@misc{VerchStollHadzicetal.2021, author = {Verch, Ronald and Stoll, Josefine and Hadzic, Miralem and Quarmby, Andrew James and V{\"o}ller, Heinz}, title = {Whole-Body EMS Superimposed Walking and Nordic Walking on a Treadmill—Determination of Exercise Intensity to Conventional Exercise}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-54957}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549575}, pages = {1 -- 9}, year = {2021}, abstract = {Electrical muscle stimulation (EMS) is an increasingly popular training method and has become the focus of research in recent years. New EMS devices offer a wide range of mobile applications for whole-body EMS (WB-EMS) training, e.g., the intensification of dynamic low-intensity endurance exercises through WB-EMS. The present study aimed to determine the differences in exercise intensity between WB-EMS-superimposed and conventional walking (EMS-CW), and CON and WB-EMS-superimposed Nordic walking (WB-EMS-NW) during a treadmill test. Eleven participants (52.0 ± years; 85.9 ± 7.4 kg, 182 ± 6 cm, BMI 25.9 ± 2.2 kg/m2) performed a 10 min treadmill test at a given velocity (6.5 km/h) in four different test situations, walking (W) and Nordic walking (NW) in both conventional and WB-EMS superimposed. Oxygen uptake in absolute (VO2) and relative to body weight (rel. VO2), lactate, and the rate of perceived exertion (RPE) were measured before and after the test. WB-EMS intensity was adjusted individually according to the feedback of the participant. The descriptive statistics were given in mean ± SD. For the statistical analyses, one-factorial ANOVA for repeated measures and two-factorial ANOVA [factors include EMS, W/NW, and factor combination (EMS*W/NW)] were performed (α = 0.05). Significant effects were found for EMS and W/NW factors for the outcome variables VO2 (EMS: p = 0.006, r = 0.736; W/NW: p < 0.001, r = 0.870), relative VO2 (EMS: p < 0.001, r = 0.850; W/NW: p < 0.001, r = 0.937), and lactate (EMS: p = 0.003, r = 0.771; w/NW: p = 0.003, r = 0.764) and both the factors produced higher results. However, the difference in VO2 and relative VO2 is within the range of biological variability of ± 12\%. The factor combination EMS*W/NW is statistically non-significant for all three variables. WB-EMS resulted in the higher RPE values (p = 0.035, r = 0.613), RPE differences for W/NW and EMS*W/NW were not significant. The current study results indicate that WB-EMS influences the parameters of exercise intensity. The impact on exercise intensity and the clinical relevance of WB-EMS-superimposed walking (WB-EMS-W) exercise is questionable because of the marginal differences in the outcome variables.}, language = {en} } @article{VerchStollHadzicetal.2021, author = {Verch, Ronald and Stoll, Josefine and Hadzic, Miralem and Quarmby, Andrew James and V{\"o}ller, Heinz}, title = {Whole-Body EMS Superimposed Walking and Nordic Walking on a Treadmill—Determination of Exercise Intensity to Conventional Exercise}, series = {Frontiers in physiology / Frontiers Research Foundation}, volume = {12}, journal = {Frontiers in physiology / Frontiers Research Foundation}, publisher = {Frontiers Research Foundation}, address = {Lausanne, Schweiz}, issn = {1664-042X}, doi = {10.3389/fphys.2021.715417}, pages = {1 -- 9}, year = {2021}, abstract = {Electrical muscle stimulation (EMS) is an increasingly popular training method and has become the focus of research in recent years. New EMS devices offer a wide range of mobile applications for whole-body EMS (WB-EMS) training, e.g., the intensification of dynamic low-intensity endurance exercises through WB-EMS. The present study aimed to determine the differences in exercise intensity between WB-EMS-superimposed and conventional walking (EMS-CW), and CON and WB-EMS-superimposed Nordic walking (WB-EMS-NW) during a treadmill test. Eleven participants (52.0 ± years; 85.9 ± 7.4 kg, 182 ± 6 cm, BMI 25.9 ± 2.2 kg/m2) performed a 10 min treadmill test at a given velocity (6.5 km/h) in four different test situations, walking (W) and Nordic walking (NW) in both conventional and WB-EMS superimposed. Oxygen uptake in absolute (VO2) and relative to body weight (rel. VO2), lactate, and the rate of perceived exertion (RPE) were measured before and after the test. WB-EMS intensity was adjusted individually according to the feedback of the participant. The descriptive statistics were given in mean ± SD. For the statistical analyses, one-factorial ANOVA for repeated measures and two-factorial ANOVA [factors include EMS, W/NW, and factor combination (EMS*W/NW)] were performed (α = 0.05). Significant effects were found for EMS and W/NW factors for the outcome variables VO2 (EMS: p = 0.006, r = 0.736; W/NW: p < 0.001, r = 0.870), relative VO2 (EMS: p < 0.001, r = 0.850; W/NW: p < 0.001, r = 0.937), and lactate (EMS: p = 0.003, r = 0.771; w/NW: p = 0.003, r = 0.764) and both the factors produced higher results. However, the difference in VO2 and relative VO2 is within the range of biological variability of ± 12\%. The factor combination EMS*W/NW is statistically non-significant for all three variables. WB-EMS resulted in the higher RPE values (p = 0.035, r = 0.613), RPE differences for W/NW and EMS*W/NW were not significant. The current study results indicate that WB-EMS influences the parameters of exercise intensity. The impact on exercise intensity and the clinical relevance of WB-EMS-superimposed walking (WB-EMS-W) exercise is questionable because of the marginal differences in the outcome variables.}, language = {en} } @phdthesis{Lopes2018, author = {Lopes, Pedro}, title = {Interactive Systems Based on Electrical Muscle Stimulation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421165}, school = {Universit{\"a}t Potsdam}, pages = {171}, year = {2018}, abstract = {How can interactive devices connect with users in the most immediate and intimate way? This question has driven interactive computing for decades. Throughout the last decades, we witnessed how mobile devices moved computing into users' pockets, and recently, wearables put computing in constant physical contact with the user's skin. In both cases moving the devices closer to users allowed devices to sense more of the user, and thus act more personal. The main question that drives our research is: what is the next logical step? Some researchers argue that the next generation of interactive devices will move past the user's skin and be directly implanted inside the user's body. This has already happened in that we have pacemakers, insulin pumps, etc. However, we argue that what we see is not devices moving towards the inside of the user's body, but rather towards the body's biological "interface" they need to address in order to perform their function. To implement our vision, we created a set of devices that intentionally borrow parts of the user's body for input and output, rather than adding more technology to the body. In this dissertation we present one specific flavor of such devices, i.e., devices that borrow the user's muscles. We engineered I/O devices that interact with the user by reading and controlling muscle activity. To achieve the latter, our devices are based on medical-grade signal generators and electrodes attached to the user's skin that send electrical impulses to the user's muscles; these impulses then cause the user's muscles to contract. While electrical muscle stimulation (EMS) devices have been used to regenerate lost motor functions in rehabilitation medicine since the 1960s, in this dissertation, we propose a new perspective: EMS as a means for creating interactive systems. We start by presenting seven prototypes of interactive devices that we have created to illustrate several benefits of EMS. These devices form two main categories: (1) Devices that allow users eyes-free access to information by means of their proprioceptive sense, such as the value of a variable in a computer system, a tool, or a plot; (2) Devices that increase immersion in virtual reality by simulating large forces, such as wind, physical impact, or walls and heavy objects. Then, we analyze the potential of EMS to build interactive systems that miniaturize well and discuss how they leverage our proprioceptive sense as an I/O modality. We proceed by laying out the benefits and disadvantages of both EMS and mechanical haptic devices, such as exoskeletons. We conclude by sketching an outline for future research on EMS by listing open technical, ethical and philosophical questions that we left unanswered.}, language = {en} }