@misc{LarhlimiBlachonSelbigetal.2011, author = {Larhlimi, Abdelhalim and Blachon, Sylvain and Selbig, Joachim and Nikoloski, Zoran}, title = {Robustness of metabolic networks a review of existing definitions}, series = {Biosystems : journal of biological and information processing sciences}, volume = {106}, journal = {Biosystems : journal of biological and information processing sciences}, number = {1}, publisher = {Elsevier}, address = {Oxford}, issn = {0303-2647}, doi = {10.1016/j.biosystems.2011.06.002}, pages = {1 -- 8}, year = {2011}, abstract = {Describing the determinants of robustness of biological systems has become one of the central questions in systems biology. Despite the increasing research efforts, it has proven difficult to arrive at a unifying definition for this important concept. We argue that this is due to the multifaceted nature of the concept of robustness and the possibility to formally capture it at different levels of systemic formalisms (e.g, topology and dynamic behavior). Here we provide a comprehensive review of the existing definitions of robustness pertaining to metabolic networks. As kinetic approaches have been excellently reviewed elsewhere, we focus on definitions of robustness proposed within graph-theoretic and constraint-based formalisms.}, language = {en} } @misc{ArnoldNikoloski2011, author = {Arnold, Anne and Nikoloski, Zoran}, title = {A quantitative comparison of Calvin-Benson cycle models}, series = {Trends in plant science}, volume = {16}, journal = {Trends in plant science}, number = {12}, publisher = {Elsevier}, address = {London}, issn = {1360-1385}, doi = {10.1016/j.tplants.2011.09.004}, pages = {676 -- 683}, year = {2011}, abstract = {The Calvin-Benson cycle (CBC) provides the precursors for biomass synthesis necessary for plant growth. The dynamic behavior and yield of the CBC depend on the environmental conditions and regulation of the cellular state. Accurate quantitative models hold the promise of identifying the key determinants of the tightly regulated CBC function and their effects on the responses in future climates. We provide an integrative analysis of the largest compendium of existing models for photosynthetic processes. Based on the proposed ranking, our framework facilitates the discovery of best-performing models with regard to metabolomics data and of candidates for metabolic engineering.}, language = {en} }