@phdthesis{Todt2009, author = {Todt, Helge Tobias}, title = {Hydrogen-deficient central stars of planetary nebulae}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41047}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Central stars of planetary nebulae are low-mass stars on the brink of their final evolution towards white dwarfs. Because of their surface temperature of above 25,000 K their UV radiation ionizes the surrounding material, which was ejected in an earlier phase of their evolution. Such fluorescent circumstellar gas is called a "Planetary Nebula". About one-tenth of the Galactic central stars are hydrogen-deficient. Generally, the surface of these central stars is a mixture of helium, carbon, and oxygen resulting from partial helium burning. Moreover, most of them have a strong stellar wind, similar to massive Pop-I Wolf-Rayet stars, and are in analogy classified as [WC]. The brackets distinguish the special type from the massive WC stars. Qualitative spectral analyses of [WC] stars lead to the assumption of an evolutionary sequence from the cooler, so-called late-type [WCL] stars to the very hot, early-type [WCE] stars. Quantitative analyses of the winds of [WC] stars became possible by means of computer programs that solve the radiative transfer in the co-moving frame, together with the statistical equilibrium equations for the population numbers. First analyses employing models without iron-line blanketing resulted in systematically different abundances for [WCL] and [WCE] stars. While the mass ratio of He:C is roughly 40:50 for [WCL] stars, it is 60:30 in average for [WCE] stars. The postulated evolution from [WCL] to [WCE] however could only lead to an increase of carbon, since heavier elements are built up by nuclear fusion. In the present work, improved models are used to re-analyze the [WCE] stars and to confirm their He:C abundance ratio. Refined models, calculated with the Potsdam WR model atmosphere code (PoWR), account now for line-blanketing due to iron group elements, small scale wind inhomogeneities, and complex model atoms for He, C, O, H, P, N, and Ne. Referring to stellar evolutionary models for the hydrogen-deficient [WC] stars, Ne and N abundances are of particular interest. Only one out of three different evolutionary channels, the VLTP scenario, leads to a Ne and N overabundance of a few percent by mass. A VLTP, a very late thermal pulse, is a rapid increase of the energy production of the helium-burning shell, while hydrogen burning has already ceased. Subsequently, the hydrogen envelope is mixed with deeper layers and completely burnt in the presence of C, He, and O. This results in the formation of N and Ne. A sample of eleven [WCE] stars has been analyzed. For three of them, PB 6, NGC 5189, and [S71d]3, a N overabundance of 1.5\% has been found, while for three other [WCE] stars such high abundances of N can be excluded. In the case of NGC 5189, strong spectral lines of Ne can be reproduced qualitatively by our models. At present, the Ne mass fraction can only be roughly estimated from the Ne emission lines and seems to be in the order of a few percent by mass. Furthermore, using a diagnostic He-C line pair, the He:C abundance ratio of 60:30 for [WCE] stars is confirmed. Within the framework of the analysis, a new class of hydrogen-deficient central stars has been discovered, with PB 8 as its first member. Its atmospheric mixture resembles rather that of the massive WNL stars than of the [WC] stars. The determined mass fractions H:He:C:N:O are 40:55:1.3:2:1.3. As the wind of PB 8 contains significant amounts of O and C, in contrast to WN stars, a classification as [WN/WC] is suggested.}, language = {en} } @phdthesis{Liermann2009, author = {Liermann, Adriane}, title = {Massive stars in the Galactic Center Quintuplet cluster}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-37223}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {The presented thesis describes the observations of the Galactic center Quintuplet cluster, the spectral analysis of the cluster Wolf-Rayet stars of the nitrogen sequence to determine their fundamental stellar parameters, and discusses the obtained results in a general context. The Quintuplet cluster was discovered in one of the first infrared surveys of the Galactic center region (Okuda et al. 1987, 1989) and was observed for this project with the ESO-VLT near-infrared integral field instrument SINFONI-SPIFFI. The subsequent data reduction was performed in parts with a self-written pipeline to obtain flux-calibrated spectra of all objects detected in the imaged field of view. First results of the observation were compiled and published in a spectral catalog of 160 flux-calibrated \$K\$-band spectra in the range of 1.95 to 2.45\,\$\mu\$m, containing 85 early-type (OB) stars, 62 late-type (KM) stars, and 13 Wolf-Rayet stars. About 100 of these stars are cataloged for the first time. The main part of the thesis project was concentrated on the analysis of the WR stars of the nitrogen sequence and one further identified emission line star (Of/WN) with tailored Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres (Hamann et al. 1995) that are applied to derive the stellar parameters of these stars. For this purpose, the atomic input data of the PoWR models had to be extended by further line transitions in the near-infrared spectral range to enable adaequate model spectra to be calculated. These models were then fitted to the observed spectra, revealing typical paramters for this class of stars. A significant amount of hydrogen of up to \$X_\text{H} \sim 0.2\$ by mass fraction is still present in their stellar atmospheres. The stars are also found to be very luminous (\$\log{(L/L_\odot)} > 6.0\$) and show mass-loss rates and wind characteristics typical for radiation-driven winds. By comparison with stellar evolutionary models (Meynet \\& Maeder 2003a; Langer et al. 1994), the initial masses were estimated and indicate that the Quintuplet WN stars are descendants from the most massive O stars with \$M_\text{init} > 60 M_\odot\$ and their ages correspond to a cluster age of 3-5\,million years. The analysis of the individual WN stars revealed an average extinction of \$A_K =3.1 \pm 0.5\$\,mag (\$A_V = 27 \pm 4\$) towards the Quintuplet cluster. This extinction was applied to derive the stellar luminosities of the remaining early-type and late-type stars in the catalog and a Hertzsprung-Russell diagram could be compiled. Surprisingly, two stellar populations are found, a group of main sequence OB stars and a group of evolved late-type stars, i.e. red supergiants (RSG). The main sequence stars indicate a cluster age of 4 million years, which would be too young for red supergiants to be already present. A star formation event lasting for a few million years might possibly explain the Quintuplet's population and the cluster would still be considered coeval. However, the unexpected and simultaneous presence of red supergiants and Wolf-Rayet stars in the cluster points out that the details of star formation and cluster evolution are not yet well understood for the Quintuplet cluster.}, language = {en} }