@phdthesis{Veh2019, author = {Veh, Georg}, title = {Outburst floods from moraine-dammed lakes in the Himalayas}, doi = {10.25932/publishup-43607}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436071}, school = {Universit{\"a}t Potsdam}, pages = {124}, year = {2019}, abstract = {The Himalayas are a region that is most dependent, but also frequently prone to hazards from changing meltwater resources. This mountain belt hosts the highest mountain peaks on earth, has the largest reserve of ice outside the polar regions, and is home to a rapidly growing population in recent decades. One source of hazard has attracted scientific research in particular in the past two decades: glacial lake outburst floods (GLOFs) occurred rarely, but mostly with fatal and catastrophic consequences for downstream communities and infrastructure. Such GLOFs can suddenly release several million cubic meters of water from naturally impounded meltwater lakes. Glacial lakes have grown in number and size by ongoing glacial mass losses in the Himalayas. Theory holds that enhanced meltwater production may increase GLOF frequency, but has never been tested so far. The key challenge to test this notion are the high altitudes of >4000 m, at which lakes occur, making field work impractical. Moreover, flood waves can attenuate rapidly in mountain channels downstream, so that many GLOFs have likely gone unnoticed in past decades. Our knowledge on GLOFs is hence likely biased towards larger, destructive cases, which challenges a detailed quantification of their frequency and their response to atmospheric warming. Robustly quantifying the magnitude and frequency of GLOFs is essential for risk assessment and management along mountain rivers, not least to implement their return periods in building design codes. Motivated by this limited knowledge of GLOF frequency and hazard, I developed an algorithm that efficiently detects GLOFs from satellite images. In essence, this algorithm classifies land cover in 30 years (~1988-2017) of continuously recorded Landsat images over the Himalayas, and calculates likelihoods for rapidly shrinking water bodies in the stack of land cover images. I visually assessed such detected tell-tale sites for sediment fans in the river channel downstream, a second key diagnostic of GLOFs. Rigorous tests and validation with known cases from roughly 10\% of the Himalayas suggested that this algorithm is robust against frequent image noise, and hence capable to identify previously unknown GLOFs. Extending the search radius to the entire Himalayan mountain range revealed some 22 newly detected GLOFs. I thus more than doubled the existing GLOF count from 16 previously known cases since 1988, and found a dominant cluster of GLOFs in the Central and Eastern Himalayas (Bhutan and Eastern Nepal), compared to the rarer affected ranges in the North. Yet, the total of 38 GLOFs showed no change in the annual frequency, so that the activity of GLOFs per unit glacial lake area has decreased in the past 30 years. I discussed possible drivers for this finding, but left a further attribution to distinct GLOF-triggering mechanisms open to future research. This updated GLOF frequency was the key input for assessing GLOF hazard for the entire Himalayan mountain belt and several subregions. I used standard definitions in flood hydrology, describing hazard as the annual exceedance probability of a given flood peak discharge [m3 s-1] or larger at the breach location. I coupled the empirical frequency of GLOFs per region to simulations of physically plausible peak discharges from all existing ~5,000 lakes in the Himalayas. Using an extreme-value model, I could hence calculate flood return periods. I found that the contemporary 100-year GLOF discharge (the flood level that is reached or exceeded on average once in 100 years) is 20,600+2,200/-2,300 m3 s-1 for the entire Himalayas. Given the spatial and temporal distribution of historic GLOFs, contemporary GLOF hazard is highest in the Eastern Himalayas, and lower for regions with rarer GLOF abundance. I also calculated GLOF hazard for some 9,500 overdeepenings, which could expose and fill with water, if all Himalayan glaciers have melted eventually. Assuming that the current GLOF rate remains unchanged, the 100-year GLOF discharge could double (41,700+5,500/-4,700 m3 s-1), while the regional GLOF hazard may increase largest in the Karakoram. To conclude, these three stages-from GLOF detection, to analysing their frequency and estimating regional GLOF hazard-provide a framework for modern GLOF hazard assessment. Given the rapidly growing population, infrastructure, and hydropower projects in the Himalayas, this thesis assists in quantifying the purely climate-driven contribution to hazard and risk from GLOFs.}, language = {en} } @phdthesis{Sterzel2019, author = {Sterzel, Till}, title = {Analyzing global typologies of socio-ecological vulnerability}, doi = {10.25932/publishup-42883}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-428837}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2019}, abstract = {On a planetary scale human populations need to adapt to both socio-economic and environmental problems amidst rapid global change. This holds true for coupled human-environment (socio-ecological) systems in rural and urban settings alike. Two examples are drylands and urban coasts. Such socio-ecological systems have a global distribution. Therefore, advancing the knowledge base for identifying socio-ecological adaptation needs with local vulnerability assessments alone is infeasible: The systems cover vast areas, while funding, time, and human resources for local assessments are limited. They are lacking in low an middle-income countries (LICs and MICs) in particular. But places in a specific socio-ecological system are not only unique and complex - they also exhibit similarities. A global patchwork of local rural drylands vulnerability assessments of human populations to socio-ecological and environmental problems has already been reduced to a limited number of problem structures, which typically cause vulnerability. However, the question arises whether this is also possible in urban socio-ecological systems. The question also arises whether these typologies provide added value in research beyond global change. Finally, the methodology employed for drylands needs refining and standardizing to increase its uptake in the scientific community. In this dissertation, I set out to fill these three gaps in research. The geographical focus in my dissertation is on LICs and MICs, which generally have lower capacities to adapt, and greater adaptation needs, regarding rapid global change. Using a spatially explicit indicator-based methodology, I combine geospatial and clustering methods to identify typical configurations of key factors in case studies causing vulnerability to human populations in two specific socio-ecological systems. Then I use statistical and analytical methods to interpret and appraise both the typical configurations and the global typologies they constitute. First, I improve the indicator-based methodology and then reanalyze typical global problem structures of socio-ecological drylands vulnerability with seven indicator datasets. The reanalysis confirms the key tenets and produces a more realistic and nuanced typology of eight spatially explicit problem structures, or vulnerability profiles: Two new profiles with typically high natural resource endowment emerge, in which overpopulation has led to medium or high soil erosion. Second, I determine whether the new drylands typology and its socio-ecological vulnerability concept advance a thematically linked scientific debate in human security studies: what drives violent conflict in drylands? The typology is a much better predictor for conflict distribution and incidence in drylands than regression models typically used in peace research. Third, I analyze global problem structures typically causing vulnerability in an urban socio-ecological system - the rapidly urbanizing coastal fringe (RUCF) - with eleven indicator datasets. The RUCF also shows a robust typology, and its seven profiles show huge asymmetries in vulnerability and adaptive capacity. The fastest population increase, lowest income, most ineffective governments, most prevalent poverty, and lowest adaptive capacity are all typically stacked in two profiles in LICs. This shows that beyond local case studies tropical cyclones and/or coastal flooding are neither stalling rapid population growth, nor urban expansion, in the RUCF. I propose entry points for scaling up successful vulnerability reduction strategies in coastal cities within the same vulnerability profile. This dissertation shows that patchworks of local vulnerability assessments can be generalized to structure global socio-ecological vulnerabilities in both rural and urban socio-ecological systems according to typical problems. In terms of climate-related extreme events in the RUCF, conflicting problem structures and means to deal with them are threatening to widen the development gap between LICs and high-income countries unless successful vulnerability reduction measures are comprehensively scaled up. The explanatory power for human security in drylands warrants further applications of the methodology beyond global environmental change research in the future. Thus, analyzing spatially explicit global typologies of socio-ecological vulnerability is a useful complement to local assessments: The typologies provide entry points for where to consider which generic measures to reduce typical problem structures - including the countless places without local assessments. This can save limited time and financial resources for adaptation under rapid global change.}, language = {en} } @phdthesis{Schmidt2019, author = {Schmidt, Martin}, title = {Fragmentation of landscapes: modelling ecosystem services of transition zones}, doi = {10.25932/publishup-44294}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442942}, school = {Universit{\"a}t Potsdam}, pages = {XV, 103}, year = {2019}, abstract = {For millennia, humans have affected landscapes all over the world. Due to horizontal expansion, agriculture plays a major role in the process of fragmentation. This process is caused by a substitution of natural habitats by agricultural land leading to agricultural landscapes. These landscapes are characterized by an alternation of agriculture and other land use like forests. In addition, there are landscape elements of natural origin like small water bodies. Areas of different land use are beside each other like patches, or fragments. They are physically distinguishable which makes them look like a patchwork from an aerial perspective. These fragments are each an own ecosystem with conditions and properties that differ from their adjacent fragments. As open systems, they are in exchange of information, matter and energy across their boundaries. These boundary areas are called transition zones. Here, the habitat properties and environmental conditions are altered compared to the interior of the fragments. This changes the abundance and the composition of species in the transition zones, which in turn has a feedback effect on the environmental conditions. The literature mainly offers information and insights on species abundance and composition in forested transition zones. Abiotic effects, the gradual changes in energy and matter, received less attention. In addition, little is known about non-forested transition zones. For example, the effects on agricultural yield in transition zones of an altered microclimate, matter dynamics or different light regimes are hardly researched or understood. The processes in transition zones are closely connected with altered provisioning and regulating ecosystem services. To disentangle the mechanisms and to upscale the effects, models can be used. My thesis provides insights into these topics: literature was reviewed and a conceptual framework for the quantitative description of gradients of matter and energy in transition zones was introduced. The results of measurements of environmental gradients like microclimate, aboveground biomass and soil carbon and nitrogen content are presented that span from within the forest into arable land. Both the measurements and the literature review could not validate a transition zone of 100 m for abiotic effects. Although this value is often reported and used in the literature, it is likely to be smaller. Further, the measurements suggest that on the one hand trees in transition zones are smaller compared to those in the interior of the fragments, while on the other hand less biomass was measured in the arable lands' transition zone. These results support the hypothesis that less carbon is stored in the aboveground biomass in transition zones. The soil at the edge (zero line) between adjacent forest and arable land contains more nitrogen and carbon content compared to the interior of the fragments. One-year measurements in the transition zone also provided evidence that microclimate is different compared to the fragments' interior. To predict the possible yield decreases that transition zones might cause, a modelling approach was developed. Using a small virtual landscape, I modelled the effect of a forest fragment shading the adjacent arable land and the effects of this on yield using the MONICA crop growth model. In the transition zone yield was less compared to the interior due to shading. The results of the simulations were upscaled to the landscape level and exemplarily calculated for the arable land of a whole region in Brandenburg, Germany. The major findings of my thesis are: (1) Transition zones are likely to be much smaller than assumed in the scientific literature; (2) transition zones aren't solely a phenomenon of forested ecosystems, but significantly extend into arable land as well; (3) empirical and modelling results show that transition zones encompass biotic and abiotic changes that are likely to be important to a variety of agricultural landscape ecosystem services.}, language = {en} } @phdthesis{Michalczyk2019, author = {Michalczyk, Anna}, title = {Modelling of nitrogen cycles in intensive winter wheat-summer maize double cropping systems in the North China Plain}, doi = {10.25932/publishup-44421}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-444213}, school = {Universit{\"a}t Potsdam}, pages = {X, 154}, year = {2019}, abstract = {The North China Plain (NCP) is one of the most productive and intensive agricultural regions in China. High doses of mineral nitrogen (N) fertiliser, often combined with flood irrigation, are applied, resulting in N surplus, groundwater depletion and environmental pollution. The objectives of this thesis were to use the HERMES model to simulate the N cycle in winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) double crop rotations and show the performance of the HERMES model, of the new ammonia volatilisation sub-module and of the new nitrification inhibition tool in the NCP. Further objectives were to assess the models potential to save N and water on plot and county scale, as well as on short and long-term. Additionally, improved management strategies with the help of a model-based nitrogen fertiliser recommendation (NFR) and adapted irrigation, should be found. Results showed that the HERMES model performed well under growing conditions of the NCP and was able to describe the relevant processes related to soil-plant interactions concerning N and water during a 2.5 year field experiment. No differences in grain yield between the real-time model-based NFR and the other treatments of the experiments on plot scale in Quzhou County could be found. Simulations with increasing amounts of irrigation resulted in significantly higher N leaching, higher N requirements of the NFR and reduced yields. Thus, conventional flood irrigation as currently practised by the farmers bears great uncertainties and exact irrigation amounts should be known for future simulation studies. In the best-practice scenario simulation on plot-scale, N input and N leaching, but also irrigation water could be reduced strongly within 2 years. Thus, the model-based NFR in combination with adapted irrigation had the highest potential to reduce nitrate leaching, compared to farmers practice and mineral N (Nmin)-reduced treatments. Also the calibrated and validated ammonia volatilisation sub-module of the HERMES model worked well under the climatic and soil conditions of northern China. Simple ammonia volatilisation approaches gave also satisfying results compared to process-oriented approaches. During the simulation with Ammonium sulphate Nitrate with nitrification inhibitor (ASNDMPP) ammonia volatilisation was higher than in the simulation without nitrification inhibitor, while the result for nitrate leaching was the opposite. Although nitrification worked well in the model, nitrification-born nitrous oxide emissions should be considered in future. Results of the simulated annual long-term (31 years) N losses in whole Quzhou County in Hebei Province were 296.8 kg N ha-1 under common farmers practice treatment and 101.7 kg N ha-1 under optimised treatment including NFR and automated irrigation (OPTai). Spatial differences in simulated N losses throughout Quzhou County, could only be found due to different N inputs. Simulations of an optimised treatment, could save on average more than 260 kg N ha-1a-1 from fertiliser input and 190 kg N ha-1a-1 from N losses and around 115.7 mm a-1 of water, compared to farmers practice. These long-term simulation results showed lower N and water saving potential, compared to short-term simulations and underline the necessity of long-term simulations to overcome the effect of high initial N stocks in soil. Additionally, the OPTai worked best on clay loam soil except for a high simulated denitrification loss, while the simulations using farmers practice irrigation could not match the actual water needs resulting in yield decline, especially for winter wheat. Thus, a precise adaption of management to actual weather conditions and plant growth needs is necessary for future simulations. However, the optimised treatments did not seem to be able to maintain the soil organic matter pools, even with full crop residue input. Extra organic inputs seem to be required to maintain soil quality in the optimised treatments. HERMES is a relatively simple model, with regard to data input requirements, to simulate the N cycle. It can offer interpretation of management options on plot, on county and regional scale for extension and research staff. Also in combination with other N and water saving methods the model promises to be a useful tool.}, language = {en} } @phdthesis{LeBot2019, author = {Le Bot, Nils}, title = {Quel avenir pour les gares m{\´e}tropolitaines fran{\c{c}}aises et allemandes ?}, doi = {10.25932/publishup-44220}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442201}, school = {Universit{\"a}t Potsdam}, pages = {589}, year = {2019}, abstract = {Cette th{\`e}se d'urbanisme s'est donn{\´e}e pour objectif de r{\´e}fl{\´e}chir {\`a} l'avenir des gares m{\´e}tropolitaines fran{\c{c}}aises et allemandes {\`a} horizon 2050. Elle porte une interrogation sur les fondements de la gare comme objet urbain conceptuel (abord{\´e} comme un syst{\`e}me) et pose comme hypoth{\`e}se qu'il serait en quelque sorte dot{\´e} de propri{\´e}t{\´e}s autonomes. Parmi ces propri{\´e}t{\´e}s, c'est le processus d'expansion et de dialogue sans cesse renouvel{\´e} et conflictuel, entre la gare et son tissu urbain environnant, qui guide cette recherche ; notamment dans le rapport qu'il entretient avec l'hypermobilit{\´e} des m{\´e}tropoles. Pour ce faire, cette th{\`e}se convoque quatre terrains d'{\´e}tudes : les gares principales de Cologne et de Stuttgart en Allemagne et les gares de Paris-Montparnasse et Lyon-Part-Dieu en France ; et commence par un historique d{\´e}taill{\´e} de leurs {\´e}volutions morphologiques, pour d{\´e}gager une s{\´e}rie de variables architectoniques et urbaines. Il proc{\`e}de dans un deuxi{\`e}me temps {\`a} une s{\´e}rie d'analyse prospective, permettant de juger de l'influence possible des politiques publiques en mati{\`e}re transports et de mobilit{\´e}, sur l'avenir conceptuel des gares. Cette th{\`e}se propose alors le concept de syst{\`e}me-gare, pour d{\´e}crire l'expansion et l'int{\´e}gration des gares m{\´e}tropolitaines avec leur environnement urbain ; un processus de n{\´e}gociation dialectique qui ne trouve pas sa r{\´e}solution dans le concept de gare comme lieu de vie/ville. Elle invite alors {\`a} penser la gare comme une h{\´e}t{\´e}rotopie, et propose une lecture d{\´e}polaris{\´e}e et d{\´e}hi{\´e}rarchis{\´e}e de ces espaces, en introduisant les concepts d'orchestre de gares et de m{\´e}tagare. Cette recherche propose enfin une lecture critique de la « ville num{\´e}rique » et du concept de « mobilit{\´e} comme service. » Pour {\´e}viter une mise en flux tendus potentiellement dommageables, l'application de ces concepts en gare ne pourra se soustraire {\`a} une augmentation simultan{\´e}e des espaces physiques.}, language = {fr} } @phdthesis{Crisologo2019, author = {Crisologo, Irene}, title = {Using spaceborne radar platforms to enhance the homogeneity of weather radar calibration}, doi = {10.25932/publishup-44570}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445704}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 61}, year = {2019}, abstract = {Accurate weather observations are the keystone to many quantitative applications, such as precipitation monitoring and nowcasting, hydrological modelling and forecasting, climate studies, as well as understanding precipitation-driven natural hazards (i.e. floods, landslides, debris flow). Weather radars have been an increasingly popular tool since the 1940s to provide high spatial and temporal resolution precipitation data at the mesoscale, bridging the gap between synoptic and point scale observations. Yet, many institutions still struggle to tap the potential of the large archives of reflectivity, as there is still much to understand about factors that contribute to measurement errors, one of which is calibration. Calibration represents a substantial source of uncertainty in quantitative precipitation estimation (QPE). A miscalibration of a few dBZ can easily deteriorate the accuracy of precipitation estimates by an order of magnitude. Instances where rain cells carrying torrential rains are misidentified by the radar as moderate rain could mean the difference between a timely warning and a devastating flood. Since 2012, the Philippine Atmospheric, Geophysical, and Astronomical Services Administration (PAGASA) has been expanding the country's ground radar network. We had a first look into the dataset from one of the longest running radars (the Subic radar) after devastating week-long torrential rains and thunderstorms in August 2012 caused by the annual southwestmonsoon and enhanced by the north-passing Typhoon Haikui. The analysis of the rainfall spatial distribution revealed the added value of radar-based QPE in comparison to interpolated rain gauge observations. However, when compared with local gauge measurements, severe miscalibration of the Subic radar was found. As a consequence, the radar-based QPE would have underestimated the rainfall amount by up to 60\% if they had not been adjusted by rain gauge observations—a technique that is not only affected by other uncertainties, but which is also not feasible in other regions of the country with very sparse rain gauge coverage. Relative calibration techniques, or the assessment of bias from the reflectivity of two radars, has been steadily gaining popularity. Previous studies have demonstrated that reflectivity observations from the Tropical Rainfall Measuring Mission (TRMM) and its successor, the Global Precipitation Measurement (GPM), are accurate enough to serve as a calibration reference for ground radars over low-to-mid-latitudes (± 35 deg for TRMM; ± 65 deg for GPM). Comparing spaceborne radars (SR) and ground radars (GR) requires cautious consideration of differences in measurement geometry and instrument specifications, as well as temporal coincidence. For this purpose, we implement a 3-D volume matching method developed by Schwaller and Morris (2011) and extended by Warren et al. (2018) to 5 years worth of observations from the Subic radar. In this method, only the volumetric intersections of the SR and GR beams are considered. Calibration bias affects reflectivity observations homogeneously across the entire radar domain. Yet, other sources of systematic measurement errors are highly heterogeneous in space, and can either enhance or balance the bias introduced by miscalibration. In order to account for such heterogeneous errors, and thus isolate the calibration bias, we assign a quality index to each matching SR-GR volume, and thus compute the GR calibration bias as a qualityweighted average of reflectivity differences in any sample of matching SR-GR volumes. We exemplify the idea of quality-weighted averaging by using beam blockage fraction (BBF) as a quality variable. Quality-weighted averaging is able to increase the consistency of SR and GR observations by decreasing the standard deviation of the SR-GR differences, and thus increasing the precision of the bias estimates. To extend this framework further, the SR-GR quality-weighted bias estimation is applied to the neighboring Tagaytay radar, but this time focusing on path-integrated attenuation (PIA) as the source of uncertainty. Tagaytay is a C-band radar operating at a lower wavelength and is therefore more affected by attenuation. Applying the same method used for the Subic radar, a time series of calibration bias is also established for the Tagaytay radar. Tagaytay radar sits at a higher altitude than the Subic radar and is surrounded by a gentler terrain, so beam blockage is negligible, especially in the overlapping region. Conversely, Subic radar is largely affected by beam blockage in the overlapping region, but being an SBand radar, attenuation is considered negligible. This coincidentally independent uncertainty contributions of each radar in the region of overlap provides an ideal environment to experiment with the different scenarios of quality filtering when comparing reflectivities from the two ground radars. The standard deviation of the GR-GR differences already decreases if we consider either BBF or PIA to compute the quality index and thus the weights. However, combining them multiplicatively resulted in the largest decrease in standard deviation, suggesting that taking both factors into account increases the consistency between the matched samples. The overlap between the two radars and the instances of the SR passing over the two radars at the same time allows for verification of the SR-GR quality-weighted bias estimation method. In this regard, the consistency between the two ground radars is analyzed before and after bias correction is applied. For cases when all three radars are coincident during a significant rainfall event, the correction of GR reflectivities with calibration bias estimates from SR overpasses dramatically improves the consistency between the two ground radars which have shown incoherent observations before correction. We also show that for cases where adequate SR coverage is unavailable, interpolating the calibration biases using a moving average can be used to correct the GR observations for any point in time to some extent. By using the interpolated biases to correct GR observations, we demonstrate that bias correction reduces the absolute value of the mean difference in most cases, and therefore improves the consistency between the two ground radars. This thesis demonstrates that in general, taking into account systematic sources of uncertainty that are heterogeneous in space (e.g. BBF) and time (e.g. PIA) allows for a more consistent estimation of calibration bias, a homogeneous quantity. The bias still exhibits an unexpected variability in time, which hints that there are still other sources of errors that remain unexplored. Nevertheless, the increase in consistency between SR and GR as well as between the two ground radars, suggests that considering BBF and PIA in a weighted-averaging approach is a step in the right direction. Despite the ample room for improvement, the approach that combines volume matching between radars (either SR-GR or GR-GR) and quality-weighted comparison is readily available for application or further scrutiny. As a step towards reproducibility and transparency in atmospheric science, the 3D matching procedure and the analysis workflows as well as sample data are made available in public repositories. Open-source software such as Python and wradlib are used for all radar data processing in this thesis. This approach towards open science provides both research institutions and weather services with a valuable tool that can be applied to radar calibration, from monitoring to a posteriori correction of archived data.}, language = {en} }