Stabilit{\"a}t. Allerdings f{\"u}hrt die zu geringe Polarisierbarkeit dieser Materialien zu einer geringen Affinit{\"a}t zu polaren Molek{\"u}len (z.B. CO2, H2O, oder NH3). Diese Affinit{\"a}t kann durch den Einbau von Stickstoff erh{\"o}ht werden. Solche Materialien sind oft „edler" als reine Kohlenstoffe, dies bedeutet, dass sie eher oxidierend wirken, als selbst oxidiert zu werden. Die Problematik besteht darin, einen hohen und gleichm{\"a}ßig verteilten Stickstoffgehalt in das Kohlenstoffger{\"u}st einzubauen. Die Zielsetzung dieser Dissertation ist die Erforschung neuer Synthesewege f{\"u}r stickstoffdotierte edle Kohlenstoffmaterialien und die Entwicklung eines grundlegenden Verst{\"a}ndnisses f{\"u}r deren Anwendung in Gasadsorption und elektrochemischer Energiespeicherung. Es wurde eine templatfreie Synthese f{\"u}r stickstoffreiche, edle, und mikropor{\"o}se Kohlenstoffmaterialien durch direkte Kondensation eines stickstoffreichen organischen Molek{\"u}ls als Vorl{\"a}ufer erarbeitet. Dadurch konnten Materialien mit hohen Adsorptionskapazit{\"a}ten f{\"u}r H2O und CO2 bei niedrigen Konzentrationen und moderate CO2/N2 Selektivit{\"a}ten erzielt werden. Um die CO2/N2 Selektivit{\"a}ten zu verbessern, wurden mittels der Einstellung des Kondensationsgrades die molekulare Struktur und Porosit{\"a}t der Kohlenstoffmaterialien kontrolliert. Diese Materialien besitzen die Eigenschaften eines molekularen Siebs f{\"u}r CO2 {\"u}ber N2, das zu herausragenden CO2/N2 Selektivit{\"a}ten f{\"u}hrt. Der ultrahydrophile Charakter der Porenoberfl{\"a}chen und die kleinen Mikroporen dieser Kohlenstoffmaterialien erm{\"o}glichen grundlegende Untersuchungen f{\"u}r die Wechselwirkungen mit Molek{\"u}len die polarer sind als CO2, n{\"a}mlich H2O und NH3. Eine weitere Reihe stickstoffdotierter Kohlenstoffmaterialien wurde durch Kondensation eines konjugierten mikropor{\"o}sen Polymers synthetisiert und deren strukturelle Besonderheiten als Anodenmaterial f{\"u}r die Natriumionen Batterie untersucht. Diese Dissertation leistet einen Beitrag zur Erforschung stickstoffdotierter Kohlenstoffmaterialien und deren Wechselwirkungen mit verschiedenen Gastmolek{\"u}len.}, language = {en} } @phdthesis{Vranic2019, author = {Vranic, Marija}, title = {3D Structure of the biomarker hepcidin-25 in its native state}, doi = {10.25932/publishup-45929}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459295}, school = {Universit{\"a}t Potsdam}, pages = {xii, 135}, year = {2019}, abstract = {Hepcidin-25 (Hep-25) plays a crucial role in the control of iron homeostasis. Since the dysfunction of the hepcidin pathway leads to multiple diseases as a result of iron imbalance, hepcidin represents a potential target for the diagnosis and treatment of disorders of iron metabolism. Despite intense research in the last decade targeted at developing a selective immunoassay for iron disorder diagnosis and treatment and better understanding the ferroportin-hepcidin interaction, questions remain. The key to resolving these underlying questions is acquiring exact knowledge of the 3D structure of native Hep-25. Since it was determined that the N-terminus, which is responsible for the bioactivity of Hep-25, contains a small Cu(II)-binding site known as the ATCUN motif, it was assumed that the Hep-25-Cu(II) complex is the native, bioactive form of the hepcidin. This structure has thus far not been elucidated in detail. Owing to the lack of structural information on metal-bound Hep-25, little is known about its possible biological role in iron metabolism. Therefore, this work is focused on structurally characterizing the metal-bound Hep-25 by NMR spectroscopy and molecular dynamics simulations. For the present work, a protocol was developed to prepare and purify properly folded Hep-25 in high quantities. In order to overcome the low solubility of Hep-25 at neutral pH, we introduced the C-terminal DEDEDE solubility tag. The metal binding was investigated through a series of NMR spectroscopic experiments to identify the most affected amino acids that mediate metal coordination. Based on the obtained NMR data, a structural calculation was performed in order to generate a model structure of the Hep-25-Ni(II) complex. The DEDEDE tag was excluded from the structural calculation due to a lack of NMR restraints. The dynamic nature and fast exchange of some of the amide protons with solvent reduced the overall number of NMR restraints needed for a high-quality structure. The NMR data revealed that the 20 Cterminal Hep-25 amino acids experienced no significant conformational changes, compared to published results, as a result of a pH change from pH 3 to pH 7 and metal binding. A 3D model of the Hep-25-Ni(II) complex was constructed from NMR data recorded for the hexapeptideNi(II) complex and Hep-25-DEDEDE-Ni(II) complex in combination with the fixed conformation of 19 C-terminal amino acids. The NMR data of the Hep-25-DEDEDE-Ni(II) complex indicates that the ATCUN motif moves independently from the rest of the structure. The 3D model structure of the metal-bound Hep-25 allows for future works to elucidate hepcidin's interaction with its receptor ferroportin and should serve as a starting point for the development of antibodies with improved selectivity.}, language = {en} } @phdthesis{vonKaphengst2019, author = {von Kaphengst, Dragana}, title = {Project's management quality in development cooperation}, doi = {10.25932/publishup-43099}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-430992}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 237}, year = {2019}, abstract = {In light of the debate on the consequences of competitive contracting out of traditionally public services, this research compares two mechanisms used to allocate funds in development cooperation—direct awarding and competitive contracting out—aiming to identify their potential advantages and disadvantages. The agency theory is applied within the framework of rational-choice institutionalism to study the institutional arrangements that surround two different money allocation mechanisms, identify the incentives they create for the behavior of individual actors in the field, and examine how these then transfer into measurable differences in managerial quality of development aid projects. In this work, project management quality is seen as an important determinant of the overall project success. For data-gathering purposes, the German development agency, the Gesellschaft f{\"u}r Internationale Zusammenarbeit (GIZ), is used due to its unique way of work. Whereas the majority of projects receive funds via direct-award mechanism, there is a commercial department, GIZ International Services (GIZ IS) that has to compete for project funds. The data concerning project management practices on the GIZ and GIZ IS projects was gathered via a web-based, self-administered survey of project team leaders. Principal component analysis was applied to reduce the dimensionality of the independent variable to total of five components of project management. Furthermore, multiple regression analysis identified the differences between the separate components on these two project types. Enriched by qualitative data gathered via interviews, this thesis offers insights into everyday managerial practices in development cooperation and identifies the advantages and disadvantages of the two allocation mechanisms. The thesis first reiterates the responsibility of donors and implementers for overall aid effectiveness. It shows that the mechanism of competitive contracting out leads to better oversight and control of implementers, fosters deeper cooperation between the implementers and beneficiaries, and has a potential to strengthen ownership of recipient countries. On the other hand, it shows that the evaluation quality does not tremendously benefit from the competitive allocation mechanism and that the quality of the component knowledge management and learning is better when direct-award mechanisms are used. This raises questions about the lacking possibilities of actors in the field to learn about past mistakes and incorporate the finings into the future interventions, which is one of the fundamental issues of aid effectiveness. Finally, the findings show immense deficiencies in regard to oversight and control of individual projects in German development cooperation.}, language = {en} } @phdthesis{Veh2019, author = {Veh, Georg}, title = {Outburst floods from moraine-dammed lakes in the Himalayas}, doi = {10.25932/publishup-43607}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436071}, school = {Universit{\"a}t Potsdam}, pages = {124}, year = {2019}, abstract = {The Himalayas are a region that is most dependent, but also frequently prone to hazards from changing meltwater resources. This mountain belt hosts the highest mountain peaks on earth, has the largest reserve of ice outside the polar regions, and is home to a rapidly growing population in recent decades. One source of hazard has attracted scientific research in particular in the past two decades: glacial lake outburst floods (GLOFs) occurred rarely, but mostly with fatal and catastrophic consequences for downstream communities and infrastructure. Such GLOFs can suddenly release several million cubic meters of water from naturally impounded meltwater lakes. Glacial lakes have grown in number and size by ongoing glacial mass losses in the Himalayas. Theory holds that enhanced meltwater production may increase GLOF frequency, but has never been tested so far. The key challenge to test this notion are the high altitudes of >4000 m, at which lakes occur, making field work impractical. Moreover, flood waves can attenuate rapidly in mountain channels downstream, so that many GLOFs have likely gone unnoticed in past decades. Our knowledge on GLOFs is hence likely biased towards larger, destructive cases, which challenges a detailed quantification of their frequency and their response to atmospheric warming. Robustly quantifying the magnitude and frequency of GLOFs is essential for risk assessment and management along mountain rivers, not least to implement their return periods in building design codes. Motivated by this limited knowledge of GLOF frequency and hazard, I developed an algorithm that efficiently detects GLOFs from satellite images. In essence, this algorithm classifies land cover in 30 years (~1988-2017) of continuously recorded Landsat images over the Himalayas, and calculates likelihoods for rapidly shrinking water bodies in the stack of land cover images. I visually assessed such detected tell-tale sites for sediment fans in the river channel downstream, a second key diagnostic of GLOFs. Rigorous tests and validation with known cases from roughly 10\% of the Himalayas suggested that this algorithm is robust against frequent image noise, and hence capable to identify previously unknown GLOFs. Extending the search radius to the entire Himalayan mountain range revealed some 22 newly detected GLOFs. I thus more than doubled the existing GLOF count from 16 previously known cases since 1988, and found a dominant cluster of GLOFs in the Central and Eastern Himalayas (Bhutan and Eastern Nepal), compared to the rarer affected ranges in the North. Yet, the total of 38 GLOFs showed no change in the annual frequency, so that the activity of GLOFs per unit glacial lake area has decreased in the past 30 years. I discussed possible drivers for this finding, but left a further attribution to distinct GLOF-triggering mechanisms open to future research. This updated GLOF frequency was the key input for assessing GLOF hazard for the entire Himalayan mountain belt and several subregions. I used standard definitions in flood hydrology, describing hazard as the annual exceedance probability of a given flood peak discharge [m3 s-1] or larger at the breach location. I coupled the empirical frequency of GLOFs per region to simulations of physically plausible peak discharges from all existing ~5,000 lakes in the Himalayas. Using an extreme-value model, I could hence calculate flood return periods. I found that the contemporary 100-year GLOF discharge (the flood level that is reached or exceeded on average once in 100 years) is 20,600+2,200/-2,300 m3 s-1 for the entire Himalayas. Given the spatial and temporal distribution of historic GLOFs, contemporary GLOF hazard is highest in the Eastern Himalayas, and lower for regions with rarer GLOF abundance. I also calculated GLOF hazard for some 9,500 overdeepenings, which could expose and fill with water, if all Himalayan glaciers have melted eventually. Assuming that the current GLOF rate remains unchanged, the 100-year GLOF discharge could double (41,700+5,500/-4,700 m3 s-1), while the regional GLOF hazard may increase largest in the Karakoram. To conclude, these three stages-from GLOF detection, to analysing their frequency and estimating regional GLOF hazard-provide a framework for modern GLOF hazard assessment. Given the rapidly growing population, infrastructure, and hydropower projects in the Himalayas, this thesis assists in quantifying the purely climate-driven contribution to hazard and risk from GLOFs.}, language = {en} } @phdthesis{Trautwein2019, author = {Trautwein, Jutta}, title = {The Mental lexicon in acquisition}, doi = {10.25932/publishup-43431}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434314}, school = {Universit{\"a}t Potsdam}, pages = {IV, 177}, year = {2019}, abstract = {The individual's mental lexicon comprises all known words as well related infor-mation on semantics, orthography and phonology. Moreover, entries connect due to simi-larities in these language domains building a large network structure. The access to lexical information is crucial for processing of words and sentences. Thus, a lack of information in-hibits the retrieval and can cause language processing difficulties. Hence, the composition of the mental lexicon is essential for language skills and its assessment is a central topic of lin-guistic and educational research. In early childhood, measurement of the mental lexicon is uncomplicated, for example through parental questionnaires or the analysis of speech samples. However, with growing content the measurement becomes more challenging: With more and more words in the mental lexicon, the inclusion of all possible known words into a test or questionnaire be-comes impossible. That is why there is a lack of methods to assess the mental lexicon for school children and adults. For the same reason, there are only few findings on the courses of lexical development during school years as well as its specific effect on other language skills. This dissertation is supposed to close this gap by pursuing two major goals: First, I wanted to develop a method to assess lexical features, namely lexicon size and lexical struc-ture, for children of different age groups. Second, I aimed to describe the results of this method in terms of lexical development of size and structure. Findings were intended to help understanding mechanisms of lexical acquisition and inform theories on vocabulary growth. The approach is based on the dictionary method where a sample of words out of a dictionary is tested and results are projected on the whole dictionary to determine an indi-vidual's lexicon size. In the present study, the childLex corpus, a written language corpus for children in German, served as the basis for lexicon size estimation. The corpus is assumed to comprise all words children attending primary school could know. Testing a sample of words out of the corpus enables projection of the results on the whole corpus. For this purpose, a vocabulary test based on the corpus was developed. Afterwards, test performance of virtual participants was simulated by drawing different lexicon sizes from the corpus and comparing whether the test items were included in the lexicon or not. This allowed determination of the relation between test performance and total lexicon size and thus could be transferred to a sample of real participants. Besides lexicon size, lexical content could be approximated with this approach and analyzed in terms of lexical structure. To pursue the presented aims and establish the sampling method, I conducted three consecutive studies. Study 1 includes the development of a vocabulary test based on the childLex corpus. The testing was based on the yes/no format and included three versions for different age groups. The validation grounded on the Rasch Model shows that it is a valid instrument to measure vocabulary for primary school children in German. In Study 2, I estab-lished the method to estimate lexicon sizes and present results on lexical development dur-ing primary school. Plausible results demonstrate that lexical growth follows a quadratic function starting with about 6,000 words at the beginning of school and about 73,000 words on average for young adults. Moreover, the study revealed large interindividual differences. Study 3 focused on the analysis of network structures and their development in the mental lexicon due to orthographic similarities. It demonstrates that networks possess small-word characteristics and decrease in interconnectivity with age. Taken together, this dissertation provides an innovative approach for the assessment and description of the development of the mental lexicon from primary school onwards. The studies determine recent results on lexical acquisition in different age groups that were miss-ing before. They impressively show the importance of this period and display the existence of extensive interindividual differences in lexical development. One central aim of future research needs to address the causes and prevention of these differences. In addition, the application of the method for further research (e.g. the adaptation for other target groups) and teaching purposes (e.g. adaptation of texts for different target groups) appears to be promising.}, language = {en} } @phdthesis{Thiede2019, author = {Thiede, Tobias}, title = {A multiscale analysis of additively manufactured lattice structures}, doi = {10.25932/publishup-47041}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-470418}, school = {Universit{\"a}t Potsdam}, pages = {xi, 97, LIII}, year = {2019}, abstract = {Additive Manufacturing (AM) in terms of laser powder-bed fusion (L-PBF) offers new prospects regarding the design of parts and enables therefore the production of lattice structures. These lattice structures shall be implemented in various industrial applications (e.g. gas turbines) for reasons of material savings or cooling channels. However, internal defects, residual stress, and structural deviations from the nominal geometry are unavoidable. In this work, the structural integrity of lattice structures manufactured by means of L-PBF was non-destructively investigated on a multiscale approach. A workflow for quantitative 3D powder analysis in terms of particle size, particle shape, particle porosity, inter-particle distance and packing density was established. Synchrotron computed tomography (CT) was used to correlate the packing density with the particle size and particle shape. It was also observed that at least about 50\% of the powder porosity was released during production of the struts. Struts are the component of lattice structures and were investigated by means of laboratory CT. The focus was on the influence of the build angle on part porosity and surface quality. The surface topography analysis was advanced by the quantitative characterisation of re-entrant surface features. This characterisation was compared with conventional surface parameters showing their complementary information, but also the need for AM specific surface parameters. The mechanical behaviour of the lattice structure was investigated with in-situ CT under compression and successive digital volume correlation (DVC). The deformation was found to be knot-dominated, and therefore the lattice folds unit cell layer wise. The residual stress was determined experimentally for the first time in such lattice structures. Neutron diffraction was used for the non-destructive 3D stress investigation. The principal stress directions and values were determined in dependence of the number of measured directions. While a significant uni-axial stress state was found in the strut, a more hydrostatic stress state was found in the knot. In both cases, strut and knot, seven directions were at least needed to find reliable principal stress directions.}, language = {en} } @phdthesis{Thater2019, author = {Thater, Sabine}, title = {The interplay between supermassive black holes and their host galaxies}, doi = {10.25932/publishup-43757}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437570}, school = {Universit{\"a}t Potsdam}, pages = {iv, 186}, year = {2019}, abstract = {Supermassive black holes reside in the hearts of almost all massive galaxies. Their evolutionary path seems to be strongly linked to the evolution of their host galaxies, as implied by several empirical relations between the black hole mass (M BH ) and different host galaxy properties. The physical driver of this co-evolution is, however, still not understood. More mass measurements over homogeneous samples and a detailed understanding of systematic uncertainties are required to fathom the origin of the scaling relations. In this thesis, I present the mass estimations of supermassive black holes in the nuclei of one late-type and thirteen early-type galaxies. Our SMASHING sample extends from the intermediate to the massive galaxy mass regime and was selected to fill in gaps in number of galaxies along the scaling relations. All galaxies were observed at high spatial resolution, making use of the adaptive-optics mode of integral field unit (IFU) instruments on state-of-the-art telescopes (SINFONI, NIFS, MUSE). I extracted the stellar kinematics from these observations and constructed dynamical Jeans and Schwarzschild models to estimate the mass of the central black holes robustly. My new mass estimates increase the number of early-type galaxies with measured black hole masses by 15\%. The seven measured galaxies with nuclear light deficits ('cores') augment the sample of cored galaxies with measured black holes by 40\%. Next to determining massive black hole masses, evaluating the accuracy of black hole masses is crucial for understanding the intrinsic scatter of the black hole- host galaxy scaling relations. I tested various sources of systematic uncertainty on my derived mass estimates. The M BH estimate of the single late-type galaxy of the sample yielded an upper limit, which I could constrain very robustly. I tested the effects of dust, mass-to-light ratio (M/L) variation, and dark matter on my measured M BH . Based on these tests, the typically assumed constant M/L ratio can be an adequate assumption to account for the small amounts of dark matter in the center of that galaxy. I also tested the effect of a variable M/L variation on the M BH measurement on a second galaxy. By considering stellar M/L variations in the dynamical modeling, the measured M BH decreased by 30\%. In the future, this test should be performed on additional galaxies to learn how an as constant assumed M/L flaws the estimated black hole masses. Based on our upper limit mass measurement, I confirm previous suggestions that resolving the predicted BH sphere-of-influence is not a strict condition to measure black hole masses. Instead, it is only a rough guide for the detection of the black hole if high-quality, and high signal-to-noise IFU data are used for the measurement. About half of our sample consists of massive early-type galaxies which show nuclear surface brightness cores and signs of triaxiality. While these types of galaxies are typically modeled with axisymmetric modeling methods, the effects on M BH are not well studied yet. The massive galaxies of our presented galaxy sample are well suited to test the effect of different stellar dynamical models on the measured black hole mass in evidently triaxial galaxies. I have compared spherical Jeans and axisymmetric Schwarzschild models and will add triaxial Schwarzschild models to this comparison in the future. The constructed Jeans and Schwarzschild models mostly disagree with each other and cannot reproduce many of the triaxial features of the galaxies (e.g., nuclear sub-components, prolate rotation). The consequence of the axisymmetric-triaxial assumption on the accuracy of M BH and its impact on the black hole - host galaxy relation needs to be carefully examined in the future. In the sample of galaxies with published M BH , we find measurements based on different dynamical tracers, requiring different observations, assumptions, and methods. Crucially, different tracers do not always give consistent results. I have used two independent tracers (cold molecular gas and stars) to estimate M BH in a regular galaxy of our sample. While the two estimates are consistent within their errors, the stellar-based measurement is twice as high as the gas-based. Similar trends have also been found in the literature. Therefore, a rigorous test of the systematics associated with the different modeling methods is required in the future. I caution to take the effects of different tracers (and methods) into account when discussing the scaling relations. I conclude this thesis by comparing my galaxy sample with the compilation of galaxies with measured black holes from the literature, also adding six SMASHING galaxies, which were published outside of this thesis. None of the SMASHING galaxies deviates significantly from the literature measurements. Their inclusion to the published early-type galaxies causes a change towards a shallower slope for the M BH - effective velocity dispersion relation, which is mainly driven by the massive galaxies of our sample. More unbiased and homogenous measurements are needed in the future to determine the shape of the relation and understand its physical origin.}, language = {en} } @phdthesis{Teckentrup2019, author = {Teckentrup, Lisa}, title = {Understanding predator-prey interactions}, doi = {10.25932/publishup-43162}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431624}, school = {Universit{\"a}t Potsdam}, pages = {ix, 133}, year = {2019}, abstract = {Predators can have numerical and behavioral effects on prey animals. While numerical effects are well explored, the impact of behavioral effects is unclear. Furthermore, behavioral effects are generally either analyzed with a focus on single individuals or with a focus on consequences for other trophic levels. Thereby, the impact of fear on the level of prey communities is overlooked, despite potential consequences for conservation and nature management. In order to improve our understanding of predator-prey interactions, an assessment of the consequences of fear in shaping prey community structures is crucial. In this thesis, I evaluated how fear alters prey space use, community structure and composition, focusing on terrestrial mammals. By integrating landscapes of fear in an existing individual-based and spatially-explicit model, I simulated community assembly of prey animals via individual home range formation. The model comprises multiple hierarchical levels from individual home range behavior to patterns of prey community structure and composition. The mechanistic approach of the model allowed for the identification of underlying mechanism driving prey community responses under fear. My results show that fear modified prey space use and community patterns. Under fear, prey animals shifted their home ranges towards safer areas of the landscape. Furthermore, fear decreased the total biomass and the diversity of the prey community and reinforced shifts in community composition towards smaller animals. These effects could be mediated by an increasing availability of refuges in the landscape. Under landscape changes, such as habitat loss and fragmentation, fear intensified negative effects on prey communities. Prey communities in risky environments were subject to a non-proportional diversity loss of up to 30\% if fear was taken into account. Regarding habitat properties, I found that well-connected, large safe patches can reduce the negative consequences of habitat loss and fragmentation on prey communities. Including variation in risk perception between prey animals had consequences on prey space use. Animals with a high risk perception predominantly used safe areas of the landscape, while animals with a low risk perception preferred areas with a high food availability. On the community level, prey diversity was higher in heterogeneous landscapes of fear if individuals varied in their risk perception compared to scenarios in which all individuals had the same risk perception. Overall, my findings give a first, comprehensive assessment of the role of fear in shaping prey communities. The linkage between individual home range behavior and patterns at the community level allows for a mechanistic understanding of the underlying processes. My results underline the importance of the structure of the landscape of fear as a key driver of prey community responses, especially if the habitat is threatened by landscape changes. Furthermore, I show that individual landscapes of fear can improve our understanding of the consequences of trait variation on community structures. Regarding conservation and nature management, my results support calls for modern conservation approaches that go beyond single species and address the protection of biotic interactions.}, language = {en} } @phdthesis{StutterGarcia2019, author = {Stutter Garcia, Ana}, title = {The use of grammatical knowledge in an additional language}, doi = {10.25932/publishup-46932}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469326}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 340}, year = {2019}, abstract = {This thesis investigates whether multilingual speakers' use of grammatical constraints in an additional language (La) is affected by the native (L1) and non-native grammars (L2) of their linguistic repertoire. Previous studies have used untimed measures of grammatical performance to show that L1 and L2 grammars affect the initial stages of La acquisition. This thesis extends this work by examining whether speakers at intermediate levels of La proficiency, who demonstrate mature untimed/offline knowledge of the target La constraints, are differentially affected by their L1 and L2 knowledge when they comprehend sentences under processing pressure. With this purpose, several groups of La German speakers were tested on word order and agreement phenomena using online/timed measures of grammatical knowledge. Participants had mirror distributions of their prior languages and they were either L1English/L2Spanish speakers or L1Spanish/L2English speakers. Crucially, in half of the phenomena the target La constraint aligned with English but not with Spanish, while in the other half it aligned with Spanish but not with English. Results show that the L1 grammar plays a major role in the use of La constraints under processing pressure, as participants displayed increased sensitivity to La constraints when they aligned with their L1, and reduced sensitivity when they did not. Further, in specific phenomena in which the L2 and La constraints aligned, increased L2 proficiency resulted in an enhanced sensitivity to the La constraint. These findings suggest that both native and non-native grammars affect how speakers use La grammatical constraints under processing pressure. However, L1 and L2 grammars differentially influence on participants' performance: While L1 constraints seem to be reliably recruited to cope with the processing demands of real-time La use, proficiency in an L2 can enhance sensitivity to La constraints only in specific circumstances, namely when L2 and La constraints align.}, language = {en} } @phdthesis{Sterzel2019, author = {Sterzel, Till}, title = {Analyzing global typologies of socio-ecological vulnerability}, doi = {10.25932/publishup-42883}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-428837}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2019}, abstract = {On a planetary scale human populations need to adapt to both socio-economic and environmental problems amidst rapid global change. This holds true for coupled human-environment (socio-ecological) systems in rural and urban settings alike. Two examples are drylands and urban coasts. Such socio-ecological systems have a global distribution. Therefore, advancing the knowledge base for identifying socio-ecological adaptation needs with local vulnerability assessments alone is infeasible: The systems cover vast areas, while funding, time, and human resources for local assessments are limited. They are lacking in low an middle-income countries (LICs and MICs) in particular. But places in a specific socio-ecological system are not only unique and complex - they also exhibit similarities. A global patchwork of local rural drylands vulnerability assessments of human populations to socio-ecological and environmental problems has already been reduced to a limited number of problem structures, which typically cause vulnerability. However, the question arises whether this is also possible in urban socio-ecological systems. The question also arises whether these typologies provide added value in research beyond global change. Finally, the methodology employed for drylands needs refining and standardizing to increase its uptake in the scientific community. In this dissertation, I set out to fill these three gaps in research. The geographical focus in my dissertation is on LICs and MICs, which generally have lower capacities to adapt, and greater adaptation needs, regarding rapid global change. Using a spatially explicit indicator-based methodology, I combine geospatial and clustering methods to identify typical configurations of key factors in case studies causing vulnerability to human populations in two specific socio-ecological systems. Then I use statistical and analytical methods to interpret and appraise both the typical configurations and the global typologies they constitute. First, I improve the indicator-based methodology and then reanalyze typical global problem structures of socio-ecological drylands vulnerability with seven indicator datasets. The reanalysis confirms the key tenets and produces a more realistic and nuanced typology of eight spatially explicit problem structures, or vulnerability profiles: Two new profiles with typically high natural resource endowment emerge, in which overpopulation has led to medium or high soil erosion. Second, I determine whether the new drylands typology and its socio-ecological vulnerability concept advance a thematically linked scientific debate in human security studies: what drives violent conflict in drylands? The typology is a much better predictor for conflict distribution and incidence in drylands than regression models typically used in peace research. Third, I analyze global problem structures typically causing vulnerability in an urban socio-ecological system - the rapidly urbanizing coastal fringe (RUCF) - with eleven indicator datasets. The RUCF also shows a robust typology, and its seven profiles show huge asymmetries in vulnerability and adaptive capacity. The fastest population increase, lowest income, most ineffective governments, most prevalent poverty, and lowest adaptive capacity are all typically stacked in two profiles in LICs. This shows that beyond local case studies tropical cyclones and/or coastal flooding are neither stalling rapid population growth, nor urban expansion, in the RUCF. I propose entry points for scaling up successful vulnerability reduction strategies in coastal cities within the same vulnerability profile. This dissertation shows that patchworks of local vulnerability assessments can be generalized to structure global socio-ecological vulnerabilities in both rural and urban socio-ecological systems according to typical problems. In terms of climate-related extreme events in the RUCF, conflicting problem structures and means to deal with them are threatening to widen the development gap between LICs and high-income countries unless successful vulnerability reduction measures are comprehensively scaled up. The explanatory power for human security in drylands warrants further applications of the methodology beyond global environmental change research in the future. Thus, analyzing spatially explicit global typologies of socio-ecological vulnerability is a useful complement to local assessments: The typologies provide entry points for where to consider which generic measures to reduce typical problem structures - including the countless places without local assessments. This can save limited time and financial resources for adaptation under rapid global change.}, language = {en} } @phdthesis{Sotiropoulou2019, author = {Sotiropoulou, Stavroula}, title = {Pleiotropy of phonetic indices in the expression of syllabic organization}, doi = {10.25932/publishup-54639}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-546399}, school = {Universit{\"a}t Potsdam}, pages = {xv, 184}, year = {2019}, abstract = {This dissertation is concerned with the relation between qualitative phonological organization in the form of syllabic structure and continuous phonetics, that is, the spatial and temporal dimensions of vocal tract action that express syllabic structure. The main claim of the dissertation is twofold. First, we argue that syllabic organization exerts multiple effects on the spatio-temporal properties of the segments that partake in that organization. That is, there is no unique or privileged exponent of syllabic organization. Rather, syllabic organization is expressed in a pleiotropy of phonetic indices. Second, we claim that a better understanding of the relation between qualitative phonological organization and continuous phonetics is reached when one considers how the string of segments (over which the nature of the phonological organization is assessed) responds to perturbations (scaling of phonetic variables) of localized properties (such as durations) within that string. Specifically, variation in phonetic variables and more specifically prosodic variation is a crucial key to understanding the nature of the link between (phonological) syllabic organization and the phonetic spatio-temporal manifestation of that organization. The effects of prosodic variation on segmental properties and on the overlap between the segments, we argue, offer the right pathway to discover patterns related to syllabic organization. In our approach, to uncover evidence for global organization, the sequence of segments partaking in that organization as well as properties of these segments or their relations with one another must be somehow locally varied. The consequences of such variation on the rest of the sequence can then be used to unveil the span of organization. When local perturbations to segments or relations between adjacent segments have effects that ripple through the rest of the sequence, this is evidence that organization is global. If instead local perturbations stay local with no consequences for the rest of the whole, this indicates that organization is local.}, language = {en} } @phdthesis{Solopow2019, author = {Solopow, Sergej}, title = {Wavelength dependent demagnetization dynamics in Co2MnGa Heusler-alloy}, doi = {10.25932/publishup-42786}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427860}, school = {Universit{\"a}t Potsdam}, pages = {91}, year = {2019}, abstract = {In dieser Arbeit haben wir ultraschnelle Entmagnetisierung an einer Heusler-Legierung untersucht. Es handelt sich um ein Halbmetall, das sich in einer ferromagnetischen Phase befindet. Die Besonderheit dieses Materials besteht im Aufbau einer Bandstruktur. Diese bildet Zustandsdichten, in der die Majorit{\"a}tselektronen eine metallische B{\"a}nderbildung aufweisen und die Minorit{\"a}tselektronen eine Bandl{\"u}cke in der N{\"a}he des Fermi-Niveaus aufweisen, das dem Aufbau eines Halbleiters entspricht. Mit Hilfe der Pump-Probe-Experimente haben wir zeitaufgel{\"o}ste Messungen durchgef{\"u}hrt. F{\"u}r das Pumpen wurden ultrakurze Laserpulse mit einer Pulsdauer von 100 fs benutzt. Wir haben dabei zwei verschiedene Wellenl{\"a}ngen mit 400 nm und 1240 nm benutzt, um den Effekt der Prim{\"a}ranregung und der Bandl{\"u}cke in den Minorit{\"a}tszust{\"a}nden zu untersuchen. Dabei wurde zum ersten Mal OPA (Optical Parametrical Amplifier) f{\"u}r die Erzeugung der langwelligen Pulse an der FEMTOSPEX-Beamline getestet und erfolgreich bei den Experimenten verwendet. Wir haben Wellenl{\"a}ngen bedingte Unterschiede in der Entmagnetisierungszeit gemessen. Mit der Erh{\"o}hung der Photonenenergie ist der Prozess der Entmagnetisierung deutlich schneller als bei einer niedrigeren Photonenenergie. Wir verkn{\"u}pften diese Ergebnisse mit der Existenz der Energiel{\"u}cke f{\"u}r Minorit{\"a}tselektronen. Mit Hilfe lokaler Elliot-Yafet-Streuprozesse k{\"o}nnen die beobachteten Zeiten gut erkl{\"a}rt werden. Wir haben in dieser Arbeit auch eine neue Probe-Methode f{\"u}r die Magnetisierung angewandt und somit experimentell deren Effektivit{\"a}t, n{\"a}mlich XMCD in Refletiongeometry, best{\"a}tigen k{\"o}nnen. Statische Experimente liefern somit deutliche Indizien daf{\"u}r, dass eine magnetische von einer rein elektronischen Antwort des Systems getrennt werden kann. Unter der Voraussetzung, dass die Photonenenergie der R{\"o}ntgenstrahlung auf die L3 Kante des entsprechenden Elements eingestellt, ein geeigneter Einfallswinkel gew{\"a}hlt und die zirkulare Polarisation fixiert wird, ist es m{\"o}glich, diese Methode zur Analyse magnetischer und elektronischer Respons anzuwenden.}, language = {en} } @phdthesis{Sidarenka2019, author = {Sidarenka, Uladzimir}, title = {Sentiment analysis of German Twitter}, doi = {10.25932/publishup-43742}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437422}, school = {Universit{\"a}t Potsdam}, pages = {vii, 217}, year = {2019}, abstract = {The immense popularity of online communication services in the last decade has not only upended our lives (with news spreading like wildfire on the Web, presidents announcing their decisions on Twitter, and the outcome of political elections being determined on Facebook) but also dramatically increased the amount of data exchanged on these platforms. Therefore, if we wish to understand the needs of modern society better and want to protect it from new threats, we urgently need more robust, higher-quality natural language processing (NLP) applications that can recognize such necessities and menaces automatically, by analyzing uncensored texts. Unfortunately, most NLP programs today have been created for standard language, as we know it from newspapers, or, in the best case, adapted to the specifics of English social media. This thesis reduces the existing deficit by entering the new frontier of German online communication and addressing one of its most prolific forms—users' conversations on Twitter. In particular, it explores the ways and means by how people express their opinions on this service, examines current approaches to automatic mining of these feelings, and proposes novel methods, which outperform state-of-the-art techniques. For this purpose, I introduce a new corpus of German tweets that have been manually annotated with sentiments, their targets and holders, as well as lexical polarity items and their contextual modifiers. Using these data, I explore four major areas of sentiment research: (i) generation of sentiment lexicons, (ii) fine-grained opinion mining, (iii) message-level polarity classification, and (iv) discourse-aware sentiment analysis. In the first task, I compare three popular groups of lexicon generation methods: dictionary-, corpus-, and word-embedding-based ones, finding that dictionary-based systems generally yield better polarity lists than the last two groups. Apart from this, I propose a linear projection algorithm, whose results surpass many existing automatically-generated lexicons. Afterwords, in the second task, I examine two common approaches to automatic prediction of sentiment spans, their sources, and targets: conditional random fields (CRFs) and recurrent neural networks, obtaining higher scores with the former model and improving these results even further by redefining the structure of CRF graphs. When dealing with message-level polarity classification, I juxtapose three major sentiment paradigms: lexicon-, machine-learning-, and deep-learning-based systems, and try to unite the first and last of these method groups by introducing a bidirectional neural network with lexicon-based attention. Finally, in order to make the new classifier aware of microblogs' discourse structure, I let it separately analyze the elementary discourse units of each tweet and infer the overall polarity of a message from the scores of its EDUs with the help of two new approaches: latent-marginalized CRFs and Recursive Dirichlet Process.}, language = {en} } @phdthesis{Schuerings2019, author = {Sch{\"u}rings, Marco Philipp Hermann}, title = {Synthesis of 1D microgel strands and their motion analysis in solution}, doi = {10.25932/publishup-43953}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439532}, school = {Universit{\"a}t Potsdam}, pages = {167}, year = {2019}, abstract = {The fabrication of 1D nanostrands composed of stimuli responsive microgels has been shown in this work. Microgels are well known materials able to respond to various stimuli from outer environment. Since these microgels respond via a volume change to an external stimulus, a targeted mechanical response can be achieved. Through carefully choosing the right composition of the polymer matrix, microgels can be designed to react precisely to the targeted stimuli (e.g. drug delivery via pH and temperature changes, or selective contractions through changes in electrical current125). In this work, it was aimed to create flexible nano-filaments which are capable of fast anisotropic contractions similar to muscle filaments. For the fabrication of such filaments or strands, nanostructured templates (PDMS wrinkles) were chosen due to a facile and low-cost fabrication and versatile tunability of their dimensions. Additionally, wrinkling is a well-known lithography-free method which enables the fabrication of nanostructures in a reproducible manner and with a high long-range periodicity. In Chapter 2.1, it was shown for the first time that microgels as soft matter particles can be aligned to densely packed microgel arrays of various lateral dimensions. The alignment of microgels with different compositions (e.g. VCL/AAEM, NIPAAm, NIPAAm/VCL and charged microgels) was shown by using different assembly techniques (e.g. spin-coating, template confined molding). It was chosen to set one experimental parameter constant which was the SiOx surface composition of the templates and substrates (e.g. oxidized PDMS wrinkles, Si-wafers and glass slides). It was shown that the fabrication of nanoarrays was feasible with all tested microgel types. Although the microgels exhibited different deformability when aligned on a flat surface, they retained their thermo-responsivity and swelling behavior. Towards the fabrication of 1D microgel strands interparticle connectivity was aspired. This was achieved via different cross-linking methods (i.e. cross-linking via UV-irradiation and host-guest complexation) discussed in Chapter 2.2. The microgel arrays created by different assembly methods and microgel types were tested for their cross-linking suitability. It was observed that NIPAAm based microgels cannot be cross-linked with UV light. Furthermore, it was found that these microgels exhibit a strong surface-particle-interaction and therefore could not be detached from the given substrates. In contrast to the latter, with VCL/AAEM based microgels it was possible to both UV cross-link them based on the keto-enol tautomerism of the AAEM copolymer, and to detach them from the substrate due to the lower adhesion energy towards SiOx surfaces. With VCL/AAEM microgels long, one-dimensional microgel strands could be re-dispersed in water for further analysis. It has also been shown that at least one lateral dimension of the free dispersed 1D microgel strands is easily controllable by adjusting the wavelength of the wrinkled template. For further work, only VCL/AAEM based microgels were used to focus on the main aim of this work, i.e. the fabrication of 1D microgel nanostrands. As an alternative to the unspecific and harsh UV cross-linking, the host-guest complexation via diazobenzene cross-linkers and cyclodextrin hosts was explored. The idea behind this approach was to give means to a future construction kit-like approach by incorporation of cyclodextrin comonomers in a broad variety of particle systems (e.g. microgels, nanoparticles). For this purpose, VCL/AAEM microgels were copolymerized with different amounts of mono-acrylate functionalized β-cyclodextrin (CD). After successfully testing the cross-linking capability in solution, the cross-linking of aligned VCL/AAEM/CD microgels was tried. Although the cross-linking worked well, once the single arrays came into contact to each other, they agglomerated. As a reason for this behavior residual amounts of mono-complexed diazobenzene linkers were suspected. Thus, end-capping strategies were tried out (e.g. excess amounts of β-cyclodextrin and coverage with azobenzene functionalized AuNPs) but were unsuccessful. With deeper thought, entropy effects were taken into consideration which favor the release of complexed diazobenzene linker leading to agglomerations. To circumvent this entropy driven effect, a multifunctional polymer with 50\% azobenzene groups (Harada polymer) was used. First experiments with this polymer showed promising results regarding a less pronounced agglomeration (Figure 77). Thus, this approach could be pursued in the future. In this chapter it was found out that in contrast to pearl necklace and ribbon like formations, particle alignment in zigzag formation provided the best compromise in terms of stability in dispersion (see Figure 44a and Figure 51) while maintaining sufficient flexibility. For this reason, microgel strands in zigzag formation were used for the motion analysis described in Chapter 2.3. The aim was to observe the properties of unrestrained microgel strands in solution (e.g. diffusion behavior, rotational properties and ideally, anisotropic contraction after temperature increase). Initially, 1D microgel strands were manipulated via AFM in a liquid cell setup. It could be observed that the strands required a higher load force compared to single microgels to be detached from the surface. However, with the AFM it was not possible to detach the strands in a controllable manner but resulted in a complete removal of single microgel particles and a tearing off the strands from the surface, respectively. For this reason, to observe the motion behavior of unrestrained microgel strands in solution, confocal microscopy was used. Furthermore, to hinder an adsorption of the strands, it was found out that coating the surface of the substrates with a repulsive polymer film was beneficial. Confocal and wide-field microscopy videos showed that the microgel strands exhibit translational and rotational diffusive motion in solution without perceptible bending. Unfortunately, with these methods the detection of the anisotropic stimuli responsive contraction of the free moving microgel strands was not possible. To summarize, the flexibility of microgel strands is more comparable to the mechanical behavior of a semi flexible cable than to a yarn. The strands studied here consist of dozens or even hundreds of discrete submicron units strung together by cross-linking, having few parallels in nanotechnology. With the insights gained in this work on microgel-surface interactions, in the future, a targeted functionalization of the template and substrate surfaces can be conducted to actively prevent unwanted microgel adsorption for a given microgel system (e.g. PVCL and polystyrene coating235). This measure would make the discussed alignment methods more diverse. As shown herein, the assembly methods enable a versatile microgel alignment (e.g. microgel meshes, double and triple strands). To go further, one could use more complex templates (e.g. ceramic rhombs and star shaped wrinkles (Figure 14) to expand the possibilities of microgel alignment and to precisely control their aspect ratios (e.g. microgel rods with homogeneous size distributions).}, language = {en} } @phdthesis{Schaefer2019, author = {Sch{\"a}fer, Merlin}, title = {Understanding and predicting global change impacts on migratory birds}, doi = {10.25932/publishup-43925}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439256}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 153}, year = {2019}, abstract = {This is a publication-based dissertation comprising three original research stud-ies (one published, one submitted and one ready for submission; status March 2019). The dissertation introduces a generic computer model as a tool to investigate the behaviour and population dynamics of animals in cyclic environments. The model is further employed for analysing how migratory birds respond to various scenarios of altered food supply under global change. Here, ecological and evolutionary time-scales are considered, as well as the biological constraints and trade-offs the individual faces, which ultimately shape response dynamics at the population level. Further, the effect of fine-scale temporal patterns in re-source supply are studied, which is challenging to achieve experimentally. My findings predict population declines, altered behavioural timing and negative carry-over effects arising in migratory birds under global change. They thus stress the need for intensified research on how ecological mechanisms are affected by global change and for effective conservation measures for migratory birds. The open-source modelling software created for this dissertation can now be used for other taxa and related research questions. Overall, this thesis improves our mechanistic understanding of the impacts of global change on migratory birds as one prerequisite to comprehend ongoing global biodiversity loss. The research results are discussed in a broader ecological and scientific context in a concluding synthesis chapter.}, language = {en} } @phdthesis{Schneider2019, author = {Schneider, Jan Niklas}, title = {Computational approaches for emotion research}, doi = {10.25932/publishup-45927}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459275}, school = {Universit{\"a}t Potsdam}, pages = {xv, 145}, year = {2019}, abstract = {Emotionen sind ein zentrales Element menschlichen Erlebens und spielen eine wichtige Rolle bei der Entscheidungsfindung. Diese Dissertation identifiziert drei methodische Probleme der aktuellen Emotionsforschung und zeigt auf, wie diese mittels computergest{\"u}tzter Methoden gel{\"o}st werden k{\"o}nnen. Dieser Ansatz wird in drei Forschungsprojekten demonstriert, die die Entwicklung solcher Methoden sowie deren Anwendung auf konkrete Forschungsfragen beschreiben. Das erste Projekt beschreibt ein Paradigma welches es erm{\"o}glicht, die subjektive und objektive Schwierigkeit der Emotionswahrnehmung zu messen. Dar{\"u}ber hinaus erm{\"o}glicht es die Verwendung einer beliebigen Anzahl von Emotionskategorien im Vergleich zu den {\"u}blichen sechs Kategorien der Basisemotionen. Die Ergebnisse deuten auf eine Zunahme der Schwierigkeiten bei der Wahrnehmung von Emotionen mit zunehmendem Alter der Darsteller hin und liefern Hinweise darauf, dass junge Erwachsene, {\"a}ltere Menschen und M{\"a}nner ihre Schwierigkeit bei der Wahrnehmung von Emotionen untersch{\"a}tzen. Weitere Analysen zeigten eine geringe Relevanz personenbezogener Variablen und deuteten darauf hin, dass die Schwierigkeit der Emotionswahrnehmung vornehmlich durch die Auspr{\"a}gung der Wertigkeit des Ausdrucks bestimmt wird. Das zweite Projekt zeigt am Beispiel von Arousal, einem etablierten, aber vagen Konstrukt der Emotionsforschung, wie Face-Tracking-Daten dazu genutzt werden k{\"o}nnen solche Konstrukte zu sch{\"a}rfen. Es beschreibt, wie aus Face-Tracking-Daten Maße f{\"u}r die Entfernung, Geschwindigkeit und Beschleunigung von Gesichtsausdr{\"u}cken berechnet werden k{\"o}nnen. Das Projekt untersuchte wie diesen Maße mit der Arousal-Wahrnehmung in Menschen mit und ohne Autismus zusammenh{\"a}ngen. Der Abstand zum Neutralgesicht war pr{\"a}diktiv f{\"u}r die Arousal-Bewertungen in beiden Gruppen. Die Ergebnisse deuten auf eine qualitativ {\"a}hnliche Wahrnehmung von Arousal f{\"u}r Menschen mit und ohne Autismus hin. Im dritten Projekt stellen wir die Partial-Least-Squares-Analyse als allgemeine Methode vor, um eine optimale Repr{\"a}sentation zur Verkn{\"u}pfung zweier hochdimensionale Datens{\"a}tze zu finden. Das Projekt demonstriert die Anwendbarkeit dieser Methode in der Emotionsforschung anhand der Frage nach Unterschieden in der Emotionswahrnehmung zwischen M{\"a}nnern und Frauen. Wir konnten zeigen, dass die emotionale Wahrnehmung von Frauen systematisch mehr Varianz der Gesichtsausdr{\"u}cke erfasst und dass signifikante Unterschiede in der Art und Weise bestehen, wie Frauen und M{\"a}nner einige Gesichtsausdr{\"u}cke wahrnehmen. Diese konnten wir als dynamische Gesichtsausdr{\"u}cke visualisieren. Um die Anwendung der entwickelten Methode f{\"u}r die Forschungsgemeinschaft zu erleichtern, wurde ein Software-Paket f{\"u}r die Statistikumgebung R geschrieben. Zudem wurde eine Website entwickelt (thisemotiondoesnotexist.com), die es Besuchern erlaubt, ein Partial-Least-Squares-Modell von Emotionsbewertungen und Face-Tracking-Daten interaktiv zu erkunden, um die entwickelte Methode zu verbreiten und ihren Nutzen f{\"u}r die Emotionsforschung zu illustrieren.}, language = {en} } @phdthesis{Schmidt2019, author = {Schmidt, Martin}, title = {Fragmentation of landscapes: modelling ecosystem services of transition zones}, doi = {10.25932/publishup-44294}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442942}, school = {Universit{\"a}t Potsdam}, pages = {XV, 103}, year = {2019}, abstract = {For millennia, humans have affected landscapes all over the world. Due to horizontal expansion, agriculture plays a major role in the process of fragmentation. This process is caused by a substitution of natural habitats by agricultural land leading to agricultural landscapes. These landscapes are characterized by an alternation of agriculture and other land use like forests. In addition, there are landscape elements of natural origin like small water bodies. Areas of different land use are beside each other like patches, or fragments. They are physically distinguishable which makes them look like a patchwork from an aerial perspective. These fragments are each an own ecosystem with conditions and properties that differ from their adjacent fragments. As open systems, they are in exchange of information, matter and energy across their boundaries. These boundary areas are called transition zones. Here, the habitat properties and environmental conditions are altered compared to the interior of the fragments. This changes the abundance and the composition of species in the transition zones, which in turn has a feedback effect on the environmental conditions. The literature mainly offers information and insights on species abundance and composition in forested transition zones. Abiotic effects, the gradual changes in energy and matter, received less attention. In addition, little is known about non-forested transition zones. For example, the effects on agricultural yield in transition zones of an altered microclimate, matter dynamics or different light regimes are hardly researched or understood. The processes in transition zones are closely connected with altered provisioning and regulating ecosystem services. To disentangle the mechanisms and to upscale the effects, models can be used. My thesis provides insights into these topics: literature was reviewed and a conceptual framework for the quantitative description of gradients of matter and energy in transition zones was introduced. The results of measurements of environmental gradients like microclimate, aboveground biomass and soil carbon and nitrogen content are presented that span from within the forest into arable land. Both the measurements and the literature review could not validate a transition zone of 100 m for abiotic effects. Although this value is often reported and used in the literature, it is likely to be smaller. Further, the measurements suggest that on the one hand trees in transition zones are smaller compared to those in the interior of the fragments, while on the other hand less biomass was measured in the arable lands' transition zone. These results support the hypothesis that less carbon is stored in the aboveground biomass in transition zones. The soil at the edge (zero line) between adjacent forest and arable land contains more nitrogen and carbon content compared to the interior of the fragments. One-year measurements in the transition zone also provided evidence that microclimate is different compared to the fragments' interior. To predict the possible yield decreases that transition zones might cause, a modelling approach was developed. Using a small virtual landscape, I modelled the effect of a forest fragment shading the adjacent arable land and the effects of this on yield using the MONICA crop growth model. In the transition zone yield was less compared to the interior due to shading. The results of the simulations were upscaled to the landscape level and exemplarily calculated for the arable land of a whole region in Brandenburg, Germany. The major findings of my thesis are: (1) Transition zones are likely to be much smaller than assumed in the scientific literature; (2) transition zones aren't solely a phenomenon of forested ecosystems, but significantly extend into arable land as well; (3) empirical and modelling results show that transition zones encompass biotic and abiotic changes that are likely to be important to a variety of agricultural landscape ecosystem services.}, language = {en} } @phdthesis{Schlenter2019, author = {Schlenter, Judith}, title = {Predictive language processing in late bilinguals}, doi = {10.25932/publishup-43249}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432498}, school = {Universit{\"a}t Potsdam}, pages = {251}, year = {2019}, abstract = {The current thesis examined how second language (L2) speakers of German predict upcoming input during language processing. Early research has shown that the predictive abilities of L2 speakers relative to L1 speakers are limited, resulting in the proposal of the Reduced Ability to Generate Expectations (RAGE) hypothesis. Considering that prediction is assumed to facilitate language processing in L1 speakers and probably plays a role in language learning, the assumption that L1/L2 differences can be explained in terms of different processing mechanisms is a particularly interesting approach. However, results from more recent studies on the predictive processing abilities of L2 speakers have indicated that the claim of the RAGE hypothesis is too broad and that prediction in L2 speakers could be selectively limited. In the current thesis, the RAGE hypothesis was systematically put to the test. In this thesis, German L1 and highly proficient late L2 learners of German with Russian as L1 were tested on their predictive use of one or more information sources that exist as cues to sentence interpretation in both languages, to test for selective limits. The results showed that, in line with previous findings, L2 speakers can use the lexical-semantics of verbs to predict the upcoming noun. Here the level of prediction was more systematically controlled for than in previous studies by using verbs that restrict the selection of upcoming nouns to the semantic category animate or inanimate. Hence, prediction in L2 processing is possible. At the same time, this experiment showed that the L2 group was slower/less certain than the L1 group. Unlike previous studies, the experiment on case marking demonstrated that L2 speakers can use this morphosyntactic cue for prediction. Here, the use of case marking was tested by manipulating the word order (Dat > Acc vs. Acc > Dat) in double object constructions after a ditransitive verb. Both the L1 and the L2 group showed a difference between the two word order conditions that emerged within the critical time window for an anticipatory effect, indicating their sensitivity towards case. However, the results for the post-critical time window pointed to a higher uncertainty in the L2 group, who needed more time to integrate incoming information and were more affected by the word order variation than the L1 group, indicating that they relied more on surface-level information. A different cue weighting was also found in the experiment testing whether participants predict upcoming reference based on implicit causality information. Here, an additional child L1 group was tested, who had a lower memory capacity than the adult L2 group, as confirmed by a digit span task conducted with both learner groups. Whereas the children were only slightly delayed compared to the adult L1 group and showed the same effect of condition, the L2 speakers showed an over-reliance on surface-level information (first-mention/subjecthood). Hence, the pattern observed resulted more likely from L1/L2 differences than from resource deficits. The reviewed studies and the experiments conducted show that L2 prediction is affected by a range of factors. While some of the factors can be attributed to more individual differences (e.g., language similarity, slower processing) and can be interpreted by L2 processing accounts assuming that L1 and L2 processing are basically the same, certain limits are better explained by accounts that assume more substantial L1/L2 differences. Crucially, the experimental results demonstrate that the RAGE hypothesis should be refined: Although prediction as a fast-operating mechanism is likely to be affected in L2 speakers, there is no indication that prediction is the dominant source of L1/L2 differences. The results rather demonstrate that L2 speakers show a different weighting of cues and rely more on semantic and surface-level information to predict as well as to integrate incoming information.}, language = {en} } @phdthesis{Sarhan2019, author = {Sarhan, Radwan Mohamed}, title = {Plasmon-driven photocatalytic reactions monitored by surface-enhanced Raman spectroscopy}, doi = {10.25932/publishup-43330}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-433304}, school = {Universit{\"a}t Potsdam}, year = {2019}, abstract = {Plasmonic metal nanostructures can be tuned to efficiently interact with light, converting the photons into energetic charge carriers and heat. Therefore, the plasmonic nanoparticles such as gold and silver nanoparticles act as nano-reactors, where the molecules attached to their surfaces benefit from the enhanced electromagnetic field along with the generated energetic charge carriers and heat for possible chemical transformations. Hence, plasmonic chemistry presents metal nanoparticles as a unique playground for chemical reactions on the nanoscale remotely controlled by light. However, defining the elementary concepts behind these reactions represents the main challenge for understanding their mechanism in the context of the plasmonically assisted chemistry. Surface-enhanced Raman scattering (SERS) is a powerful technique employing the plasmon-enhanced electromagnetic field, which can be used for probing the vibrational modes of molecules adsorbed on plasmonic nanoparticles. In this cumulative dissertation, I use SERS to probe the dimerization reaction of 4-nitrothiophenol (4-NTP) as a model example of plasmonic chemistry. I first demonstrate that plasmonic nanostructures such as gold nanotriangles and nanoflowers have a high SERS efficiency, as evidenced by probing the vibrations of the rhodamine dye R6G and the 4-nitrothiophenol 4-NTP. The high signal enhancement enabled the measurements of SERS spectra with a short acquisition time, which allows monitoring the kinetics of chemical reactions in real time. To get insight into the reaction mechanism, several time-dependent SERS measurements of the 4-NTP have been performed under different laser and temperature conditions. Analysis of the results within a mechanistic framework has shown that the plasmonic heating significantly enhances the reaction rate, while the reaction is probably initiated by the energetic electrons. The reaction was shown to be intensity-dependent, where a certain light intensity is required to drive the reaction. Finally, first attempts to scale up the plasmonic catalysis have been performed showing the necessity to achieve the reaction threshold intensity. Meanwhile, the induced heat needs to quickly dissipate from the reaction substrate, since otherwise the reactants and the reaction platform melt. This study might open the way for further work seeking the possibilities to quickly dissipate the plasmonic heat generated during the reaction and therefore, scaling up the plasmonic catalysis.}, language = {en} } @phdthesis{Sablowski2019, author = {Sablowski, Daniel}, title = {Spectroscopic analysis of the benchmark system Alpha Aurigae}, doi = {10.25932/publishup-43239}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432396}, school = {Universit{\"a}t Potsdam}, pages = {169}, year = {2019}, abstract = {Binaries play an important role in observational and theoretical astrophysics. Since the mass and the chemical composition are key ingredients for stellar evolution, high-resolution spectroscopy is an important and necessary tool to derive those parameters to high confidence in binaries. This involves carefully measured orbital motion by the determination of radial velocity (RV) shifts and sophisticated techniques to derive the abundances of elements within the stellar atmosphere. A technique superior to conventional cross-correlation methods to determine RV shifts in known as spectral disentangling. Hence, a major task of this thesis was the design of a sophisticated software package for this approach. In order to investigate secondary effects, such as flux and line-profile variations, imprinting changes on the spectrum the behavior of spectral disentangling on such variability is a key to understand the derived values, to improve them, and to get information about the variability itself. Therefore, the spectral disentangling code presented in this thesis and available to the community combines multiple advantages: separation of the spectra for detailed chemical analysis, derivation of orbital elements, derivation of individual RVs in order to investigate distorted systems (either by third body interaction or relativistic effects), the suppression of telluric contaminations, the derivation of variability, and the possibility to apply the technique to eclipsing binaries (important for orbital inclination) or in general to systems that undergo flux-variations. This code in combination with the spectral synthesis codes MOOG and SME was used in order to derive the carbon 12C/13C isotope ratio (CIR) of the benchmark binary Capella. The observational result will be set into context with theoretical evolution by the use of MESA models and resolves the discrepancy of theory and observations existing since the first measurement of Capella's CIR in 1976. The spectral disentangling code has been made available to the community and its applicability to completely different behaving systems, Wolf-Rayet stars, have also been investigated and resulted in a published article. Additionally, since this technique relies strongly on data quality, continues development of scientific instruments to achieve best observational data is of great importance in observational astrophysics. That is the reason why there has also been effort in astronomical instrumentation during the work on this thesis.}, language = {en} } @phdthesis{RomeroMujalli2019, author = {Romero Mujalli, Daniel}, title = {Ecological modeling of adaptive evolutionary responses to rapid climate change}, doi = {10.25932/publishup-43062}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-430627}, school = {Universit{\"a}t Potsdam}, pages = {167}, year = {2019}, abstract = {A contemporary challenge in Ecology and Evolutionary Biology is to anticipate the fate of populations of organisms in the context of a changing world. Climate change and landscape changes due to anthropic activities have been of major concern in the contemporary history. Organisms facing these threats are expected to respond by local adaptation (i.e., genetic changes or phenotypic plasticity) or by shifting their distributional range (migration). However, there are limits to their responses. For example, isolated populations will have more difficulties in developing adaptive innovations by means of genetic changes than interconnected metapopulations. Similarly, the topography of the environment can limit dispersal opportunities for crawling organisms as compared to those that rely on wind. Thus, populations of species with different life history strategy may differ in their ability to cope with changing environmental conditions. However, depending on the taxon, empirical studies investigating organisms' responses to environmental change may become too complex, long and expensive; plus, complications arising from dealing with endangered species. In consequence, eco-evolutionary modeling offers an opportunity to overcome these limitations and complement empirical studies, understand the action and limitations of underlying mechanisms, and project into possible future scenarios. In this work I take a modeling approach and investigate the effect and relative importance of evolutionary mechanisms (including phenotypic plasticity) on the ability for local adaptation of populations with different life strategy experiencing climate change scenarios. For this, I performed a review on the state of the art of eco-evolutionary Individual-Based Models (IBMs) and identify gaps for future research. Then, I used the results from the review to develop an eco-evolutionary individual-based modeling tool to study the role of genetic and plastic mechanisms in promoting local adaption of populations of organisms with different life strategies experiencing scenarios of climate change and environmental stochasticity. The environment was simulated through a climate variable (e.g., temperature) defining a phenotypic optimum moving at a given rate of change. The rate of change was changed to simulate different scenarios of climate change (no change, slow, medium, rapid climate change). Several scenarios of stochastic noise color resembling different climatic conditions were explored. Results show that populations of sexual species will rely mainly on standing genetic variation and phenotypic plasticity for local adaptation. Population of species with relatively slow growth rate (e.g., large mammals) - especially those of small size - are the most vulnerable, particularly if their plasticity is limited (i.e., specialist species). In addition, whenever organisms from these populations are capable of adaptive plasticity, they can buffer fitness losses in reddish climatic conditions. Likewise, whenever they can adjust their plastic response (e.g., bed-hedging strategy) they will cope with bluish environmental conditions as well. In contrast, life strategies of high fecundity can rely on non-adaptive plasticity for their local adaptation to novel environmental conditions, unless the rate of change is too rapid. A recommended management measure is to guarantee interconnection of isolated populations into metapopulations, such that the supply of useful genetic variation can be increased, and, at the same time, provide them with movement opportunities to follow their preferred niche, when local adaptation becomes problematic. This is particularly important for bluish and reddish climatic conditions, when the rate of change is slow, or for any climatic condition when the level of stress (rate of change) is relatively high.}, language = {en} } @phdthesis{Rezaei2019, author = {Rezaei, Mina}, title = {Deep representation learning from imbalanced medical imaging}, doi = {10.25932/publishup-44275}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442759}, school = {Universit{\"a}t Potsdam}, pages = {xxviii, 160}, year = {2019}, abstract = {Medical imaging plays an important role in disease diagnosis, treatment planning, and clinical monitoring. One of the major challenges in medical image analysis is imbalanced training data, in which the class of interest is much rarer than the other classes. Canonical machine learning algorithms suppose that the number of samples from different classes in the training dataset is roughly similar or balance. Training a machine learning model on an imbalanced dataset can introduce unique challenges to the learning problem. A model learned from imbalanced training data is biased towards the high-frequency samples. The predicted results of such networks have low sensitivity and high precision. In medical applications, the cost of misclassification of the minority class could be more than the cost of misclassification of the majority class. For example, the risk of not detecting a tumor could be much higher than referring to a healthy subject to a doctor. The current Ph.D. thesis introduces several deep learning-based approaches for handling class imbalanced problems for learning multi-task such as disease classification and semantic segmentation. At the data-level, the objective is to balance the data distribution through re-sampling the data space: we propose novel approaches to correct internal bias towards fewer frequency samples. These approaches include patient-wise batch sampling, complimentary labels, supervised and unsupervised minority oversampling using generative adversarial networks for all. On the other hand, at algorithm-level, we modify the learning algorithm to alleviate the bias towards majority classes. In this regard, we propose different generative adversarial networks for cost-sensitive learning, ensemble learning, and mutual learning to deal with highly imbalanced imaging data. We show evidence that the proposed approaches are applicable to different types of medical images of varied sizes on different applications of routine clinical tasks, such as disease classification and semantic segmentation. Our various implemented algorithms have shown outstanding results on different medical imaging challenges.}, language = {en} } @phdthesis{Reeg2019, author = {Reeg, Jette}, title = {Simulating the impact of herbicide drift exposure on non-target terrestrial plant communities}, doi = {10.25932/publishup-42907}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429073}, school = {Universit{\"a}t Potsdam}, pages = {178}, year = {2019}, abstract = {In Europe, almost half of the terrestrial landscape is used for agriculture. Thus, semi-natural habitats such as field margins are substantial for maintaining diversity in intensively managed farmlands. However, plants located at field margins are threatened by agricultural practices such as the application of pesticides within the fields. Pesticides are chemicals developed to control for undesired species within agricultural fields to enhance yields. The use of pesticides implies, however, effects on non-target organisms within and outside of the agricultural fields. Non-target organisms are organisms not intended to be sprayed or controlled for. For example, plants occurring in field margins are not intended to be sprayed, however, can be impaired due to herbicide drift exposure. The authorization of plant protection products such as herbicides requires risk assessments to ensure that the application of the product has no unacceptable effects on the environment. For non-target terrestrial plants (NTTPs), the risk assessment is based on standardized greenhouse studies on plant individual level. To account for the protection of plant populations and communities under realistic field conditions, i.e. extrapolating from greenhouse studies to field conditions and from individual-level to community-level, assessment factors are applied. However, recent studies question the current risk assessment scheme to meet the specific protection goals for non-target terrestrial plants as suggested by the European Food Safety Authority (EFSA). There is a need to clarify the gaps of the current risk assessment and to include suitable higher tier options in the upcoming guidance document for non-target terrestrial plants. In my thesis, I studied the impact of herbicide drift exposure on NTTP communities using a mechanistic modelling approach. I addressed main gaps and uncertainties of the current risk assessment and finally suggested this modelling approach as a novel higher tier option in future risk assessments. Specifically, I extended the plant community model IBC-grass (Individual-based community model for grasslands) to reflect herbicide impacts on plant individuals. In the first study, I compared model predictions of short-term herbicide impacts on artificial plant communities with empirical data. I demonstrated the capability of the model to realistically reflect herbicide impacts. In the second study, I addressed the research question whether or not reproductive endpoints need to be included in future risk assessments to protect plant populations and communities. I compared the consequences of theoretical herbicide impacts on different plant attributes for long-term plant population dynamics in the community context. I concluded that reproductive endpoints only need to be considered if the herbicide effect is assumed to be very high. The endpoints measured in the current vegetative vigour and seedling emergence studies had high impacts for the dynamic of plant populations and communities already at lower effect intensities. Finally, the third study analysed long-term impacts of herbicide application for three different plant communities. This study highlighted the suitability of the modelling approach to simulate different communities and thus detecting sensitive environmental conditions. Overall, my thesis demonstrates the suitability of mechanistic modelling approaches to be used as higher tier options for risk assessments. Specifically, IBC-grass can incorporate available individual-level effect data of standardized greenhouse experiments to extrapolate to community-level under various environmental conditions. Thus, future risk assessments can be improved by detecting sensitive scenarios and including worst-case impacts on non-target plant communities.}, language = {en} } @phdthesis{Rector2019, author = {Rector, Michael V.}, title = {The acute effect of exercise on flow-mediated dilation in young people with cystic fibrosis}, doi = {10.25932/publishup-43893}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-438938}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2019}, abstract = {Introduction: Cystic fibrosis (CF) is a genetic disease which disrupts the function of an epithelial surface anion channel, CFTR (cystic fibrosis transmembrane conductance regulator). Impairment to this channel leads to inflammation and infection in the lung causing the majority of morbidity and mortality. However, CF is a multiorgan disease affecting many tissues, including vascular smooth muscle. Studies have revealed young people with cystic fibrosis lacking inflammation and infection still demonstrate vascular endothelial dysfunction, measured per flow-mediated dilation (FMD). In other disease cohorts, i.e. diabetic and obese, endurance exercise interventions have been shown improve or taper this impairment. However, long-term exercise interventions are risky, as well as costly in terms of time and resources. Nevertheless, emerging research has correlated the acute effects of exercise with its long-term benefits and advocates the study of acute exercise effects on FMD prior to longitudinal studies. The acute effects of exercise on FMD have previously not been examined in young people with CF, but could yield insights on the potential benefits of long-term exercise interventions. The aims of these studies were to 1) develop and test the reliability of the FMD method and its applicability to study acute exercise effects; 2) compare baseline FMD and the acute exercise effect on FMD between young people with and without CF; and 3) explore associations between the acute effects of exercise on FMD and demographic characteristics, physical activity levels, lung function, maximal exercise capacity or inflammatory hsCRP levels. Methods: Thirty young volunteers (10 people with CF, 10 non-CF and 10 non-CF active matched controls) between the ages of 10 and 30 years old completed blood draws, pulmonary function tests, maximal exercise capacity tests and baseline FMD measurements, before returning approximately 1 week later and performing a 30-min constant load training at 75\% HRmax. FMD measurements were taken prior, immediately after, 30 minutes after and 1 hour after constant load training. ANOVAs and repeated measures ANOVAs were employed to explore differences between groups and timepoints, respectively. Linear regression was implemented and evaluated to assess correlations between FMD and demographic characteristics, physical activity levels, lung function, maximal exercise capacity or inflammatory hsCRP levels. For all comparisons, statistical significance was set at a p-value of α < 0.05. Results: Young people with CF presented with decreased lung function and maximal exercise capacity compared to matched controls. Baseline FMD was also significantly decreased in the CF group (CF: 5.23\% v non-CF: 8.27\% v non-CF active: 9.12\%). Immediately post-training, FMD was significantly attenuated (approximately 40\%) in all groups with CF still demonstrating the most minimal FMD. Follow-up measurements of FMD revealed a slow recovery towards baseline values 30 min post-training and improvements in the CF and non-CF active groups 60 min post-training. Linear regression exposed significant correlations between maximal exercise capacity (VO2 peak), BMI and FMD immediately post-training. Conclusion: These new findings confirm that CF vascular endothelial dysfunction can be acutely modified by exercise and will aid in underlining the importance of exercise in CF populations. The potential benefits of long-term exercise interventions on vascular endothelial dysfunction in young people with CF warrants further investigation.}, language = {en} } @phdthesis{Ramachandran2019, author = {Ramachandran, Varsha}, title = {Massive star evolution, star formation, and feedback at low metallicity}, doi = {10.25932/publishup-43245}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432455}, school = {Universit{\"a}t Potsdam}, pages = {291}, year = {2019}, abstract = {The goal of this thesis is to broaden the empirical basis for a better, comprehensive understanding of massive star evolution, star formation and feedback at low metallicity. Low metallicity massive stars are a key to understand the early universe. Quantitative information on metal-poor massive stars was sparse before. The quantitative spectroscopic studies of massive star populations associated with large-scale ISM structures were not performed at low metallicity before, but are important to investigate star-formation histories and feedback in detail. Much of this work relies on spectroscopic observations with VLT-FLAMES of ~500 OB stars in the Magellanic Clouds. When available, the optical spectroscopy was complemented by UV spectra from the HST, IUE, and FUSE archives. The two representative young stellar populations that have been studied are associated with the superbubble N 206 in the Large Magellanic Cloud (LMC) and with the supergiant shell SMC-SGS 1 in the Wing of the Small Magellanic Cloud (SMC), respectively. We performed spectroscopic analyses of the massive stars using the nonLTE Potsdam Wolf-Rayet (PoWR) model atmosphere code. We estimated the stellar, wind, and feedback parameters of the individual massive stars and established their statistical distributions. The mass-loss rates of N206 OB stars are consistent with theoretical expectations for LMC metallicity. The most massive and youngest stars show nitrogen enrichment at their surface and are found to be slower rotators than the rest of the sample. The N 206 complex has undergone star formation episodes since more than 30 Myr, with a current star formation rate higher than average in the LMC. The spatial age distribution of stars across the complex possibly indicates triggered star formation due to the expansion of the superbubble. Three very massive, young Of stars in the region dominate the ionizing and mechanical feedback among hundreds of other OB stars in the sample. The current stellar wind feedback rate from the two WR stars in the complex is comparable to that released by the whole OB sample. We see only a minor fraction of this stellar wind feedback converted into X-ray emission. In this LMC complex, stellar winds and supernovae equally contribute to the total energy feedback, which eventually powered the central superbubble. However, the total energy input accumulated over the time scale of the superbubble significantly exceeds the observed energy content of the complex. The lack of energy along with the morphology of the complex suggests a leakage of hot gas from the superbubble. With a detailed spectroscopic study of massive stars in SMC-SGS 1, we provide the stellar and wind parameters of a large sample of OB stars at low metallicity, including those in the lower mass-range. The stellar rotation velocities show a broad, tentatively bimodal distribution, with Be stars being among the fastest. A few very luminous O stars are found close to the main sequence, while all other, slightly evolved stars obey a strict luminosity limit. Considering additional massive stars in evolved stages, with published parameters and located all over the SMC, essentially confirms this picture. The comparison with single-star evolutionary tracks suggests a dichotomy in the fate of massive stars in the SMC. Only stars with an initial mass below 30 solar masses seem to evolve from the main sequence to the cool side of the HRD to become a red supergiant and to explode as type II-P supernova. In contrast, more massive stars appear to stay always hot and might evolve quasi chemically homogeneously, finally collapsing to relatively massive black holes. However, we find no indication that chemical mixing is correlated with rapid rotation. We measured the key parameters of stellar feedback and established the links between the rates of star formation and supernovae. Our study demonstrates that in metal-poor environments stellar feedback is dominated by core-collapse supernovae in combination with winds and ionizing radiation supplied by a few of the most massive stars. We found indications of the stochastic mode of star formation, where the resulting stellar population is fully capable of producing large-scale structures such as the supergiant shell SMC-SGS 1 in the Wing. The low level of feedback in metal-poor stellar populations allows star formation episodes to persist over long timescales. Our study showcases the importance of quantitative spectroscopy of massive stars with adequate stellar-atmosphere models in order to understand star-formation, evolution, and feedback. The stellar population analyses in the LMC and SMC make us understand that massive stars and their impact can be very different depending on their environment. Obviously, due to their different metallicity, the massive stars in the LMC and the SMC follow different evolutionary paths. Their winds differ significantly, and the key feedback agents are different. As a consequence, the star formation can proceed in different modes.}, language = {en} } @phdthesis{Raatz2019, author = {Raatz, Michael}, title = {Strategies within predator-prey interactions - from individuals to ecosystems}, doi = {10.25932/publishup-42658}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426587}, school = {Universit{\"a}t Potsdam}, pages = {175}, year = {2019}, abstract = {Predator-prey interactions provide central links in food webs. These interaction are directly or indirectly impacted by a number of factors. These factors range from physiological characteristics of individual organisms, over specifics of their interaction to impacts of the environment. They may generate the potential for the application of different strategies by predators and prey. Within this thesis, I modelled predator-prey interactions and investigated a broad range of different factors driving the application of certain strategies, that affect the individuals or their populations. In doing so, I focused on phytoplankton-zooplankton systems as established model systems of predator-prey interactions. At the level of predator physiology I proposed, and partly confirmed, adaptations to fluctuating availability of co-limiting nutrients as beneficial strategies. These may allow to store ingested nutrients or to regulate the effort put into nutrient assimilation. We found that these two strategies are beneficial at different fluctuation frequencies of the nutrients, but may positively interact at intermediate frequencies. The corresponding experiments supported our model results. We found that the temporal structure of nutrient fluctuations indeed has strong effects on the juvenile somatic growth rate of {\itshape Daphnia}. Predator colimitation by energy and essential biochemical nutrients gave rise to another physiological strategy. High-quality prey species may render themselves indispensable in a scenario of predator-mediated coexistence by being the only source of essential biochemical nutrients, such as cholesterol. Thereby, the high-quality prey may even compensate for a lacking defense and ensure its persistence in competition with other more defended prey species. We found a similar effect in a model where algae and bacteria compete for nutrients. Now, being the only source of a compound that is required by the competitor (bacteria) prevented the competitive exclusion of the algae. In this case, the essential compounds were the organic carbon provided by the algae. Here again, being indispensable served as a prey strategy that ensured its coexistence. The latter scenario also gave rise to the application of the two metabolic strategies of autotrophy and heterotrophy by algae and bacteria, respectively. We found that their coexistence allowed the recycling of resources in a microbial loop that would otherwise be lost. Instead, these resources were made available to higher trophic levels, increasing the trophic transfer efficiency in food webs. The predation process comprises the next higher level of factors shaping the predator-prey interaction, besides these factors that originated from the functioning or composition of individuals. Here, I focused on defensive mechanisms and investigated multiple scenarios of static or adaptive combinations of prey defense and predator offense. I confirmed and extended earlier reports on the coexistence-promoting effects of partially lower palatability of the prey community. When bacteria and algae are coexisting, a higher palatability of bacteria may increase the average predator biomass, with the side effect of making the population dynamics more regular. This may facilitate experimental investigations and interpretations. If defense and offense are adaptive, this allows organisms to maximize their growth rate. Besides this fitness-enhancing effect, I found that co-adaptation may provide the predator-prey system with the flexibility to buffer external perturbations. On top of these rather internal factors, environmental drivers also affect predator-prey interactions. I showed that environmental nutrient fluctuations may create a spatio-temporal resource heterogeneity that selects for different predator strategies. I hypothesized that this might favour either storage or acclimation specialists, depending on the frequency of the environmental fluctuations. We found that many of these factors promote the coexistence of different strategies and may therefore support and sustain biodiversity. Thus, they might be relevant for the maintenance of crucial ecosystem functions that also affect us humans. Besides this, the richness of factors that impact predator-prey interactions might explain why so many species, especially in the planktonic regime, are able to coexist.}, language = {en} } @phdthesis{Qin2019, author = {Qin, Qing}, title = {Chemical functionalization of porous carbon-based materials to enable novel modes for efficient electrochemical N2 fixation}, doi = {10.25932/publishup-44339}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-443397}, school = {Universit{\"a}t Potsdam}, pages = {146}, year = {2019}, abstract = {The central motivation of the thesis was to provide possible solutions and concepts to improve the performance (e.g. activity and selectivity) of electrochemical N2 reduction reaction (NRR). Given that porous carbon-based materials usually exhibit a broad range of structural properties, they could be promising NRR catalysts. Therefore, the advanced design of novel porous carbon-based materials and the investigation of their application in electrocatalytic NRR including the particular reaction mechanisms are the most crucial points to be addressed. In this regard, three main topics were investigated. All of them are related to the functionalization of porous carbon for electrochemical NRR or other electrocatalytic reactions. In chapter 3, a novel C-TixOy/C nanocomposite has been described that has been obtained via simple pyrolysis of MIL-125(Ti). A novel mode for N2 activation is achieved by doping carbon atoms from nearby porous carbon into the anion lattice of TixOy. By comparing the NRR performance of M-Ts and by carrying out DFT calculations, it is found that the existence of (O-)Ti-C bonds in C-doped TixOy can largely improve the ability to activate and reduce N2 as compared to unoccupied OVs in TiO2. The strategy of rationally doping heteroatoms into the anion lattice of transition metal oxides to create active centers may open many new opportunities beyond the use of noble metal-based catalysts also for other reactions that require the activation of small molecules as well. In chapter 4, a novel catalyst construction composed of Au single atoms decorated on the surface of NDPCs was reported. The introduction of Au single atoms leads to active reaction sites, which are stabilized by the N species present in NDPCs. Thus, the interaction within as-prepared AuSAs-NDPCs catalysts enabled promising performance for electrochemical NRR. For the reaction mechanism, Au single sites and N or C species can act as Frustrated Lewis pairs (FLPs) to enhance the electron donation and back-donation process to activate N2 molecules. This work provides new opportunities for catalyst design in order to achieve efficient N2 fixation at ambient conditions by utilizing recycled electric energy. The last topic described in chapter 5 mainly focused on the synthesis of dual heteroatom-doped porous carbon from simple precursors. The introduction of N and B heteroatoms leads to the construction of N-B motives and Frustrated Lewis pairs in a microporous architecture which is also rich in point defects. This can improve the strength of adsorption of different reactants (N2 and HMF) and thus their activation. As a result, BNC-2 exhibits a desirable electrochemical NRR and HMF oxidation performance. Gas adsorption experiments have been used as a simple tool to elucidate the relationship between the structure and catalytic activity. This work provides novel and deep insights into the rational design and the origin of activity in metal-free electrocatalysts and enables a physically viable discussion of the active motives, as well as the search for their further applications. Throughout this thesis, the ubiquitous problems of low selectivity and activity of electrochemical NRR are tackled by designing porous carbon-based catalysts with high efficiency and exploring their catalytic mechanisms. The structure-performance relationships and mechanisms of activation of the relatively inert N2 molecules are revealed by either experimental results or DFT calculations. These fundamental understandings pave way for a future optimal design and targeted promotion of NRR catalysts with porous carbon-based structure, as well as study of new N2 activation modes.}, language = {en} } @phdthesis{Pohlenz2019, author = {Pohlenz, Julia}, title = {Structural insights into sodium-rich silicate - carbonate glasses and melts}, doi = {10.25932/publishup-42382}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423826}, school = {Universit{\"a}t Potsdam}, pages = {XXII, 117}, year = {2019}, abstract = {Carbonate-rich silicate and carbonate melts play a crucial role in deep Earth magmatic processes and their melt structure is a key parameter, as it controls physical and chemical properties. Carbonate-rich melts can be strongly enriched in geochemically important trace elements. The structural incorporation mechanisms of these elements are difficult to study because such melts generally cannot be quenched to glasses, which are usually employed for structural investigations. This thesis investigates the influence of CO2 on the local environments of trace elements contained in silicate glasses with variable CO2 concentrations as well as in silicate and carbonate melts. The compositions studied include sodium-rich peralkaline silicate melts and glasses and carbonate melts similar to those occurring naturally at Oldoinyo Lengai volcano, Tanzania. The local environments of the three elements yttrium (Y), lanthanum (La) and strontium (Sr) were investigated in synthesized glasses and melts using X-ray absorption fine structure (XAFS) spectroscopy. Especially extended X-ray absorption fine structure spectroscopy (EXAFS) provides element specific information on local structure, such as bond lengths, coordination numbers and the degree of disorder. To cope with the enhanced structural disorder present in glasses and melts, EXAFS analysis was based on fitting approaches using an asymmetric distribution function as well as a correlation model according to bond valence theory. Firstly, silicate glasses quenched from high pressure/temperature melts with up to 7.6 wt \% CO2 were investigated. In strongly and extremely peralkaline glasses the local structure of Y is unaffected by the CO2 content (with oxygen bond lengths of ~ 2.29 {\AA}). Contrary, the bond lengths for Sr-O and La-O increase with increasing CO2 content in the strongly peralkaline glasses from ~ 2.53 to ~ 2.57 {\AA} and from ~ 2.52 to ~ 2.54 {\AA}, respectively, while they remain constant in extremely peralkaline glasses (at ~ 2.55 {\AA} and 2.54 {\AA}, respectively). Furthermore, silicate and unquenchable carbonate melts were investigated in-situ at high pressure/temperature conditions (2.2 to 2.6 GPa, 1200 to 1500 °C) using a Paris-Edinburgh press. A novel design of the pressure medium assembly for this press was developed, which features increased mechanical stability as well as enhanced transmittance at relevant energies to allow for low content element EXAFS in transmission. Compared to glasses the bond lengths of Y-O, La-O and Sr-O are elongated by up to + 3 \% in the melt and exhibit higher asymmetric pair distributions. For all investigated silicate melt compositions Y-O bond lengths were found constant at ~ 2.37 {\AA}, while in the carbonate melt the Y-O length increases slightly to 2.41 {\AA}. The La-O bond lengths in turn, increase systematically over the whole silicate - carbonate melt joint from 2.55 to 2.60 {\AA}. Sr-O bond lengths in melts increase from ~ 2.60 to 2.64 {\AA} from pure silicate to silicate-bearing carbonate composition with constant elevated bond length within the carbonate region. For comparison and deeper insight, glass and melt structures of Y and Sr bearing sodium-rich silicate to carbonate compositions were simulated in an explorative ab initio molecular dynamics (MD) study. The simulations confirm observed patterns of CO2-dependent local changes around Y and Sr and additionally provide further insights into detailed incorporation mechanisms of the trace elements and CO2. Principle findings include that in sodium-rich silicate compositions carbon either is mainly incorporated as a free carbonate-group or shares one oxygen with a network former (Si or [4]Al) to form a non-bridging carbonate. Of minor importance are bridging carbonates between two network formers. Here, a clear preference for two [4]Al as adjacent network formers occurs, compared to what a statistical distribution would suggest. In C-bearing silicate melts minor amounts of molecular CO2 are present, which is almost totally dissolved as carbonate in the quenched glasses. The combination of experiment and simulation provides extraordinary insights into glass and melt structures. The new data is interpreted on the basis of bond valence theory and is used to deduce potential mechanisms for structural incorporation of investigated elements, which allow for prediction on their partitioning behavior in natural melts. Furthermore, it provides unique insights into the dissolution mechanisms of CO2 in silicate melts and into the carbonate melt structure. For the latter, a structural model is suggested, which is based on planar CO3-groups linking 7- to 9-fold cation polyhedra, in accordance to structural units as found in the Na-Ca carbonate nyerereite. Ultimately, the outcome of this study contributes to rationalize the unique physical properties and geological phenomena related to carbonated silicate-carbonate melts.}, language = {en} } @phdthesis{Peter2019, author = {Peter, Franziska}, title = {Transition to synchrony in finite Kuramoto ensembles}, doi = {10.25932/publishup-42916}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429168}, school = {Universit{\"a}t Potsdam}, pages = {vi, 93}, year = {2019}, abstract = {Synchronisation - die Ann{\"a}herung der Rhythmen gekoppelter selbst oszillierender Systeme - ist ein faszinierendes dynamisches Ph{\"a}nomen, das in vielen biologischen, sozialen und technischen Systemen auftritt. Die vorliegende Arbeit befasst sich mit Synchronisation in endlichen Ensembles schwach gekoppelter selbst-erhaltender Oszillatoren mit unterschiedlichen nat{\"u}rlichen Frequenzen. Das Standardmodell f{\"u}r dieses kollektive Ph{\"a}nomen ist das Kuramoto-Modell - unter anderem aufgrund seiner L{\"o}sbarkeit im thermodynamischen Limes unendlich vieler Oszillatoren. {\"A}hnlich einem thermodynamischen Phasen{\"u}bergang zeigt im Fall unendlich vieler Oszillatoren ein Ordnungsparameter den {\"U}bergang von Inkoh{\"a}renz zu einem partiell synchronen Zustand an, in dem ein Teil der Oszillatoren mit einer gemeinsamen Frequenz rotiert. Im endlichen Fall treten Fluktuationen auf. In dieser Arbeit betrachten wir den bisher wenig beachteten Fall von bis zu wenigen hundert Oszillatoren, unter denen vergleichbar starke Fluktuationen auftreten, bei denen aber ein Vergleich zu Frequenzverteilungen im unendlichen Fall m{\"o}glich ist. Zun{\"a}chst definieren wir einen alternativen Ordnungsparameter zur Feststellung einer kollektiven Mode im endlichen Kuramoto-Modell. Dann pr{\"u}fen wir die Abh{\"a}ngigkeit des Synchronisationsgrades und der mittleren Rotationsfrequenz der kollektiven Mode von Eigenschaften der nat{\"u}rlichen Frequenzverteilung f{\"u}r verschiedene Kopplungsst{\"a}rken. Wir stellen dabei zun{\"a}chst numerisch fest, dass der Synchronisationsgrad stark von der Form der Verteilung (gemessen durch die Kurtosis) und die Rotationsfrequenz der kollektiven Mode stark von der Asymmetrie der Verteilung (gemessen durch die Schiefe) der nat{\"u}rlichen Frequenzen abh{\"a}ngt. Beides k{\"o}nnen wir im thermodynamischen Limes analytisch verifizieren. Mit diesen Ergebnissen k{\"o}nnen wir Erkenntnisse anderer Autoren besser verstehen und verallgemeinern. Etwas abseits des roten Fadens dieser Arbeit finden wir außerdem einen analytischen Ausdruck f{\"u}r die Volumenkontraktion im Phasenraum. Der zweite Teil der Arbeit konzentriert sich auf den ordnenden Effekt von Fluktuationen, die durch die Endlichkeit des Systems zustande kommen. Im unendlichen Modell sind die Oszillatoren eindeutig in koh{\"a}rent und inkoh{\"a}rent und damit in geordnet und ungeordnet getrennt. Im endlichen Fall k{\"o}nnen die auftretenden Fluktuationen zus{\"a}tzliche Ordnung unter den asynchronen Oszillatoren erzeugen. Das grundlegende Prinzip, die rauschinduzierte Synchronisation, ist aus einer Reihe von Publikationen bekannt. Unter den gekoppelten Oszillatoren n{\"a}hern sich die Phasen aufgrund der Fluktuationen des Ordnungsparameters an, wie wir einerseits direkt numerisch zeigen und andererseits mit einem Synchronisationsmaß aus der gerichteten Statistik zwischen Paaren passiver Oszillatoren nachweisen. Wir bestimmen die Abh{\"a}ngigkeit dieses Synchronisationsmaßes vom Verh{\"a}ltnis von paarweiser nat{\"u}rlicher Frequenzdifferenz zur Varianz der Fluktuationen. Dabei finden wir eine gute {\"U}bereinstimmung mit einem einfachen analytischen Modell, in welchem wir die deterministischen Fluktuationen des Ordnungsparameters durch weißes Rauschen ersetzen.}, language = {en} } @phdthesis{Perlich2019, author = {Perlich, Anja}, title = {Digital collaborative documentation in mental healthcare}, doi = {10.25932/publishup-44029}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-440292}, school = {Universit{\"a}t Potsdam}, pages = {x, 135}, year = {2019}, abstract = {With the growth of information technology, patient attitudes are shifting - away from passively receiving care towards actively taking responsibility for their well- being. Handling doctor-patient relationships collaboratively and providing patients access to their health information are crucial steps in empowering patients. In mental healthcare, the implicit consensus amongst practitioners has been that sharing medical records with patients may have an unpredictable, harmful impact on clinical practice. In order to involve patients more actively in mental healthcare processes, Tele-Board MED (TBM) allows for digital collaborative documentation in therapist-patient sessions. The TBM software system offers a whiteboard-inspired graphical user interface that allows therapist and patient to jointly take notes during the treatment session. Furthermore, it provides features to automatically reuse the digital treatment session notes for the creation of treatment session summaries and clinical case reports. This thesis presents the development of the TBM system and evaluates its effects on 1) the fulfillment of the therapist's duties of clinical case documentation, 2) patient engagement in care processes, and 3) the therapist-patient relationship. Following the design research methodology, TBM was developed and tested in multiple evaluation studies in the domains of cognitive behavioral psychotherapy and addiction care. The results show that therapists are likely to use TBM with patients if they have a technology-friendly attitude and when its use suits the treatment context. Support in carrying out documentation duties as well as fulfilling legal requirements contributes to therapist acceptance. Furthermore, therapists value TBM as a tool to provide a discussion framework and quick access to worksheets during treatment sessions. Therapists express skepticism, however, regarding technology use in patient sessions and towards complete record transparency in general. Patients expect TBM to improve the communication with their therapist and to offer a better recall of discussed topics when taking a copy of their notes home after the session. Patients are doubtful regarding a possible distraction of the therapist and usage in situations when relationship-building is crucial. When applied in a clinical environment, collaborative note-taking with TBM encourages patient engagement and a team feeling between therapist and patient. Furthermore, it increases the patient's acceptance of their diagnosis, which in turn is an important predictor for therapy success. In summary, TBM has a high potential to deliver more than documentation support and record transparency for patients, but also to contribute to a collaborative doctor-patient relationship. This thesis provides design implications for the development of digital collaborative documentation systems in (mental) healthcare as well as recommendations for a successful implementation in clinical practice.}, language = {en} } @phdthesis{Numberger2019, author = {Numberger, Daniela}, title = {Urban wastewater and lakes as habitats for bacteria and potential vectors for pathogens}, doi = {10.25932/publishup-43709}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437095}, school = {Universit{\"a}t Potsdam}, pages = {VI, 130}, year = {2019}, abstract = {Wasser ist lebensnotwendig und somit eine essentielle Ressource. Jedoch sind unsere S{\"u}ßwasser-Ressourcen begrenzt und ihre Erhaltung daher besonders wichtig. Verschmutzungen mit Chemikalien und Krankheitserregern, die mit einer wachsenden Bev{\"o}lkerung und Urbanisierung einhergehen, verschlechtern die Qualit{\"a}t unseres S{\"u}ßwassers. Außerdem kann Wasser als {\"U}bertragungsvektor f{\"u}r Krankheitserreger dienen und daher wasserb{\"u}rtige Krankheiten verursachen. Der Leibniz-Forschungsverbund INFECTIONS'21 untersuchte innerhalb der interdisziplin{\"a}ren Forschungsgruppe III - „Wasser", Gew{\"a}sser als zentralen Mittelpunkt f{\"u}r Krankheiterreger. Dabei konzentrierte man sich auf Clostridioides difficile sowie avi{\"a}re Influenza A-Viren, von denen angenommen wird, dass sie in die Gew{\"a}sser ausgeschieden werden. Ein weiteres Ziel bestand darin, die bakterielle Gemeinschaften eines Kl{\"a}rwerkes der deutschen Hauptstadt Berlin zu charakterisieren, um anschließend eine Bewertung des potentiellen Gesundheitsrisikos geben zu k{\"o}nnen. Bakterielle Gemeinschaften des Roh- und Klarwassers aus dem Kl{\"a}rwerk unterschieden sich signifikant voneinander. Der Anteil an Darm-/F{\"a}kalbakterien war relativ niedrig und potentielle Darmpathogene wurden gr{\"o}ßtenteils aus dem Rohwasser entfernt. Ein potentielles Gesundheitsrisiko konnte allerdings von potentiell pathogenen Legionellen wie L. lytica festgestellt werden, deren relative Abundanz im Klarwasser h{\"o}her war als im Rohwasser. Es wurden außerdem drei C. difficile-Isolate aus den Kl{\"a}rwerk-Rohwasser und einem st{\"a}dtischen Badesee in Berlin (Weisser See) gewonnen und sequenziert. Die beiden Isolate aus dem Kl{\"a}rwerk tragen keine Toxin-Gene, wohingegen das Isolat aus dem See Toxin-Gene besitzt. Alle drei Isolate sind sehr nah mit humanen St{\"a}mmen verwandt. Dies deutet auf ein potentielles, wenn auch sporadisches Gesundheitsrisiko hin. (Avi{\"a}re) Influenza A-Viren wurden in 38.8\% der untersuchten Sedimentproben mittels PCR detektiert, aber die Virusisolierung schlug fehl. Ein Experiment mit beimpften Wasser- und Sedimentproben zeigte, dass f{\"u}r die Isolierung aus Sedimentproben eine relativ hohe Viruskonzentration n{\"o}tig ist. In Wasserproben ist jedoch ein niedriger Titer an Influenza A-Viren ausreichend, um eine Infektion auszul{\"o}sen. Es konnte zudem auch festgestellt werden, dass sich „Madin-Darby Canine Kidney (MDCK)―-Zellkulturen im Gegensatz zu embryonierten H{\"u}hnereiern besser eignen, um Influenza A-Viren aus Sediment zu isolieren. Zusammenfassend l{\"a}sst sich sagen, dass diese Arbeit m{\"o}gliche Gesundheitsrisiken aufgedeckt hat, wie etwa durch Legionellen im untersuchten Berliner Kl{\"a}rwerk, deren relative Abundanz in gekl{\"a}rtem Abwasser h{\"o}her ist als im Rohwasser. Desweiteren wird indiziert, dass Abwasser und Gew{\"a}sser als Reservoir und Vektor f{\"u}r pathogene Organismen dienen k{\"o}nnen, selbst f{\"u}r nicht-typische Wasser-Pathogene wie C. difficile.}, language = {en} } @phdthesis{Noack2019, author = {Noack, Sebastian}, title = {Poly(lactide)-based amphiphilic block copolymers}, doi = {10.25932/publishup-43616}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436168}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 148}, year = {2019}, abstract = {Due to its bioavailability and (bio)degradability, poly(lactide) (PLA) is an interesting polymer that is already being used as packaging material, surgical seam, and drug delivery system. Dependent on various parameters such as polymer composition, amphiphilicity, sample preparation, and the enantiomeric purity of lactide, PLA in an amphiphilic block copolymer can affect the self-assembly behavior dramatically. However, sizes and shapes of aggregates have a critical effect on the interactions between biological and drug delivery systems, where the general understanding of these polymers and their ability to influence self-assembly is of significant interest in science. The first part of this thesis describes the synthesis and study of a series of linear poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA)-based amphiphilic block copolymers with varying PLA (hydrophobic), and poly(ethylene glycol) (PEG) (hydrophilic) chain lengths and different block copolymer sequences (PEG-PLA and PLA-PEG). The PEG-PLA block copolymers were synthesized by ring-opening polymerization of lactide initiated by a PEG-OH macroinitiator. In contrast, the PLA-PEG block copolymers were produced by a Steglich-esterification of modified PLA with PEG-OH. The aqueous self-assembly at room temperature of the enantiomerically pure PLLA-based block copolymers and their stereocomplexed mixtures was investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). Spherical micelles and worm-like structures were produced, whereby the obtained self-assembled morphologies were affected by the lactide weight fraction in the block copolymer and self-assembly time. The formation of worm-like structures increases with decreasing PLA-chain length and arises from spherical micelles, which become colloidally unstable and undergo an epitaxial fusion with other micelles. As shown by DSC experiments, the crystallinity of the corresponding PLA blocks increases within the self-assembly time. However, the stereocomplexed self-assembled structures behave differently from the parent polymers and result in irregular-shaped clusters of spherical micelles. Additionally, time-dependent self-assembly experiments showed a transformation, from already self-assembled morphologies of different shapes to more compact micelles upon stereocomplexation. In the second part of this thesis, with the objective to influence the self-assembly of PLA-based block copolymers and its stereocomplexes, poly(methyl phosphonate) (PMeP) and poly(isopropyl phosphonate) (PiPrP) were produced by ring-opening polymerization to implement an alternative to the hydrophilic block PEG. Although, the 1,8 diazabicyclo[5.4.0]unde 7 ene (DBU) or 1,5,7 triazabicyclo[4.4.0]dec-5-ene (TBD) mediated synthesis of the corresponding poly(alkyl phosphonate)s was successful, however, not so the polymerization of copolymers with PLA-based precursors (PLA-homo polymers, and PEG-PLA block copolymers). Transesterification, obtained by 1H-NMR spectroscopy, between the poly(phosphonate)- and PLA block caused a high-field shifted peak split of the methine proton in the PLA polymer chain, with split intensities depending on the used catalyst (DBU for PMeP, and TBD for PiPrP polymerization). An additional prepared block copolymer PiPrP-PLLA that wasn't affected in its polymer sequence was finally used for self-assembly experiments with PLA-PEG and PEG-PLA mixing. This work provides a comprehensive study of the self-assembly behavior of PLA-based block copolymers influenced by various parameters such as polymer block lengths, self-assembly time, and stereocomplexation of block copolymer mixtures.}, language = {en} } @phdthesis{Nikkhoo2019, author = {Nikkhoo, Mehdi}, title = {Analytical and numerical elastic dislocation models of volcano deformation processes}, doi = {10.25932/publishup-42972}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429720}, school = {Universit{\"a}t Potsdam}, pages = {x, 175}, year = {2019}, abstract = {The advances in modern geodetic techniques such as the global navigation satellite system (GNSS) and synthetic aperture radar (SAR) provide surface deformation measurements with an unprecedented accuracy and temporal and spatial resolutions even at most remote volcanoes on Earth. Modelling of the high-quality geodetic data is crucial for understanding the underlying physics of volcano deformation processes. Among various approaches, mathematical models are the most effective for establishing a quantitative link between the surface displacements and the shape and strength of deformation sources. Advancing the geodetic data analyses and hence, the knowledge on the Earth's interior processes, demands sophisticated and efficient deformation modelling approaches. Yet the majority of these models rely on simplistic assumptions for deformation source geometries and ignore complexities such as the Earth's surface topography and interactions between multiple sources. This thesis addresses this problem in the context of analytical and numerical volcano deformation modelling. In the first part, new analytical solutions for triangular dislocations (TDs) in uniform infinite and semi-infinite elastic media have been developed. Through a comprehensive investigation, the locations and causes of artefact singularities and numerical instabilities associated with TDs have been determined and these long-standing drawbacks have been addressed thoroughly. This approach has then been extended to rectangular dislocations (RDs) with full rotational degrees of freedom. Using this solution in a configuration of three orthogonal RDs a compound dislocation model (CDM) has been developed. The CDM can represent generalized volumetric and planar deformation sources efficiently. Thus, the CDM is relevant for rapid inversions in early warning systems and can also be used for detailed deformation analyses. In order to account for complex source geometries and realistic topography in the deformation models, in this thesis the boundary element method (BEM) has been applied to the new solutions for TDs. In this scheme, complex surfaces are simulated as a continuous mesh of TDs that may possess any displacement or stress boundary conditions in the BEM calculations. In the second part of this thesis, the developed modelling techniques have been applied to five different real-world deformation scenarios. As the first and second case studies the deformation sources associated with the 2015 Calbuco eruption and 2013-2016 Copahue inflation period have been constrained by using the CDM. The highly anisotropic source geometries in these two cases highlight the importance of using generalized deformation models such as the CDM, for geodetic data inversions. The other three case studies in this thesis involve high-resolution dislocation models and BEM calculations. As the third case, the 2013 pre-explosive inflation of Volc{\´a}n de Colima has been simulated by using two ellipsoidal cavities, which locate zones of pressurization in the volcano's lava dome. The fourth case study, which serves as an example for volcanotectonics interactions, the 3-D kinematics of an active ring-fault at Tend{\"u}rek volcano has been investigated through modelling displacement time series over the 2003-2010 time period. As the fifth example, the deformation sources associated with North Korea's underground nuclear test in September 2017 have been constrained. These examples demonstrate the advancement and increasing level of complexity and the general applicability of the developed dislocation modelling techniques. This thesis establishes a unified framework for rapid and high-resolution dislocation modelling, which in addition to volcano deformations can also be applied to tectonic and humanmade deformations.}, language = {en} } @phdthesis{Nikaj2019, author = {Nikaj, Adriatik}, title = {Restful choreographies}, doi = {10.25932/publishup-43890}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-438903}, school = {Universit{\"a}t Potsdam}, pages = {xix, 146}, year = {2019}, abstract = {Business process management has become a key instrument to organize work as many companies represent their operations in business process models. Recently, business process choreography diagrams have been introduced as part of the Business Process Model and Notation standard to represent interactions between business processes, run by different partners. When it comes to the interactions between services on the Web, Representational State Transfer (REST) is one of the primary architectural styles employed by web services today. Ideally, the RESTful interactions between participants should implement the interactions defined at the business choreography level. The problem, however, is the conceptual gap between the business process choreography diagrams and RESTful interactions. Choreography diagrams, on the one hand, are modeled from business domain experts with the purpose of capturing, communicating and, ideally, driving the business interactions. RESTful interactions, on the other hand, depend on RESTful interfaces that are designed by web engineers with the purpose of facilitating the interaction between participants on the internet. In most cases however, business domain experts are unaware of the technology behind web service interfaces and web engineers tend to overlook the overall business goals of web services. While there is considerable work on using process models during process implementation, there is little work on using choreography models to implement interactions between business processes. This thesis addresses this research gap by raising the following research question: How to close the conceptual gap between business process choreographies and RESTful interactions? This thesis offers several research contributions that jointly answer the research question. The main research contribution is the design of a language that captures RESTful interactions between participants---RESTful choreography modeling language. Formal completeness properties (with respect to REST) are introduced to validate its instances, called RESTful choreographies. A systematic semi-automatic method for deriving RESTful choreographies from business process choreographies is proposed. The method employs natural language processing techniques to translate business interactions into RESTful interactions. The effectiveness of the approach is shown by developing a prototypical tool that evaluates the derivation method over a large number of choreography models. In addition, the thesis proposes solutions towards implementing RESTful choreographies. In particular, two RESTful service specifications are introduced for aiding, respectively, the execution of choreographies' exclusive gateways and the guidance of RESTful interactions.}, language = {en} } @phdthesis{Nguyen2019, author = {Nguyen, Quyet Doan}, title = {Electro-acoustical probing of space-charge and dipole-polarization profiles in polymer dielectrics for electret and electrical-insulation applications}, doi = {10.25932/publishup-44562}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445629}, school = {Universit{\"a}t Potsdam}, pages = {105}, year = {2019}, abstract = {Electrets are dielectrics with quasi-permanent electric charge and/or dipoles, sometimes can be regarded as an electric analogy to a magnet. Since the discovery of the excellent charge retention capacity of poly(tetrafluoro ethylene) and the invention of the electret microphone, electrets have grown out of a scientific curiosity to an important application both in science and technology. The history of electret research goes hand in hand with the quest for new materials with better capacity at charge and/or dipole retention. To be useful, electrets normally have to be charged/poled to render them electro-active. This process involves electric-charge deposition and/or electric dipole orientation within the dielectrics ` surfaces and bulk. Knowledge of the spatial distribution of electric charge and/or dipole polarization after their deposition and subsequent decay is crucial in the task to improve their stability in the dielectrics. Likewise, for dielectrics used in electrical insulation applications, there are also needs for accumulated space-charge and polarization spatial profiling. Traditionally, space-charge accumulation and large dipole polarization within insulating dielectrics is considered undesirable and harmful to the insulating dielectrics as they might cause dielectric loss and could lead to internal electric field distortion and local field enhancement. High local electric field could trigger several aging processes and reduce the insulating dielectrics' lifetime. However, with the advent of high-voltage DC transmission and high-voltage capacitor for energy storage, these are no longer the case. There are some overlapped between the two fields of electrets and electric insulation. While quasi-permanently trapped electric-charge and/or large remanent dipole polarization are the requisites for electret operation, stably trapped electric charge in electric insulation helps reduce electric charge transport and overall reduced electric conductivity. Controlled charge trapping can help in preventing further charge injection and accumulation as well as serving as field grading purpose in insulating dielectrics whereas large dipole polarization can be utilized in energy storage applications. In this thesis, the Piezoelectrically-generated Pressure Steps (PPSs) were employed as a nondestructive method to probe the electric-charge and dipole polarization distribution in a range of thin film (several hundred micron) polymer-based materials, namely polypropylene (PP), low-density polyethylene/magnesium oxide (LDPE/MgO) nanocomposites and poly(vinylidene fluoride-co- trifluoro ethylene) (P(VDF-TrFE)) copolymer. PP film surface-treated with phosphoric acid to introduce surfacial isolated nanostructures serves as example of 2-dimensional nano-composites whereas LDPE/MgO serves as the case of 3-dimensional nano-composites with MgO nano-particles dispersed in LDPE polymer matrix. It is evidenced that the nanoparticles on the surface of acid-treated PP and in the bulk of LDPE/MgO nanocomposites improve charge trapping capacity of the respective material and prevent further charge injection and transport and that the enhanced charge trapping capacity makes PP and LDPE/MgO nanocomposites potential materials for both electret and electrical insulation applications. As for PVDF and VDF-based copolymers, the remanent spatial polarization distribution depends critically on poling method as well as specific parameters used in the respective poling method. In this work, homogeneous polarization poling of P(VDF-TrFE) copolymers with different VDF-contents have been attempted with hysteresis cyclical poling. The behaviour of remanent polarization growth and spatial polarization distribution are reported and discussed. The Piezoelectrically-generated Pressure Steps (PPSs) method has proven as a powerful method for the charge storage and transport characterization of a wide range of polymer material from nonpolar, to polar, to polymer nanocomposites category.}, language = {en} } @phdthesis{Nasery2019, author = {Nasery, Mustafa}, title = {The success and failure of civil service reforms in Afghanistan}, doi = {10.25932/publishup-44473}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-444738}, school = {Universit{\"a}t Potsdam}, pages = {viii, 258}, year = {2019}, abstract = {The Government will create a motivated, merit-based, performance-driven, and professional civil service that is resistant to temptations of corruption and which provides efficient, effective and transparent public services that do not force customers to pay bribes. — (GoIRA, 2006, p. 106) We were in a black hole! We had an empty glass and had nothing from our side to fill it with! Thus, we accepted anything anybody offered; that is how our glass was filled; that is how we reformed our civil service. — (Former Advisor to IARCSC, personal communication, August 2015) How and under what conditions were the post-Taleban Civil Service Reforms of Afghanistan initiated? What were the main components of the reforms? What were their objectives and to which extent were they achieved? Who were the leading domestic and foreign actors involved in the process? Finally, what specific factors influenced the success and failure Afghanistan's Civil Service Reforms since 2002? Guided by such fundamental questions, this research studies the wicked process of reforming the Afghan civil service in an environment where a variety of contextual, programmatic, and external factors affected the design and implementation of reforms that were entirely funded and technically assisted by the international community. Focusing on the core components of reforms—recruitment, remuneration, and appraisal of civil servants—the qualitative study provides a detailed picture of the pre-reform civil service and its major human resources developments in the past. Following discussions on the content and purposes of the main reform programs, it will then analyze the extent of changes in policies and practices by examining the outputs and effects of these reforms. Moreover, the study defines the specific factors that led the reforms toward a situation where most of the intended objectives remain unachieved. Doing so, it explores and explains how an overwhelming influence of international actors with conflicting interests, large-scale corruption, political interference, networks of patronage, institutionalized nepotism, culturally accepted cronyism and widespread ethnic favoritism created a very complex environment and prevented the reforms from transforming Afghanistan's patrimonial civil service into a professional civil service, which is driven by performance and merit.}, language = {en} } @phdthesis{Nagel2019, author = {Nagel, Oliver}, title = {Amoeboid cells as a transport system for micro-objects}, doi = {10.25932/publishup-44219}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442192}, school = {Universit{\"a}t Potsdam}, pages = {x, 84}, year = {2019}, abstract = {Due to advances in science and technology towards smaller and more powerful processing units, the fabrication of micrometer sized machines for different tasks becomes more and more possible. Such micro-robots could revolutionize medical treatment of diseases and shall support to work on other small machines. Nevertheless, scaling down robots and other devices is a challenging task and will probably remain limited in near future. Over the past decade the concept of bio-hybrid systems has proved to be a promising approach in order to advance the further development of micro-robots. Bio-hybrid systems combine biological cells with artificial components, thereby benefiting from the functionality of living biological cells. Cell-driven micro-transport is one of the most prominent applications in the emerging field of these systems. So far, micrometer sized cargo has been successfully transported by means of swimming bacterial cells. The potential of motile adherent cells as transport systems has largely remained unexplored. This thesis concentrates on the social amoeba Dictyostelium discoideum as a potential candidate for an amoeboid bio-hybrid transport system. The use of this model organism comes with several advantages. Due to the unspecific properties of Dictyostelium adhesion, a wide range of different cargo materials can be used for transport. As amoeboid cells exceed bacterial cells in size by one order of magnitude, also the size of an object carried by a single cell can also be much larger for an amoeba. Finally it is possible to guide the cell-driven transport based on the chemotactic behavior of the amoeba. Since cells undergo a developmentally induced chemotactic aggregation, cargo could be assembled in a self-organized manner into a cluster. It is also possible to impose an external chemical gradient to guide the amoeboid transport system to a desired location. To establish Dictyostelium discoideum as a possible candidate for bio-hybrid transport systems, this thesis will first investigate the movement of single cells. Secondly, the interaction of cargo and cells will be studied. Eventually, a conceptional proof will be conducted, that the cheomtactic behavior can be exploited either to transport a cargo self-organized or through an external chemical source.}, language = {en} } @phdthesis{Michalczyk2019, author = {Michalczyk, Anna}, title = {Modelling of nitrogen cycles in intensive winter wheat-summer maize double cropping systems in the North China Plain}, doi = {10.25932/publishup-44421}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-444213}, school = {Universit{\"a}t Potsdam}, pages = {X, 154}, year = {2019}, abstract = {The North China Plain (NCP) is one of the most productive and intensive agricultural regions in China. High doses of mineral nitrogen (N) fertiliser, often combined with flood irrigation, are applied, resulting in N surplus, groundwater depletion and environmental pollution. The objectives of this thesis were to use the HERMES model to simulate the N cycle in winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) double crop rotations and show the performance of the HERMES model, of the new ammonia volatilisation sub-module and of the new nitrification inhibition tool in the NCP. Further objectives were to assess the models potential to save N and water on plot and county scale, as well as on short and long-term. Additionally, improved management strategies with the help of a model-based nitrogen fertiliser recommendation (NFR) and adapted irrigation, should be found. Results showed that the HERMES model performed well under growing conditions of the NCP and was able to describe the relevant processes related to soil-plant interactions concerning N and water during a 2.5 year field experiment. No differences in grain yield between the real-time model-based NFR and the other treatments of the experiments on plot scale in Quzhou County could be found. Simulations with increasing amounts of irrigation resulted in significantly higher N leaching, higher N requirements of the NFR and reduced yields. Thus, conventional flood irrigation as currently practised by the farmers bears great uncertainties and exact irrigation amounts should be known for future simulation studies. In the best-practice scenario simulation on plot-scale, N input and N leaching, but also irrigation water could be reduced strongly within 2 years. Thus, the model-based NFR in combination with adapted irrigation had the highest potential to reduce nitrate leaching, compared to farmers practice and mineral N (Nmin)-reduced treatments. Also the calibrated and validated ammonia volatilisation sub-module of the HERMES model worked well under the climatic and soil conditions of northern China. Simple ammonia volatilisation approaches gave also satisfying results compared to process-oriented approaches. During the simulation with Ammonium sulphate Nitrate with nitrification inhibitor (ASNDMPP) ammonia volatilisation was higher than in the simulation without nitrification inhibitor, while the result for nitrate leaching was the opposite. Although nitrification worked well in the model, nitrification-born nitrous oxide emissions should be considered in future. Results of the simulated annual long-term (31 years) N losses in whole Quzhou County in Hebei Province were 296.8 kg N ha-1 under common farmers practice treatment and 101.7 kg N ha-1 under optimised treatment including NFR and automated irrigation (OPTai). Spatial differences in simulated N losses throughout Quzhou County, could only be found due to different N inputs. Simulations of an optimised treatment, could save on average more than 260 kg N ha-1a-1 from fertiliser input and 190 kg N ha-1a-1 from N losses and around 115.7 mm a-1 of water, compared to farmers practice. These long-term simulation results showed lower N and water saving potential, compared to short-term simulations and underline the necessity of long-term simulations to overcome the effect of high initial N stocks in soil. Additionally, the OPTai worked best on clay loam soil except for a high simulated denitrification loss, while the simulations using farmers practice irrigation could not match the actual water needs resulting in yield decline, especially for winter wheat. Thus, a precise adaption of management to actual weather conditions and plant growth needs is necessary for future simulations. However, the optimised treatments did not seem to be able to maintain the soil organic matter pools, even with full crop residue input. Extra organic inputs seem to be required to maintain soil quality in the optimised treatments. HERMES is a relatively simple model, with regard to data input requirements, to simulate the N cycle. It can offer interpretation of management options on plot, on county and regional scale for extension and research staff. Also in combination with other N and water saving methods the model promises to be a useful tool.}, language = {en} } @phdthesis{Melani2019, author = {Melani, Giacomo}, title = {From structural fluctuations to vibrational spectroscopy of adsorbates on surfaces}, doi = {10.25932/publishup-44182}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441826}, school = {Universit{\"a}t Potsdam}, pages = {119}, year = {2019}, abstract = {Aluminum oxide is an Earth-abundant geological material, and its interaction with water is of crucial importance for geochemical and environmental processes. Some aluminum oxide surfaces are also known to be useful in heterogeneous catalysis, while the surface chemistry of aqueous oxide interfaces determines the corrosion, growth and dissolution of such materials. In this doctoral work, we looked mainly at the (0001) surface of α-Al 2 O 3 and its reactivity towards water. In particular, a great focus of this work is dedicated to simulate and address the vibrational spectra of water adsorbed on the α-alumina(0001) surface in various conditions and at different coverages. In fact, the main source of comparison and inspiration for this work comes from the collaboration with the "Interfacial Molecular Spectroscopy" group led by Dr. R. Kramer Campen at the Fritz-Haber Institute of the MPG in Berlin. The expertise of our project partners in surface-sensitive Vibrational Sum Frequency (VSF) generation spectroscopy was crucial to develop and adapt specific simulation schemes used in this work. Methodologically, the main approach employed in this thesis is Ab Initio Molecular Dynamics (AIMD) based on periodic Density Functional Theory (DFT) using the PBE functional with D2 dispersion correction. The analysis of vibrational frequencies from both a static and a dynamic, finite-temperature perspective offers the ability to investigate the water / aluminum oxide interface in close connection to experiment. The first project presented in this work considers the characterization of dissociatively adsorbed deuterated water on the Al-terminated (0001) surface. This particular structure is known from both experiment and theory to be the thermodynamically most stable surface termination of α-alumina in Ultra-High Vacuum (UHV) conditions. Based on experiments performed by our colleagues at FHI, different adsorption sites and products have been proposed and identified for D 2 O. While previous theoretical investigations only looked at vibrational frequencies of dissociated OD groups by staticNormal Modes Analysis (NMA), we rather employed a more sophisticated approach to directly assess vibrational spectra (like IR and VSF) at finite temperature from AIMD. In this work, we have employed a recent implementation which makes use of velocity-velocity autocorrelation functions to simulate such spectral responses of O-H(D) bonds. This approach allows for an efficient and qualitatively accurate estimation of Vibrational Densities of States (VDOS) as well as IR and VSF spectra, which are then tested against experimental spectra from our collaborators. In order to extend previous work on unimolecularly dissociated water on α-Al 2 O 3 , we then considered a different system, namely, a fully hydroxylated (0001) surface, which results from the reconstruction of the UHV-stable Al-terminated surface at high water contents. This model is then further extended by considering a hydroxylated surface with additional water molecules, forming a two-dimensional layer which serves as a potential template to simulate an aqueous interface in environmental conditions. Again, employing finite-temperature AIMD trajectories at the PBE+D2 level, we investigated the behaviour of both hydroxylated surface (HS) and the water-covered structure derived from it (known as HS+2ML). A full range of spectra, from VDOS to IR and VSF, is then calculated using the same methodology, as described above. This is the main focus of the second project, reported in Chapter 5. In this case, comparison between theoretical spectra and experimental data is definitely good. In particular, we underline the nature of high-frequency resonances observed above 3700 cm -1 in VSF experiments to be associated with surface OH-groups, known as "aluminols" which are a key fingerprint of the fully hydroxylated surface. In the third and last project, which is presented in Chapter 6, the extension of VSF spectroscopy experiments to the time-resolved regime offered us the opportunity to investigate vibrational energy relaxation at the α-alumina / water interface. Specifically, using again DFT-based AIMD simulations, we simulated vibrational lifetimes for surface aluminols as experimentally detected via pump-probe VSF. We considered the water-covered HS model as a potential candidate to address this problem. The vibrational (IR) excitation and subsequent relaxation is performed by means of a non-equilibrium molecular dynamics scheme. In such a scheme, we specifically looked at the O-H stretching mode of surface aluminols. Afterwards, the analysis of non-equilibrium trajectories allows for an estimation of relaxation times in the order of 2-4 ps which are in overall agreement with measured ones. The aim of this work has been to provide, within a consistent theoretical framework, a better understanding of vibrational spectroscopy and dynamics for water on the α-alumina(0001) surface,ranging from very low water coverage (similar to the UHV case) up to medium-high coverages, resembling the hydroxylated oxide in environmental moist conditions.}, language = {en} } @phdthesis{Meessen2019, author = {Meeßen, Christian}, title = {The thermal and rheological state of the Northern Argentinian foreland basins}, doi = {10.25932/publishup-43994}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439945}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 151}, year = {2019}, abstract = {The foreland of the Andes in South America is characterised by distinct along strike changes in surface deformational styles. These styles are classified into two end-members, the thin-skinned and the thick-skinned style. The superficial expression of thin-skinned deformation is a succession of narrowly spaced hills and valleys, that form laterally continuous ranges on the foreland facing side of the orogen. Each of the hills is defined by a reverse fault that roots in a basal d{\´e}collement surface within the sedimentary cover, and acted as thrusting ramp to stack the sedimentary pile. Thick-skinned deformation is morphologically characterised by spatially disparate, basement-cored mountain ranges. These mountain ranges are uplifted along reactivated high-angle crustal-scale discontinuities, such as suture zones between different tectonic terranes. Amongst proposed causes for the observed variation are variations in the dip angle of the Nazca plate, variation in sediment thickness, lithospheric thickening, volcanism or compositional differences. The proposed mechanisms are predominantly based on geological observations or numerical thermomechanical modelling, but there has been no attempt to understand the mechanisms from a point of data-integrative 3D modelling. The aim of this dissertation is therefore to understand how lithospheric structure controls the deformational behaviour. The integration of independent data into a consistent model of the lithosphere allows to obtain additional evidence that helps to understand the causes for the different deformational styles. Northern Argentina encompasses the transition from the thin-skinned fold-and-thrust belt in Bolivia, to the thick-skinned Sierras Pampeanas province, which makes this area a well suited location for such a study. The general workflow followed in this study first involves data-constrained structural- and density-modelling in order to obtain a model of the study area. This model was then used to predict the steady-state thermal field, which was then used to assess the present-day rheological state in northern Argentina. The structural configuration of the lithosphere in northern Argentina was determined by means of data-integrative, 3D density modelling verified by Bouguer gravity. The model delineates the first-order density contrasts in the lithosphere in the uppermost 200 km, and discriminates bodies for the sediments, the crystalline crust, the lithospheric mantle and the subducting Nazca plate. To obtain the intra-crustal density structure, an automated inversion approach was developed and applied to a starting structural model that assumed a homogeneously dense crust. The resulting final structural model indicates that the crustal structure can be represented by an upper crust with a density of 2800 kg/m³, and a lower crust of 3100 kg/m³. The Transbrazilian Lineament, which separates the Pampia terrane from the R{\´i}o de la Plata craton, is expressed as a zone of low average crustal densities. In an excursion, we demonstrate in another study, that the gravity inversion method developed to obtain intra-crustal density structures, is also applicable to obtain density variations in the uppermost lithospheric mantle. Densities in such sub-crustal depths are difficult to constrain from seismic tomographic models due to smearing of crustal velocities. With the application to the uppermost lithospheric mantle in the north Atlantic, we demonstrate in Tan et al. (2018) that lateral density trends of at least 125\,km width are robustly recovered by the inversion method, thereby providing an important tool for the delineation of subcrustal density trends. Due to the genetic link between subduction, orogenesis and retroarc foreland basins the question rises whether the steady-state assumption is valid in such a dynamic setting. To answer this question, I analysed (i) the impact of subduction on the conductive thermal field of the overlying continental plate, (ii) the differences between the transient and steady-state thermal fields of a geodynamic coupled model. Both studies indicate that the assumption of a thermal steady-state is applicable in most parts of the study area. Within the orogenic wedge, where the assumption cannot be applied, I estimated the transient thermal field based on the results of the conducted analyses. Accordingly, the structural model that had been obtained in the first step, could be used to obtain a 3D conductive steady-state thermal field. The rheological assessment based on this thermal field indicates that the lithosphere of the thin-skinned Subandean ranges is characterised by a relatively strong crust and a weak mantle. Contrarily, the adjacent foreland basin consists of a fully coupled, very strong lithosphere. Thus, shortening in northern Argentina can only be accommodated within the weak lithosphere of the orogen and the Subandean ranges. The analysis suggests that the d{\´e}collements of the fold-and-thrust belt are the shallow continuation of shear zones that reside in the ductile sections of the orogenic crust. Furthermore, the localisation of the faults that provide strain transfer between the deeper ductile crust and the shallower d{\´e}collement is strongly influenced by crustal weak zones such as foliation. In contrast to the northern foreland, the lithosphere of the thick-skinned Sierras Pampeanas is fully coupled and characterised by a strong crust and mantle. The high overall strength prevents the generation of crustal-scale faults by tectonic stresses. Even inherited crustal-scale discontinuities, such as sutures, cannot sufficiently reduce the strength of the lithosphere in order to be reactivated. Therefore, magmatism that had been identified to be a precursor of basement uplift in the Sierras Pampeanas, is the key factor that leads to the broken foreland of this province. Due to thermal weakening, and potentially lubrication of the inherited discontinuities, the lithosphere is locally weakened such that tectonic stresses can uplift the basement blocks. This hypothesis explains both the spatially disparate character of the broken foreland, as well as the observed temporal delay between volcanism and basement block uplift. This dissertation provides for the first time a data-driven 3D model that is consistent with geophysical data and geological observations, and that is able to causally link the thermo-rheological structure of the lithosphere to the observed variation of surface deformation styles in the retroarc foreland of northern Argentina.}, language = {en} } @phdthesis{MarimonTarter2019, author = {Marimon Tarter, Mireia}, title = {Word segmentation in German-learning infants and German-speaking adults}, doi = {10.25932/publishup-43740}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437400}, school = {Universit{\"a}t Potsdam}, pages = {132}, year = {2019}, abstract = {There is evidence that infants start extracting words from fluent speech around 7.5 months of age (e.g., Jusczyk \& Aslin, 1995) and that they use at least two mechanisms to segment words forms from fluent speech: prosodic information (e.g., Jusczyk, Cutler \& Redanz, 1993) and statistical information (e.g., Saffran, Aslin \& Newport, 1996). However, how these two mechanisms interact and whether they change during development is still not fully understood. The main aim of the present work is to understand in what way different cues to word segmentation are exploited by infants when learning the language in their environment, as well as to explore whether this ability is related to later language skills. In Chapter 3 we pursued to determine the reliability of the method used in most of the experiments in the present thesis (the Headturn Preference Procedure), as well as to examine correlations and individual differences between infants' performance and later language outcomes. In Chapter 4 we investigated how German-speaking adults weigh statistical and prosodic information for word segmentation. We familiarized adults with an auditory string in which statistical and prosodic information indicated different word boundaries and obtained both behavioral and pupillometry responses. Then, we conducted further experiments to understand in what way different cues to word segmentation are exploited by 9-month-old German-learning infants (Chapter 5) and by 6-month-old German-learning infants (Chapter 6). In addition, we conducted follow-up questionnaires with the infants and obtained language outcomes at later stages of development. Our findings from this thesis revealed that (1) German-speaking adults show a strong weight of prosodic cues, at least for the materials used in this study and that (2) German-learning infants weight these two kind of cues differently depending on age and/or language experience. We observed that, unlike English-learning infants, 6-month-old infants relied more strongly on prosodic cues. Nine-month-olds do not show any preference for either of the cues in the word segmentation task. From the present results it remains unclear whether the ability to use prosodic cues to word segmentation relates to later language vocabulary. We speculate that prosody provides infants with their first window into the specific acoustic regularities in the signal, which enables them to master the specific stress pattern of German rapidly. Our findings are a step forwards in the understanding of an early impact of the native prosody compared to statistical learning in early word segmentation.}, language = {en} } @phdthesis{Mandal2019, author = {Mandal, Sankalita}, title = {Event handling in business processes}, doi = {10.25932/publishup-44170}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441700}, school = {Universit{\"a}t Potsdam}, pages = {xix, 151}, year = {2019}, abstract = {Business process management (BPM) deals with modeling, executing, monitoring, analyzing, and improving business processes. During execution, the process communicates with its environment to get relevant contextual information represented as events. Recent development of big data and the Internet of Things (IoT) enables sources like smart devices and sensors to generate tons of events which can be filtered, grouped, and composed to trigger and drive business processes. The industry standard Business Process Model and Notation (BPMN) provides several event constructs to capture the interaction possibilities between a process and its environment, e.g., to instantiate a process, to abort an ongoing activity in an exceptional situation, to take decisions based on the information carried by the events, as well as to choose among the alternative paths for further process execution. The specifications of such interactions are termed as event handling. However, in a distributed setup, the event sources are most often unaware of the status of process execution and therefore, an event is produced irrespective of the process being ready to consume it. BPMN semantics does not support such scenarios and thus increases the chance of processes getting delayed or getting in a deadlock by missing out on event occurrences which might still be relevant. The work in this thesis reviews the challenges and shortcomings of integrating real-world events into business processes, especially the subscription management. The basic integration is achieved with an architecture consisting of a process modeler, a process engine, and an event processing platform. Further, points of subscription and unsubscription along the process execution timeline are defined for different BPMN event constructs. Semantic and temporal dependencies among event subscription, event occurrence, event consumption and event unsubscription are considered. To this end, an event buffer with policies for updating the buffer, retrieving the most suitable event for the current process instance, and reusing the event has been discussed that supports issuing of early subscription. The Petri net mapping of the event handling model provides our approach with a translation of semantics from a business process perspective. Two applications based on this formal foundation are presented to support the significance of different event handling configurations on correct process execution and reachability of a process path. Prototype implementations of the approaches show that realizing flexible event handling is feasible with minor extensions of off-the-shelf process engines and event platforms.}, language = {en} } @phdthesis{LopezGarcia2019, author = {L{\´o}pez Garc{\´i}a, Patricia}, title = {Coiled coils as mechanical building blocks}, doi = {10.25932/publishup-42956}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429568}, school = {Universit{\"a}t Potsdam}, pages = {xi, 130}, year = {2019}, abstract = {The natural abundance of Coiled Coil (CC) motifs in cytoskeleton and extracellular matrix proteins suggests that CCs play an important role as passive (structural) and active (regulatory) mechanical building blocks. CCs are self-assembled superhelical structures consisting of 2-7 α-helices. Self-assembly is driven by hydrophobic and ionic interactions, while the helix propensity of the individual helices contributes additional stability to the structure. As a direct result of this simple sequence-structure relationship, CCs serve as templates for protein design and sequences with a pre-defined thermodynamic stability have been synthesized de novo. Despite this quickly increasing knowledge and the vast number of possible CC applications, the mechanical function of CCs has been largely overlooked and little is known about how different CC design parameters determine the mechanical stability of CCs. Once available, this knowledge will open up new applications for CCs as nanomechanical building blocks, e.g. in biomaterials and nanobiotechnology. With the goal of shedding light on the sequence-structure-mechanics relationship of CCs, a well-characterized heterodimeric CC was utilized as a model system. The sequence of this model system was systematically modified to investigate how different design parameters affect the CC response when the force is applied to opposing termini in a shear geometry or separated in a zipper-like fashion from the same termini (unzip geometry). The force was applied using an atomic force microscope set-up and dynamic single-molecule force spectroscopy was performed to determine the rupture forces and energy landscape properties of the CC heterodimers under study. Using force as a denaturant, CC chain separation is initiated by helix uncoiling from the force application points. In the shear geometry, this allows uncoiling-assisted sliding parallel to the force vector or dissociation perpendicular to the force vector. Both competing processes involve the opening of stabilizing hydrophobic (and ionic) interactions. Also in the unzip geometry, helix uncoiling precedes the rupture of hydrophobic contacts. In a first series of experiments, the focus was placed on canonical modifications in the hydrophobic core and the helix propensity. Using the shear geometry, it was shown that both a reduced core packing and helix propensity lower the thermodynamic and mechanical stability of the CC; however, with different effects on the energy landscape of the system. A less tightly packed hydrophobic core increases the distance to the transition state, with only a small effect on the barrier height. This originates from a more dynamic and less tightly packed core, which provides more degrees of freedom to respond to the applied force in the direction of the force vector. In contrast, a reduced helix propensity decreases both the distance to the transition state and the barrier height. The helices are 'easier' to unfold and the remaining structure is less thermodynamically stable so that dissociation perpendicular to the force axis can occur at smaller deformations. Having elucidated how canonical sequence modifications influence CC mechanics, the pulling geometry was investigated in the next step. Using one and the same sequence, the force application points were exchanged and two different shear and one unzipping geometry were compared. It was shown that the pulling geometry determines the mechanical stability of the CC. Different rupture forces were observed in the different shear as well as in the unzipping geometries, suggesting that chain separation follows different pathways on the energy landscape. Whereas the difference between CC shearing and unzipping was anticipated and has also been observed for other biological structures, the observed difference for the two shear geometries was less expected. It can be explained with the structural asymmetry of the CC heterodimer. It is proposed that the direction of the α-helices, the different local helix propensities and the position of a polar asparagine in the hydrophobic core are responsible for the observed difference in the chain separation pathways. In combination, these factors are considered to influence the interplay between processes parallel and perpendicular to the force axis. To obtain more detailed insights into the role of helix stability, helical turns were reinforced locally using artificial constraints in the form of covalent and dynamic 'staples'. A covalent staple bridges to adjacent helical turns, thus protecting them against uncoiling. The staple was inserted directly at the point of force application in one helix or in the same terminus of the other helix, which did not experience the force directly. It was shown that preventing helix uncoiling at the point of force application reduces the distance to the transition state while slightly increasing the barrier height. This confirms that helix uncoiling is critically important for CC chain separation. When inserted into the second helix, this stabilizing effect is transferred across the hydrophobic core and protects the force-loaded turns against uncoiling. If both helices were stapled, no additional increase in mechanical stability was observed. When replacing the covalent staple with a dynamic metal-coordination bond, a smaller decrease in the distance to the transition was observed, suggesting that the staple opens up while the CC is under load. Using fluorinated amino acids as another type of non-natural modification, it was investigated how the enhanced hydrophobicity and the altered packing at the interface influences CC mechanics. The fluorinated amino acid was inserted into one central heptad of one or both α-helices. It was shown that this substitution destabilized the CC thermodynamically and mechanically. Specifically, the barrier height was decreased and the distance to the transition state increased. This suggests that a possible stabilizing effect of the increased hydrophobicity is overruled by a disturbed packing, which originates from a bad fit of the fluorinated amino acid into the local environment. This in turn increases the flexibility at the interface, as also observed for the hydrophobic core substitution described above. In combination, this confirms that the arrangement of the hydrophobic side chains is an additional crucial factor determining the mechanical stability of CCs. In conclusion, this work shows that knowledge of the thermodynamic stability alone is not sufficient to predict the mechanical stability of CCs. It is the interplay between helix propensity and hydrophobic core packing that defines the sequence-structure-mechanics relationship. In combination, both parameters determine the relative contribution of processes parallel and perpendicular to the force axis, i.e. helix uncoiling and uncoiling-assisted sliding as well as dissociation. This new mechanistic knowledge provides insight into the mechanical function of CCs in tissues and opens up the road for designing CCs with pre-defined mechanical properties. The library of mechanically characterized CCs developed in this work is a powerful starting point for a wide spectrum of applications, ranging from molecular force sensors to mechanosensitive crosslinks in protein nanostructures and synthetic extracellular matrix mimics.}, language = {en} } @phdthesis{LozadaGobilard2019, author = {Lozada Gobilard, Sissi Donna}, title = {From genes to communities: Assessing plant diversity and connectivity in kettle holes as metaecosystems in agricultural landscapes}, doi = {10.25932/publishup-43768}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437684}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 147}, year = {2019}, abstract = {Species assembly from a regional pool into local metacommunities and how they colonize and coexist over time and space is essential to understand how communities response to their environment including abiotic and biotic factors. In highly disturbed landscapes, connectivity of isolated habitat patches is essential to maintain biodiversity and the entire ecosystem functioning. In northeast Germany, a high density of the small water bodies called kettle holes, are good systems to study metacommunities due to their condition as "aquatic islands" suitable for hygrophilous species that are surrounded by in unsuitable matrix of crop fields. The main objective of this thesis was to infer the main ecological processes shaping plant communities and their response to the environment, from biodiversity patterns and key life-history traits involved in connectivity using ecological and genetic approaches; and to provide first insights of the role of kettle holes harboring wild-bee species as important mobile linkers connecting plant communities in this insular system. t a community level, I compared plant diversity patterns and trait composition in ephemeral vs. permanent kettle holes). My results showed that types of kettle holes act as environmental filers shaping plant diversity, community-composition and trait-distribution, suggesting species sorting and niche processes in both types of kettle holes. At a population level, I further analyzed the role of dispersal and reproductive strategies of four selected species occurring in permanent kettle holes. Using microsatellites, I found that breeding system (degree of clonality), is the main factor shaping genetic diversity and genetic divergence. Although, higher gene flow and lower genetic differentiation among populations in wind vs. insect pollinated species was also found, suggesting that dispersal mechanisms played a role related to gene flow and connectivity. For most flowering plants, pollinators play an important role connecting communities. Therefore, as a first insight of the potential mobile linkers of these plant communities, I investigated the diversity wild-bees occurring in these kettle holes. My main results showed that local habitat quality (flower resources) had a positive effect on bee diversity, while habitat heterogeneity (number of natural landscape elements surrounding kettle holes 100-300m), was negatively correlated. This thesis covers from genetic flow at individual and population level to plant community assembly. My results showed how patterns of biodiversity, dispersal and reproduction strategies in plant population and communities can be used to infer ecological processes. In addition, I showed the importance of life-history traits and the relationship between species and their abiotic and biotic interactions. Furthermore, I included a different level of mobile linkers (pollinators) for a better understanding of another level of the system. This integration is essential to understand how communities respond to their surrounding environment and how disturbances such as agriculture, land-use and climate change might affect them. I highlight the need to integrate many scientific areas covering from genes to ecosystems at different spatiotemporal scales for a better understanding, management and conservation of our ecosystems.}, language = {en} } @phdthesis{Liu2019, author = {Liu, Jiabo}, title = {Dynamics of the geomagnetic field during the last glacial}, doi = {10.25932/publishup-42946}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429461}, school = {Universit{\"a}t Potsdam}, pages = {xv, 158}, year = {2019}, abstract = {Geomagnetic paleosecular variations (PSVs) are an expression of geodynamo processes inside the Earth's liquid outer core. These paleomagnetic time series provide insights into the properties of the Earth's magnetic field, from normal behavior with a dominating dipolar geometry, over field crises, such as pronounced intensity lows and geomagnetic excursions with a distorted field geometry, to the complete reversal of the dominating dipole contribution. Particularly, long-term high-resolution and high-quality PSV time series are needed for properly reconstructing the higher frequency components in the spectrum of geomagnetic field variations and for a better understanding of the effects of smoothing during the recording of such paleomagnetic records by sedimentary archives. In this doctorate study, full vector paleomagnetic records were derived from 16 sediment cores recovered from the southeastern Black Sea. Age models are based on radiocarbon dating and correlations of warming/cooling cycles monitored by high-resolution X-ray fluorescence (XRF) elementary ratios as well as ice-rafted debris (IRD) in Black Sea sediments to the sequence of 'Dansgaard-Oeschger' (DO) events defined from Greenland ice core oxygen isotope stratigraphy. In order to identify the carriers of magnetization in Black Sea sediments, core MSM33-55-1 recovered from the southeast Black Sea was subjected to detailed rock magnetic and electron microscopy investigations. The younger part of core MSM33-55-1 was continuously deposited since 41 ka. Before 17.5 ka, the magnetic minerals were dominated by a mixture of greigite (Fe3S4) and titanomagnetite (Fe3-xTixO4) in samples with SIRM/κLF >10 kAm-1, or exclusively by titanomagnetite in samples with SIRM/κLF ≤10 kAm-1. It was found that greigite is generally present as crustal aggregates in locally reducing micro-environments. From 17.5 ka to 8.3 ka, the dominant magnetic mineral in this transition phase was changing from greigite (17.5 - ~10.0 ka) to probably silicate-hosted titanomagnetite (~10.0 - 8.3 ka). After 8.3 ka, the anoxic Black Sea was a favorable environment for the formation of non-magnetic pyrite (FeS2) framboids. Aiming to avoid compromising of paleomagnetic data by erroneous directions carried by greigite, paleomagnetic data from samples with SIRM/κLF >10 kAm-1, shown to contain greigite by various methods, were removed from obtained records. Consequently, full vector paleomagnetic records, comprising directional data and relative paleointensity (rPI), were derived only from samples with SIRM/κLF ≤10 kAm-1 from 16 Black Sea sediment cores. The obtained data sets were used to create a stack covering the time window between 68.9 and 14.5 ka with temporal resolution between 40 and 100 years, depending on sedimentation rates. At 64.5 ka, according to obtained results from Black Sea sediments, the second deepest minimum in relative paleointensity during the past 69 ka occurred. The field minimum during MIS 4 is associated with large declination swings beginning about 3 ka before the minimum. While a swing to 50°E is associated with steep inclinations (50-60°) according to the coring site at 42°N, the subsequent declination swing to 30°W is associated with shallow inclinations of down to 40°. Nevertheless, these large deviations from the direction of a geocentric axial dipole field (I=61°, D=0°) still can not yet be termed as 'excursional', since latitudes of corresponding VGPs only reach down to 51.5°N (120°E) and 61.5°N (75°W), respectively. However, these VGP positions at opposite sides of the globe are linked with VGP drift rates of up to 0.2° per year in between. These extreme secular variations might be the mid-latitude expression of the Norwegian-Greenland Sea excursion found at several sites much further North in Arctic marine sediments between 69°N and 81°N. At about 34.5 ka, the Mono Lake excursion is evidenced in the stacked Black Sea PSV record by both a rPI minimum and directional shifts. Associated VGPs from stacked Black Sea data migrated from Alaska, via central Asia and the Tibetan Plateau, to Greenland, performing a clockwise loop. This agrees with data recorded in the Wilson Creek Formation, USA., and Arctic sediment core PS2644-5 from the Iceland Sea, suggesting a dominant dipole field. On the other hand, the Auckland lava flows, New Zealand, the Summer Lake, USA., and Arctic sediment core from ODP Site-919 yield distinct VGPs located in the central Pacific Ocean due to a presumably non-dipole (multi-pole) field configuration. A directional anomaly at 18.5 ka, associated with pronounced swings in inclination and declination, as well as a low in rPI, is probably contemporaneous with the Hilina Pali excursion, originally reported from Hawaiian lava flows. However, virtual geomagnetic poles (VGPs) calculated from Black Sea sediments are not located at latitudes lower than 60° N, which denotes normal, though pronounced secular variations. During the postulated Hilina Pali excursion, the VGPs calculated from Black Sea data migrated clockwise only along the coasts of the Arctic Ocean from NE Canada (20.0 ka), via Alaska (18.6 ka) and NE Siberia (18.0 ka) to Svalbard (17.0 ka), then looping clockwise through the Eastern Arctic Ocean. In addition to the Mono Lake and the Norwegian-Greenland Sea excursions, the Laschamp excursion was evidenced in the Black Sea PSV record with the lowest paleointensities at about 41.6 ka and a short-term (~500 years) full reversal centered at 41 ka. These excursions are further evidenced by an abnormal PSV index, though only the Laschamp and the Mono Lake excursions exhibit excursional VGP positions. The stacked Black Sea paleomagnetic record was also converted into one component parallel to the direction expected from a geocentric axial dipole (GAD) and two components perpendicular to it, representing only non-GAD components of the geomagnetic field. The Laschamp and the Norwegian-Greenland Sea excursions are characterized by extremely low GAD components, while the Mono Lake excursion is marked by large non-GAD contributions. Notably, negative values of the GAD component, indicating a fully reversed geomagnetic field, are observed only during the Laschamp excursion. In summary, this doctoral thesis reconstructed high-resolution and high-fidelity PSV records from SE Black Sea sediments. The obtained record comprises three geomagnetic excursions, the Norwegian-Greenland Sea excursion, the Laschamp excursion, and the Mono Lake excursion. They are characterized by abnormal secular variations of different amplitudes centered at about 64.5 ka, 41.0 ka and 34.5 ka, respectively. In addition, the obtained PSV record from the Black Sea do not provide evidence for the postulated 'Hilina Pali excursion' at about 18.5 ka. Anyway, the obtained Black Sea paleomagnetic record, covering field fluctuations from normal secular variations, over excursions, to a short but full reversal, points to a geomagnetic field characterized by a large dynamic range in intensity and a highly variable superposition of dipole and non-dipole contributions from the geodynamo during the past 68.9 to 14.5 ka.}, language = {en} }