@article{ZhangChenBoettcheretal.2015, author = {Zhang, Haocheng and Chen, Xuhui and B{\"o}ttcher, Markus and Guo, Fan and Li, Hui}, title = {Polarization swings reveal magnetic energy dissipation in blazars}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {804}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/804/1/58}, pages = {11}, year = {2015}, abstract = {The polarization signatures of blazar emissions are known to be highly variable. In addition to small fluctuations of the polarization angle around a mean value, large (greater than or similar to 180 degrees) polarization angle swings are sometimes observed. We suggest that such phenomena can be interpreted as arising from light travel time effects within an underlying axisymmetric emission region. We present the first simultaneous fitting of the multi-wavelength spectrum, variability, and time-dependent polarization features of a correlated optical and gamma-ray flaring event of the prominent blazar 3C279, which was accompanied by a drastic change in its polarization signatures. This unprecedented combination of spectral, variability, and polarization information in a coherent physical model allows us to place stringent constraints on the particle acceleration and magnetic field topology in the relativistic jet of a blazar, strongly favoring a scenario in which magnetic energy dissipation is the primary driver of the flare event.}, language = {en} } @article{ZhangLideGrijsetal.2015, author = {Zhang, Chaoli and Li, Chengyuan and de Grijs, Richard and Bekki, Kenji and Deng, Licai and Zaggia, Simone and Rubele, Stefano and Piatti, Andres E. and Cioni, Maria-Rosa L. and Emerson, Jim and For, Bi-Qing and Ripepi, Vincenzo and Marconi, Marcella and Ivanov, Valentin D. and Chen, Li}, title = {The vmc survey. XVIII. radial dependence of the Low-Mass, 0.55-0.82M(circle dot) stellar mass function in the galactic globular cluster 47 tucanae}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {815}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/815/2/95}, pages = {9}, year = {2015}, language = {en} } @article{ZehbeMochalesRadziketal.2015, author = {Zehbe, Rolf and Mochales, Carolina and Radzik, Daniela and Mueller, Wolf-Dieter and Fleck, Claudia}, title = {Electrophoretic deposition of multilayered (cubic and tetragonal stabilized) zirconia ceramics for adapted crack deflection}, series = {Journal of the European Ceramic Society}, volume = {36}, journal = {Journal of the European Ceramic Society}, number = {2}, publisher = {Elsevier}, address = {Oxford}, issn = {0955-2219}, doi = {10.1016/j.jeurceramsoc.2015.08.022}, pages = {357 -- 364}, year = {2015}, abstract = {The electrophoretic deposition process was used to produce multi-layered ceramics consisting of alternating layers of fully stabilized cubic zirconia and partially stabilized tetragonal zirconia to make use of their different mechanical behaviour, investigating the possibility to deflect advancing cracks at the interfaces of the different layers. This crack deflection is apparently impacted by a toughening mechanism only found in the tetragonal stabilized zirconia polymorph and is characterized by the stress induced transformation of the metastable tetragonal phase into the monoclinic one, which is accompanied by a volume increase resulting in a closing mechanism for advancing cracks. While improving the electrophoretic deposition process, we investigated the transformation toughening mechanism at the layer interfaces and their effect on crack propagation. Investigations involved a combination of different imaging methods, including light microscopy, white light interferometry, atomic force microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy.}, language = {en} } @article{ZajnulinaBoehmBlowetal.2015, author = {Zajnulina, Marina and B{\"o}hm, Michael and Blow, K. and Rieznik, A. A. and Giannone, Domenico and Haynes, Roger and Roth, Martin M.}, title = {Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {25}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {10}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/1.4930316}, pages = {6}, year = {2015}, abstract = {We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.}, language = {en} } @article{ZajnulinaBoggioBoehmetal.2015, author = {Zajnulina, Marina and Boggio, Jose M. Chavez and B{\"o}hm, Michael and Rieznik, A. A. and Fremberg, Tino and Haynes, Roger and Roth, Martin M.}, title = {Generation of optical frequency combs via four-wave mixing processes for low- and medium-resolution astronomy}, series = {Applied physics : B, Lasers and optics}, volume = {120}, journal = {Applied physics : B, Lasers and optics}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0946-2171}, doi = {10.1007/s00340-015-6121-1}, pages = {171 -- 184}, year = {2015}, abstract = {We investigate the generation of optical frequency combs through a cascade of four-wave mixing processes in nonlinear fibres with optimised parameters. The initial optical field consists of two continuous-wave lasers with frequency separation larger than 40 GHz (312.7 pm at 1531 nm). It propagates through three nonlinear fibres. The first fibre serves to pulse shape the initial sinusoidal-square pulse, while a strong pulse compression down to sub-100 fs takes place in the second fibre which is an amplifying erbium-doped fibre. The last stage is a low-dispersion highly nonlinear fibre where the frequency comb bandwidth is increased and the line intensity is equalised. We model this system using the generalised nonlinear Schrodinger equation and investigate it in terms of fibre lengths, fibre dispersion, laser frequency separation and input powers with the aim to minimise the frequency comb noise. With the support of the numerical results, a frequency comb is experimentally generated, first in the near infra-red and then it is frequency-doubled into the visible spectral range. Using a MUSE-type spectrograph, we evaluate the comb performance for astronomical wavelength calibration in terms of equidistancy of the comb lines and their stability.}, language = {en} } @phdthesis{Zajnulina2015, author = {Zajnulina, Marina}, title = {Optical frequency comb generation in optical fibres}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88776}, school = {Universit{\"a}t Potsdam}, pages = {xii, 103}, year = {2015}, abstract = {Optical frequency combs (OFC) constitute an array of phase-correlated equidistant spectral lines with nearly equal intensities over a broad spectral range. The adaptations of combs generated in mode-locked lasers proved to be highly efficient for the calibration of high-resolution (resolving power > 50000) astronomical spectrographs. The observation of different galaxy structures or the studies of the Milky Way are done using instruments in the low- and medium resolution range. To such instruments belong, for instance, the Multi Unit Spectroscopic Explorer (MUSE) being developed for the Very Large Telescope (VLT) of the European Southern Observatory (ESO) and the 4-metre Multi-Object Spectroscopic Telescope (4MOST) being in development for the ESO VISTA 4.1 m Telescope. The existing adaptations of OFC from mode-locked lasers are not resolvable by these instruments. Within this work, a fibre-based approach for generation of OFC specifically in the low- and medium resolution range is studied numerically. This approach consists of three optical fibres that are fed by two equally intense continuous-wave (CW) lasers. The first fibre is a conventional single-mode fibre, the second one is a suitably pumped amplifying Erbium-doped fibre with anomalous dispersion, and the third one is a low-dispersion highly nonlinear optical fibre. The evolution of a frequency comb in this system is governed by the following processes: as the two initial CW-laser waves with different frequencies propagate through the first fibre, they generate an initial comb via a cascade of four-wave mixing processes. The frequency components of the comb are phase-correlated with the original laser lines and have a frequency spacing that is equal to the initial laser frequency separation (LFS), i.e. the difference in the laser frequencies. In the time domain, a train of pre-compressed pulses with widths of a few pico-seconds arises out of the initial bichromatic deeply-modulated cosine-wave. These pulses undergo strong compression in the subsequent amplifying Erbium-doped fibre: sub-100 fs pulses with broad OFC spectra are formed. In the following low-dispersion highly nonlinear fibre, the OFC experience a further broadening and the intensity of the comb lines are fairly equalised. This approach was mathematically modelled by means of a Generalised Nonlinear Schr{\"o}dinger Equation (GNLS) that contains terms describing the nonlinear optical Kerr effect, the delayed Raman response, the pulse self-steepening, and the linear optical losses as well as the wavelength-dependent Erbium gain profile for the second fibre. The initial condition equation being a deeply-modulated cosine-wave mimics the radiation of the two initial CW lasers. The numerical studies are performed with the help of Matlab scripts that were specifically developed for the integration of the GNLS and the initial condition according to the proposed approach for the OFC generation. The scripts are based on the Fourth-Order Runge-Kutta in the Interaction Picture Method (RK4IP) in combination with the local error method. This work includes the studies and results on the length optimisation of the first and the second fibre depending on different values of the group-velocity dispersion of the first fibre. Such length optimisation studies are necessary because the OFC have the biggest possible broadband and exhibit a low level of noise exactly at the optimum lengths. Further, the optical pulse build-up in the first and the second fibre was studied by means of the numerical technique called Soliton Radiation Beat Analysis (SRBA). It was shown that a common soliton crystal state is formed in the first fibre for low laser input powers. The soliton crystal continuously dissolves into separated optical solitons as the input power increases. The pulse formation in the second fibre is critically dependent on the features of the pulses formed in the first fibre. I showed that, for low input powers, an adiabatic soliton compression delivering low-noise OFC occurs in the second fibre. At high input powers, the pulses in the first fibre have more complicated structures which leads to the pulse break-up in the second fibre with a subsequent degradation of the OFC noise performance. The pulse intensity noise studies that were performed within the framework of this thesis allow making statements about the noise performance of an OFC. They showed that the intensity noise of the whole system decreases with the increasing value of LFS.}, language = {en} } @article{YinRajkovicVeeduetal.2015, author = {Yin, Zhong and Rajkovic, Ivan and Veedu, Sreevidya Thekku and Deinert, Sascha and Raiser, Dirk and Jain, Rohit and Fukuzawa, Hironobu and Wada, Shin-ichi and Quevedo, Wilson and Kennedy, Brian and Schreck, Simon and Pietzsch, Annette and Wernet, Philippe and Ueda, Kyoshi and F{\"o}hlisch, Alexander and Techert, Simone}, title = {Ionic solutions probed by resonant inelastic X-ray scattering}, series = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, volume = {229}, journal = {Zeitschrift f{\"u}r physikalische Chemie : international journal of research in physical chemistry and chemical physics}, number = {10-12}, publisher = {De Gruyter}, address = {Berlin}, issn = {0942-9352}, doi = {10.1515/zpch-2015-0610}, pages = {1855 -- 1867}, year = {2015}, abstract = {X-ray spectroscopy is a powerful tool to study the local charge distribution of chemical systems. Together with the liquid jet it becomes possible to probe chemical systems in their natural environment, the liquid phase. In this work, we present X-ray absorption (XA), X-ray emission (XE) and resonant inelastic X-ray scattering (RIXS) data of pure water and various salt solutions and show the possibilities these methods offer to elucidate the nature of ion-water interaction.}, language = {en} } @article{YadavalliKoenigSanter2015, author = {Yadavalli, Nataraja Sekhar and K{\"o}nig, Tobias and Santer, Svetlana}, title = {Selective mass transport of azobenzene-containing photosensitive films towards or away from the light intensity}, series = {Journal of the Society for Information Display}, volume = {23}, journal = {Journal of the Society for Information Display}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1071-0922}, doi = {10.1002/jsid.306}, pages = {154 -- 162}, year = {2015}, abstract = {Here, we report on two photosensitive amorphous polymers showing opposite behavior upon exposure to illumination. The first polymer (PAZO) consists of linear backbone to which azobenzene-containing side chains are covalently attached, while in the second polymer (azo-PEI), the azobenzene side chains are attached ionically to a polyelectrolyte backbone. When irradiated through a mask, the PAZO goes away from the intensity maxima, leaving behind topography trenches, while the direction of the mass transport of the azo-PEI polymer points towards the intensity maxima. This kind of behavior has been reported only for certain liquid crystalline polymers that exhibit in-phase reaction on illumination, that is, topography maxima coincides with the intensity maxima. Furthermore, flat nanocrystals placed on top of azo-PEI film was found to be moved together with the mass transport of the underlying polymer film as visualized using in situ atomic force microscopy (AFM) measurements. It was also demonstrated that the two polymer films respond differently on irradiation with the polarization and intensity interference patterns (IPs). To record the kinetic of the surface relief grating formation within two polymers during irradiation with different IPs, we utilized a homemade setup combining the optical part for the generation of IP and AFM. A possible mechanism explaining different responses on the irradiation of amorphous polymers is discussed in the frame of a theoretical model proposed by Saphiannikova et al. (J. Phys. Chem. B 113, 5032-5045 (2009)).}, language = {en} } @article{XuShalomPiersimonietal.2015, author = {Xu, Jingsan and Shalom, Menny and Piersimoni, Fortunato and Antonietti, Markus and Neher, Dieter and Brenner, Thomas J. K.}, title = {Color-Tunable Photoluminescence and NIR Electroluminescence in Carbon Nitride Thin Films and Light-Emitting Diodes}, series = {Advanced optical materials}, volume = {3}, journal = {Advanced optical materials}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2195-1071}, doi = {10.1002/adom.201500019}, pages = {913 -- 917}, year = {2015}, language = {en} } @article{XuCaoBrenneretal.2015, author = {Xu, Jingsan and Cao, Shaowen and Brenner, Thomas J. K. and Yang, Xiaofei and Yu, Jiaguo and Antonietti, Markus and Shalom, Menny}, title = {Supramolecular Chemistry in Molten Sulfur: Preorganization Effects Leading to Marked Enhancement of Carbon Nitride Photoelectrochemistry}, series = {Advanced functional materials}, volume = {25}, journal = {Advanced functional materials}, number = {39}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201502843}, pages = {6265 -- 6271}, year = {2015}, abstract = {Here, a new method for enhancing the photoelectrochemical properties of carbon nitride thin films by in situ supramolecular-driven preorganization of phenyl-contained monomers in molten sulfur is reported. A detailed analysis of the chemical and photophysical properties suggests that the molten sulfur can texture the growth and induce more effective integration of phenyl groups into the carbon nitride electrodes, resulting in extended light absorption alongside with improved conductivity and better charge transfer. Furthermore, photophysical measurements indicate the formation of sub-bands in the optical bandgap which is beneficial for exciton splitting. Moreover, the new bands can mediate hole transfer to the electrolyte, thus improving the photooxidation activity. The utilization of high temperature solvent as the polymerization medium opens new opportunities for the significant improvement of carbon nitride films toward an efficient photoactive material for various applications.}, language = {en} } @article{XinLaRueObergetal.2015, author = {Xin, Hong and LaRue, Jerry and Oberg, Henrik and Beye, Martin and Turner, J. J. and Gladh, J{\"o}rgen and Ng, May L. and Sellberg, Jonas A. and Kaya, Sarp and Mercurio, G. and Hieke, F. and Nordlund, Dennis and Schlotter, William F. and Dakovski, Georgi L. and Minitti, Michael P. and F{\"o}hlisch, Alexander and Wolf, Martin and Wurth, Wilfried and Ogasawara, Hirohito and Norskov, Jens K. and Ostrom, Henrik and Pettersson, Lars G. M. and Nilsson, Anders and Abild-Pedersen, Frank}, title = {Strong Influence of Coadsorbate Interaction on CO Desorption Dynamics on Ru(0001) Probed by Ultrafast X-Ray Spectroscopy and Ab Initio Simulations}, series = {Physical review letters}, volume = {114}, journal = {Physical review letters}, number = {15}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.114.156101}, pages = {6}, year = {2015}, abstract = {We show that coadsorbed oxygen atoms have a dramatic influence on the CO desorption dynamics from Ru(0001). In contrast to the precursor-mediated desorption mechanism on Ru(0001), the presence of surface oxygen modifies the electronic structure of Ru atoms such that CO desorption occurs predominantly via the direct pathway. This phenomenon is directly observed in an ultrafast pump-probe experiment using a soft x-ray free-electron laser to monitor the dynamic evolution of the valence electronic structure of the surface species. This is supported with the potential of mean force along the CO desorption path obtained from density-functional theory calculations. Charge density distribution and frozen-orbital analysis suggest that the oxygen-induced reduction of the Pauli repulsion, and consequent increase of the dative interaction between the CO 5 sigma and the charged Ru atom, is the electronic origin of the distinct desorption dynamics. Ab initio molecular dynamics simulations of CO desorption from Ru(0001) and oxygen-coadsorbed Ru(0001) provide further insights into the surface bond-breaking process.}, language = {en} } @article{WuerfelNeherSpiesetal.2015, author = {W{\"u}rfel, Uli and Neher, Dieter and Spies, Annika and Albrecht, Steve}, title = {Impact of charge transport on current-voltage characteristics and power-conversion efficiency of organic solar cells}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms7951}, pages = {9}, year = {2015}, abstract = {This work elucidates the impact of charge transport on the photovoltaic properties of organic solar cells. Here we show that the analysis of current-voltage curves of organic solar cells under illumination with the Shockley equation results in values for ideality factor, photo-current and parallel resistance, which lack physical meaning. Drift-diffusion simulations for a wide range of charge-carrier mobilities and illumination intensities reveal significant carrier accumulation caused by poor transport properties, which is not included in the Shockley equation. As a consequence, the separation of the quasi Fermi levels in the organic photoactive layer (internal voltage) differs substantially from the external voltage for almost all conditions. We present a new analytical model, which considers carrier transport explicitly. The model shows excellent agreement with full drift-diffusion simulations over a wide range of mobilities and illumination intensities, making it suitable for realistic efficiency predictions for organic solar cells.}, language = {en} } @article{WinklerAbel2015, author = {Winkler, Michael and Abel, Markus}, title = {Small- and large-scale characterization and mixing properties in a thermally driven thin liquid film}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {92}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {6}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.92.063002}, pages = {10}, year = {2015}, abstract = {We study aqueous, freestanding, thin films stabilized by a surfactant with respect to mixing and dynamical systems properties. With this special setup, a two-dimensional fluid can be realized experimentally. The physics of the system involves a complex interplay of thermal convection and interface and gravitational forces. Methodologically, we characterize the system using two classical dynamical systems properties: Lyapunov exponents and entropies. Our experimental setup produces convection with two stable eddies by applying a temperature gradient in one spot that yields weakly turbulent mixing. From dynamical systems theory, one expects a relation of entropies, Lyapunov exponents, a prediction with little experimental support. We can confirm the corresponding statements experimentally, on different scales using different methods. On the small scale the motion and deformation of fluid filaments of equal size (color imaging velocimetry) are used to compute Lyapunov exponents. On the large scale, entropy is computed by tracking the left-right motion of the center fluid jet at the separatrix between the two convection rolls. We thus combine here dynamical systems methods with a concrete application of mixing in a nanoscale freestanding thin film.}, language = {en} } @phdthesis{Wieland2015, author = {Wieland, Volkmar}, title = {Particle-in-cell simulations of perpendicular supernova shock fronts}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74532}, school = {Universit{\"a}t Potsdam}, pages = {v, 89}, year = {2015}, abstract = {The origin of cosmic rays was the subject of several studies for over a century. The investigations done within this dissertation are one small step to shed some more light on this mystery. Locating the sources of cosmic rays is not trivial due to the interstellar magnetic field. However, the Hillas criterion allows us to arrive at the conclusion that supernova remnants are our main suspect for the origin of galactic cosmic rays. The mechanism by which they are accelerating particles is found within the field of shock physics as diffusive shock acceleration. To allow particles to enter this process also known as Fermi acceleration pre-acceleration processes like shock surfing acceleration and shock drift acceleration are necessary. Investigating the processes happening in the plasma shocks of supernova remnants is possible by utilising a simplified model which can be simulated on a computer using Particle-in-Cell simulations. We developed a new and clean setup to simulate the formation of a double shock, i.e., consisting of a forward and a reverse shock and a contact discontinuity, by the collision of two counter-streaming plasmas, in which a magnetic field can be woven into. In a previous work, we investigated the processes at unmagnetised and at magnetised parallel shocks, whereas in the current work, we move our investigation on to magnetised perpendicular shocks. Due to a much stronger confinement of the particles to the collision region the perpendicular shock develops much faster than the parallel shock. On the other hand, this leads to much weaker turbulence. We are able to find indications for shock surfing acceleration and shock drift acceleration happening at the two shocks leading to populations of pre-accelerated particles that are suitable as a seed population to be injected into further diffusive shock acceleration to be accelerated to even higher energies. We observe the development of filamentary structures in the shock ramp of the forward shock, but not at the reverse shock. This leads to the conclusion that the development of such structures in the shock ramp of quasi-perpendicular collisionless shocks might not necessarily be determined by the existence of a critical sonic Mach number but by a critical shock speed. The results of the investigations done within this dissertation might be useful for further studies of oblique shocks and for studies using hybrid or magnetohydrodynamic simulations. Together with more sophisticated observational methods, these studies will help to bring us closer to an answer as to how particles can be accelerated in supernova remnants and eventually become cosmic rays that can be detected on Earth.}, language = {en} } @article{WernetKunnusJosefssonetal.2015, author = {Wernet, Philippe and Kunnus, Kristjan and Josefsson, Ida and Rajkovic, Ivan and Quevedo, Wilson and Beye, Martin and Schreck, Simon and Gruebel, S. and Scholz, Mirko and Nordlund, Dennis and Zhang, Wenkai and Hartsock, Robert W. and Schlotter, William F. and Turner, Joshua J. and Kennedy, Brian and Hennies, Franz and de Groot, Frank M. F. and Gaffney, Kelly J. and Techert, Simone and Odelius, Michael and F{\"o}hlisch, Alexander}, title = {Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)(5) in solution}, series = {Nature : the international weekly journal of science}, volume = {520}, journal = {Nature : the international weekly journal of science}, number = {7545}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature14296}, pages = {78 -- 81}, year = {2015}, abstract = {Transition-metal complexes have long attracted interest for fundamental chemical reactivity studies and possible use in solar energy conversion(1,2). Electronic excitation, ligand loss from the metal centre, or a combination of both, creates changes in charge and spin density at the metal site(3-11) that need to be controlled to optimize complexes for photocatalytic hydrogen production(8) and selective carbon-hydrogen bond activation(9-11). An understanding at the molecular level of how transition-metal complexes catalyse reactions, and in particular of the role of the short-lived and reactive intermediate states involved, will be critical for such optimization. However, suitable methods for detailed characterization of electronic excited states have been lacking. Here we show, with the use of X-ray laser-based femtosecond-resolution spectroscopy and advanced quantum chemical theory to probe the reaction dynamics of the benchmark transition-metal complex Fe(CO)(5) in solution, that the photo-induced removal of CO generates the 16-electron Fe(CO)(4) species, a homogeneous catalyst(12,13) with an electron deficiency at the Fe centre(14,15), in a hitherto unreported excited singlet state that either converts to the triplet ground state or combines with a CO or solvent molecule to regenerate a penta-coordinated Fe species on a sub-picosecond timescale. This finding, which resolves the debate about the relative importance of different spin channels in the photochemistry of Fe(CO)(5) (refs 4, 16-20), was made possible by the ability of femtosecond X-ray spectroscopy to probe frontier-orbital interactions with atom specificity. We expect the method to be broadly applicable in the chemical sciences, and to complement approaches that probe structural dynamics in ultrafast processes.}, language = {en} } @article{WenzWillnerRadebachetal.2015, author = {Wenz, Leonie and Willner, Sven N. and Radebach, Alexander and Bierkandt, Robert and Steckel, Jan Christoph and Levermann, Anders}, title = {Regional and sectoral disaggregation of multi-regional input-output tables - a flexible algorithm}, series = {Economic systems research : journal of the International Input-Output Association}, volume = {27}, journal = {Economic systems research : journal of the International Input-Output Association}, number = {2}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0953-5314}, doi = {10.1080/09535314.2014.987731}, pages = {194 -- 212}, year = {2015}, abstract = {A common shortcoming of available multi-regional input-output (MRIO) data sets is their lack of regional and sectoral detail required for many research questions (e.g. in the field of disaster impact analysis). We present a simple algorithm to refine MRIO tables regionally and/or sectorally. By the use of proxy data, each MRIO flow in question is disaggregated into the corresponding sub-flows. This downscaling procedure is complemented by an adjustment rule ensuring that the sub-flows match the superordinate flow in sum. The approximation improves along several iteration steps. The algorithm unfolds its strength through the flexible combination of multiple, possibly incomplete proxy data sources. It is also flexible in a sense that any target sector and region resolution can be chosen. As an exemplary case we apply the algorithm to a regional and sectoral refinement of the Eora MRIO database.}, language = {en} } @article{WeilbacherMonrealIberoKollatschnyetal.2015, author = {Weilbacher, Peter Michael and Monreal-Ibero, Ana and Kollatschny, Wolfram and Ginsburg, Adam and McLeod, Anna F. and Kamann, Sebastian and Sandin, Christer and Palsa, Ralf and Wisotzki, Lutz and Bacon, Roland and Selman, Fernando and Brinchmann, Jarle and Caruana, Joseph and Kelz, Andreas and Martinsson, Thomas and Pecontal-Rousset, Arlette and Richard, Johan and Wendt, Martin}, title = {A MUSE map of the central Orion Nebula (M 42)}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {582}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201526529}, pages = {16}, year = {2015}, abstract = {We present a new integral field spectroscopic dataset of the central part of the Orion Nebula (M 42), observed with the MUSE instrument at the ESO VLT. We reduced the data with the public MUSE pipeline. The output products are two FITS cubes with a spatial size of similar to 5'9 x 4'9 (corresponding to similar to 0.76 x 0.63 pc(2)) and a contiguous wavelength coverage of 4595 ... 9366 angstrom, spatially sampled at 0 ''.2. We provide two versions with a sampling of 1.25 angstrom and 0.85 angstrom in dispersion direction. Together with variance cubes these files have a size of 75 and 110 GiB on disk. They are the largest integral field mosaics to date in terms of information content. We make them available for use in the community. To validate this dataset, we compare world coordinates, reconstructed magnitudes, velocities, and absolute and relative emission line fluxes to the literature values and find excellent agreement. We derive a 2D map of extinction and present de-reddened flux maps of several individual emission lines and of diagnostic line ratios. We estimate physical properties of the Orion Nebula, using the emission line ratios [N II] and [S III] (for the electron temperature T-e) and [S II] and [Cl III] (for the electron density N-e), and show 2D images of the velocity measured from several bright emission lines.}, language = {en} } @article{WacheMcCarthyRisseetal.2015, author = {Wache, Remi and McCarthy, Denis N. and Risse, Sebastian and Kofod, Guggi}, title = {Rotary Motion Achieved by New Torsional Dielectric Elastomer Actuators Design}, series = {IEEE ASME transactions on mechatronics}, volume = {20}, journal = {IEEE ASME transactions on mechatronics}, number = {2}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1083-4435}, doi = {10.1109/TMECH.2014.2301633}, pages = {975 -- 977}, year = {2015}, abstract = {This paper reports a new way to produce a rotation motion actuated by dielectric elastomer actuators. Two specific electrode designs have been developed and the rotation of the actuator centers has been demonstrated and measured. At low strains, the rotation shows a nearly quadratic dependence with the voltage. This behavior was used to compare the performances between the two proposed designs. Among the tested configurations, a maximal rotation of 10 degrees was achieved.}, language = {en} } @article{VlasovPikovskijMacau2015, author = {Vlasov, Vladimir and Pikovskij, Arkadij and Macau, Elbert E. N.}, title = {Star-type oscillatory networks with generic Kuramoto-type coupling: A model for "Japanese drums synchrony"}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {25}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {12}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/1.4938400}, pages = {13}, year = {2015}, abstract = {We analyze star-type networks of phase oscillators by virtue of two methods. For identical oscillators we adopt the Watanabe-Strogatz approach, which gives full analytical description of states, rotating with constant frequency. For nonidentical oscillators, such states can be obtained by virtue of the self-consistent approach in a parametric form. In this case stability analysis cannot be performed, however with the help of direct numerical simulations we show which solutions are stable and which not. We consider this system as a model for a drum orchestra, where we assume that the drummers follow the signal of the leader without listening to each other and the coupling parameters are determined by a geometrical organization of the orchestra. (C) 2015 AIP Publishing LLC.}, language = {en} } @article{VlasovKomarovPikovskij2015, author = {Vlasov, Vladimir and Komarov, Maxim and Pikovskij, Arkadij}, title = {Synchronization transitions in ensembles of noisy oscillators with bi-harmonic coupling}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {48}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {10}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/48/10/105101}, pages = {16}, year = {2015}, abstract = {We describe synchronization transitions in an ensemble of globally coupled phase oscillators with a bi-harmonic coupling function, and two sources of disorder-diversity of the intrinsic oscillators' frequencies, and external independent noise forces. Based on the self-consistent formulation, we derive analytic solutions for different synchronous states. We report on various non-trivial transitions from incoherence to synchrony, with the following possible scenarios: simple supercritical transition (similar to classical Kuramoto model); subcritical transition with large area of bistability of incoherent and synchronous solutions; appearance of a symmetric two-cluster solution which can coexist with the regular synchronous state. We show that the interplay between relatively small white noise and finite-size fluctuations can lead to metastability of the asynchronous solution.}, language = {en} } @phdthesis{Vlasov2015, author = {Vlasov, Vladimir}, title = {Synchronization of oscillatory networks in terms of global variables}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-78182}, school = {Universit{\"a}t Potsdam}, pages = {82}, year = {2015}, abstract = {Synchronization of large ensembles of oscillators is an omnipresent phenomenon observed in different fields of science like physics, engineering, life sciences, etc. The most simple setup is that of globally coupled phase oscillators, where all the oscillators contribute to a global field which acts on all oscillators. This formulation of the problem was pioneered by Winfree and Kuramoto. Such a setup gives a possibility for the analysis of these systems in terms of global variables. In this work we describe nontrivial collective dynamics in oscillator populations coupled via mean fields in terms of global variables. We consider problems which cannot be directly reduced to standard Kuramoto and Winfree models. In the first part of the thesis we adopt a method introduced by Watanabe and Strogatz. The main idea is that the system of identical oscillators of particular type can be described by a low-dimensional system of global equations. This approach enables us to perform a complete analytical analysis for a special but vast set of initial conditions. Furthermore, we show how the approach can be expanded for some nonidentical systems. We apply the Watanabe-Strogatz approach to arrays of Josephson junctions and systems of identical phase oscillators with leader-type coupling. In the next parts of the thesis we consider the self-consistent mean-field theory method that can be applied to general nonidentical globally coupled systems of oscillators both with or without noise. For considered systems a regime, where the global field rotates uniformly, is the most important one. With the help of this approach such solutions of the self-consistency equation for an arbitrary distribution of frequencies and coupling parameters can be found analytically in the parametric form, both for noise-free and noisy cases. We apply this method to deterministic Kuramoto-type model with generic coupling and an ensemble of spatially distributed oscillators with leader-type coupling. Furthermore, with the proposed self-consistent approach we fully characterize rotating wave solutions of noisy Kuramoto-type model with generic coupling and an ensemble of noisy oscillators with bi-harmonic coupling. Whenever possible, a complete analysis of global dynamics is performed and compared with direct numerical simulations of large populations.}, language = {en} } @article{TorrejonSchulzNowaketal.2015, author = {Torrejon, Jose M. and Schulz, Norbert S. and Nowak, Michael A. and Oskinova, Lida and Rodes-Roca, Jose J. and Shenar, Tomer and Wilms, J{\"o}rn}, title = {On the radial onset of clumping in the wind of the B0I massive star QV nor}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {810}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/810/2/102}, pages = {11}, year = {2015}, abstract = {We present an analysis of a 78 ks Chandra high-energy transmission gratings observation of the B0I star QV Nor, the massive donor of the wind-accreting pulsar 4U1538-52. The neutron star (NS) orbits its companion in a very close orbit (r < 1.4R(*), in units of the stellar radii), thereby allowing probing of the innermost wind regions. The flux of the Fe K alpha line during eclipse reduces to only similar to 30\% of the flux measured out of eclipse. This indicates that the majority of Fe fluorescence must be produced in regions close to the NS, at distances smaller than 1R(*) from its surface. The fact that the flux of the continuum decreases to only similar to 3\% during eclipse allows for a high contrast of the Fe Ka line fluorescence during eclipse. The line is not resolved and centered at lambda = 1.9368(-0.0018)(+0.0032) angstrom. From the inferred plasma speed limit of v < c Delta lambda/lambda < 800 km s(-1) and range of ionization parameters of log xi =[-1, 2], together with the stellar density profile, we constrain the location of the cold, dense material in the stellar wind of QV Nor using simple geometrical considerations. We then use the Fe K alpha line fluorescence as a tracer of wind clumps and determine that these clumps in the stellar wind of QV Nor (B0I) must already be present at radii r < 1.25R(*), close to the photosphere of the star.}, language = {en} } @article{TodtSanderHainichetal.2015, author = {Todt, Helge Tobias and Sander, Angelika and Hainich, Rainer and Hamann, Wolf-Rainer and Quade, Markus and Shenar, Tomer}, title = {Potsdam Wolf-Rayet model atmosphere grids for WN stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {579}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201526253}, pages = {6}, year = {2015}, abstract = {We present new grids of Potsdam Wolf-Rayet (PoWR) model atmospheres for Wolf-Rayet stars of the nitrogen sequence (WN stars). The models have been calculated with the latest version of the PoWR stellar atmosphere code for spherical stellar winds. The WN model atmospheres include the non-LTE solutions of the statistical equations for complex model atoms, as well as the radiative transfer equation in the co-moving frame. Iron-line blanketing is treated with the help of the superlevel approach, while wind inhomogeneities are taken into account via optically thin clumps. Three of our model grids are appropriate for Galactic metallicity. The hydrogen mass fraction of these grids is 50\%, 20\%, and 0\%, thus also covering the hydrogen-rich late-type WR stars that have been discovered in recent years. Three grids are adequate for LMC WN stars and have hydrogen fractions of 40\%, 20\%, and 0\%. Recently, additional grids with SMC metallicity and with 60\%, 40\%, 20\%, and 0\% hydrogen have been added. We provide contour plots of the equivalent widths of spectral lines that are usually used for classification and diagnostics.}, language = {en} } @article{TodtHamann2015, author = {Todt, Helge Tobias and Hamann, Wolf-Rainer}, title = {Wolf-Rayet central stars of planetary nebulae}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88147}, pages = {253 -- 258}, year = {2015}, abstract = {A significant number of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient, showing a chemical composition of helium, carbon, and oxygen. Most of them exhibit Wolf-Rayet-like emission line spectra, similar to those of the massive WC Pop I stars, and are therefore classified as of spectral type [WC]. In the last years, CSPNe of other Wolf-Rayet spectral subtypes have been identified, namely PB 8, which is of spectral type [WN/C], and IC 4663 and Abell 48, which are of spectral type [WN]. We review spectral analyses of Wolf-Rayet type central stars of different evolutionary stages and discuss the results in the context of stellar evolution. Especially we consider the question of a common evolutionary channel for [WC] stars. The constraints on the formation of [WN] or [WC/N] subtype stars will also be addressed.}, language = {en} } @article{ToalaGuerreroTodtetal.2015, author = {Toala, Jes{\´u}s Alberto and Guerrero, Mart{\´i}n A. and Todt, Helge Tobias and Hamann, Wolf-Rainer and Chu, Y.-H. and Gruendl, R. A. and Sch{\"o}nberner, Detlef and Oskinova, Lida and Marquez-Lugo, R. A. and Fang, X. and Ramos-Larios, Gerardo}, title = {The born-again Planetary nebula A78: an X-RAY twin of A30}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {799}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/799/1/67}, pages = {10}, year = {2015}, abstract = {We present the XMM-Newton discovery of X-ray emission from the planetary nebula (PN) A78, the second born-again PN detected in X-rays apart from A30. These two PNe share similar spectral and morphological characteristics: they harbor diffuse soft X-ray emission associated with the interaction between the H-poor ejecta and the current fast stellar wind and a point-like source at the position of the central star (CSPN). We present the spectral analysis of the CSPN, using for the first time an NLTE code for expanding atmospheres that takes line blanketing into account for the UV and optical spectra. The wind abundances are used for the X-ray spectral analysis of the CSPN and the diffuse emission. The X-ray emission from the CSPN in A78 can be modeled by a single C VI emission line, while the X-ray emission from its diffuse component is better described by an optically thin plasma emission model with a temperature of kT = 0.088 keV (T approximate to 1.0 x 10(6) K). We estimate X-ray luminosities in the 0.2-2.0 keV energy band of L-X,L-CSPN =(1.2 +/- 0.3) x 10(31) erg s(-1) and L-X,L-DIFF =(9.2 +/- 2.3) x 10(30) erg s(-1) for the CSPN and diffuse components, respectively.}, language = {en} } @article{TitovLysyakovaLomadzeetal.2015, author = {Titov, Evgenii and Lysyakova, Liudmila and Lomadze, Nino and Kabashin, Andrei V. and Saalfrank, Peter and Santer, Svetlana}, title = {Thermal Cis-to-Trans Isomerization of Azobenzene-Containing Molecules Enhanced by Gold Nanoparticles: An Experimental and Theoretical Study}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {119}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {30}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.5b02473}, pages = {17369 -- 17377}, year = {2015}, abstract = {We report on the experimental and theoretical investigation of a considerable increase in the rate for thermal cis -> trans isomerization of azobenzene-containing molecules in the presence of gold nanopartides. Experimentally, by means of UV vis spectroscopy, we studied a series of azobenzene-containing surfactants and 4-nitroazobenzene. We found that in the presence of gold,nanoparticles the thermal lifetime of the cis isomer of the azobenzenecontaining molecules was decreased by up to 3 orders of magnitude in comparison to the lifetime in solution without nanoparticles. The electron transfer between azobenzene-containing molecules and a surface of gold nanopartides is a possible reason to promote the thermal cis trans switching. To investigate the effect of electron attachment to, and withdrawal from, the azobenzene-containing molecules on the isomerization rate, we performed density functional theory calculations of activation energy barriers of the reaction together with Eyring's transition state theory calculations of the rates for azobenzene derivatives with donor and acceptor groups in para position of one of the phenyl rings, as well as for one of the azobenzene-containing surfactants. We found that activation barriers are greatly lowered for azobenzene-containing molecules, both upon electron attachment and withdrawal, which leads, in turn, to a dramatic increase in the thermal isomerization rate.}, language = {en} } @article{ThevesTaktikosZaburdaevetal.2015, author = {Theves, Matthias and Taktikos, J. and Zaburdaev, V. and Stark, H. and Beta, Carsten}, title = {Random walk patterns of a soil bacterium in open and confined environments}, series = {epl : a letters journal exploring the frontiers of physics}, volume = {109}, journal = {epl : a letters journal exploring the frontiers of physics}, number = {2}, publisher = {EDP Sciences}, address = {Mulhouse}, issn = {0295-5075}, doi = {10.1209/0295-5075/109/28007}, pages = {6}, year = {2015}, abstract = {We used microfluidic tools and high-speed time-lapse microscopy to record trajectories of the soil bacterium Pseudomonas putida in a confined environment with cells swimming in close proximity to a glass-liquid interface. While the general swimming pattern is preserved, when compared to swimming in the bulk fluid, our results show that cells in the presence of two solid boundaries display more frequent reversals in swimming direction and swim faster. Additionally, we observe that run segments are no longer straight and that cells swim on circular trajectories, which can be attributed to the hydrodynamic wall effect. Using the experimentally observed parameters together with a recently presented analytic model for a run-reverse random walker, we obtained additional insight on how the spreading behavior of a cell population is affected under confinement. While on short time scales, the mean square displacement of confined swimmers grows faster as compared to the bulk fluid case, our model predicts that for large times the situation reverses due to the strong increase in effective rotational diffusion.}, language = {en} } @phdthesis{Streich2015, author = {Streich, David}, title = {Understanding massive disk galaxy formation through resolved stellar populations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-81027}, school = {Universit{\"a}t Potsdam}, pages = {ix, 140}, year = {2015}, abstract = {In this thesis we utilize resolved stellar populations to improve our understanding of galaxy formation and evolution. In the first part we improve a method for metallicity determination of faint old stellar systems, in the second and third part we analyze the individual history of six nearby disk galaxies outside the Local Group. A New Calibration of the Color Metallicity Relation of Red Giants for HST data: It is well known, that the color distribution of stars on the the Red Giant Branch (RGB) can be used to determine metallicities of old stellar populations that have only shallow photometry. Based on the largest sample of globular clusters ever used for such studies, we quantify the relation between metallicity and color in the widely used HST ACS filters F606W and F814W. We use a sample of globular clusters from the ACS Globular Cluster Survey and measure their RGB color at given absolute magnitudes to derive the color-metallicity relation. We find a clear relation between metallicity and RGB color; we investigate the scatter and the uncertainties in this relation and show its limitations. A comparison with isochrones shows reasonably good agreement with BaSTI models, a small offset to Dartmouth models, and a larger offset to Padua models. Even for the best globular cluster data available, the metallicity of a simple stellar population can be determined from the RGB alone only with an accuracy of 0.3 dex for [M/H]<-1, and 0.15 dex for [M/H]>-1. For mixed populations, as they are observed in external galaxies, the uncertainties will be even larger due to uncertainties in extinction, age, etc. Therefore caution is necessary when interpreting photometric metallicities. The Structural History of Nearby Low Mass Disk Galaxies: We study the individual evolution histories of three nearby, low-mass, edge-on galaxies (IC5052, NGC4244, NGC5023). Using the color magnitude diagrams of resolved stellar populations, we construct star count density maps for populations of different ages and analyze the change of structural parameters with stellar age within each galaxy. The three galaxies show low vertical heating rates, which are much lower than the heating rate of the Milky Way. This indicates that heating agents, as giant molecular clouds and spiral structure are weak in low mass galaxies. We do not detect a separate thick disk in any of the three galaxies, even though our observations cover a larger range in equivalent surface brightness than any integrated light study. While scaleheights increase with age, each population can be well described by a single disk. Only two of the galaxies contain a very weak additional component, which we identify as the faint halo. The mass of these faint halos is less than 1\% of the mass of the disk. All populations in the three galaxies exhibit no or only little flaring. While this finding is consistent with previous integrated light studies, it poses strong constraints on galaxy formation models, because most theoretical simulations often find strong flaring due to interactions or radial migration. Furthermore, we find breaks in the radial profiles of all three galaxies. The radii of these breaks are independent of age, and the break strength is decreasing with age in two of the galaxies (NGC4244 and NGC5023). This is consistent with break formation models, that combine a star formation cutoff with radial migration. The differing behavior of IC5052 can be explained by a recent interaction or minor merger. The Structural History of Massive Disk Galaxies: We extend the structural analysis of stellar populations with distinct ages to three massive galaxies, NGC891, NGC4565 and NGC7814. While confusion effects due to the high stellar number densities in their central region, and the prominent dust lanes inhibit an detailed analysis of the radial profiles, we can study their vertical structure. These massive galaxies also have a slower heating than the Milky Way, comparable to the low mass galaxies. This can be traced back to their already thick young populations and thick layers of their interstellar medium. We do not find a clear separate thick disk in any of these three galaxies; all populations can be described by a single disk plus a S\'ersic bulge/halo component. In contrast to the low mass galaxies, we cannot rule out the presence of thick disks in the massive galaxies, because of the strong influence of the halo, that might hide the possible contribution of the thick disk to the vertical star count profiles. However, the faintness of the possible thick disks still points to problems in the earlier ubiquitous findings of thick disks in external galaxies.}, language = {en} } @article{StraussKulpLevermann2015, author = {Strauss, Benjamin H. and Kulp, Scott and Levermann, Anders}, title = {Carbon choices determine US cities committed to futures below sea level}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {112}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {44}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1511186112}, pages = {13508 -- 13513}, year = {2015}, abstract = {Anthropogenic carbon emissions lock in long-term sea-level rise that greatly exceeds projections for this century, posing profound challenges for coastal development and cultural legacies. Analysis based on previously published relationships linking emissions to warming and warming to rise indicates that unabated carbon emissions up to the year 2100 would commit an eventual global sea-level rise of 4.3-9.9 m. Based on detailed topographic and population data, local high tide lines, and regional long-term sea-level commitment for different carbon emissions and ice sheet stability scenarios, we compute the current population living on endangered land at municipal, state, and national levels within the United States. For unabated climate change, we find that land that is home to more than 20 million people is implicated and is widely distributed among different states and coasts. The total area includes 1,185-1,825 municipalities where land that is home to more than half of the current population would be affected, among them at least 21 cities exceeding 100,000 residents. Under aggressive carbon cuts, more than half of these municipalities would avoid this commitment if the West Antarctic Ice Sheet remains stable. Similarly, more than half of the US population-weighted area under threat could be spared. We provide lists of implicated cities and state populations for different emissions scenarios and with and without a certain collapse of the West Antarctic Ice Sheet. Although past anthropogenic emissions already have caused sea-level commitment that will force coastal cities to adapt, future emissions will determine which areas we can continue to occupy or may have to abandon.}, language = {en} } @article{SteinkeOskinovaHamannetal.2015, author = {Steinke, M. and Oskinova, Lida and Hamann, Wolf-Rainer and Sander, A.}, title = {The Wolf-Rayet stars WR102c and 102ka and their isolation}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88503}, pages = {365}, year = {2015}, abstract = {While the majority of very massive stars is clearly found in clusters, there are also very massive objects not associated with any cluster, suggesting they may have been born in isolation. In order to gain more insights, we studied the regions around two WR stars in the Galactic Center region. To understand the nature of the potential cluster around massive stars, photometry alone is not sufficient. We therefore used the ESO VLT/SINFONI integral field spectrograph to obtain photometry and spectra for the whole region around our two candidate stars. In total, more than 60 stars have been found and assigned a spectral type.}, language = {en} } @misc{SpahnSeiss2015, author = {Spahn, Frank and Seiss, Martin}, title = {Charges dropped}, series = {Nature physics}, volume = {11}, journal = {Nature physics}, number = {9}, publisher = {Nature Publ. Group}, address = {London}, issn = {1745-2473}, pages = {709 -- 710}, year = {2015}, language = {en} } @phdthesis{Sommerfeld2015, author = {Sommerfeld, Anja}, title = {Quantification of internal variability of the arctic summer atmosphere based on HIRHAM5 ensemble simulations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85347}, school = {Universit{\"a}t Potsdam}, pages = {VII, 110, vi}, year = {2015}, abstract = {The non-linear behaviour of the atmospheric dynamics is not well understood and makes the evaluation and usage of regional climate models (RCMs) difficult. Due to these non-linearities, chaos and internal variability (IV) within the RCMs are induced, leading to a sensitivity of RCMs to their initial conditions (IC). The IV is the ability of RCMs to realise different solutions of simulations that differ in their IC, but have the same lower and lateral boundary conditions (LBC), hence can be defined as the across-member spread between the ensemble members. For the investigation of the IV and the dynamical and diabatic contributions generating the IV four ensembles of RCM simulations are performed with the atmospheric regional model HIRHAM5. The integration area is the Arctic and each ensemble consists of 20 members. The ensembles cover the time period from July to September for the years 2006, 2007, 2009 and 2012. The ensemble members have the same LBC and differ in their IC only. The different IC are arranged by an initialisation time that shifts successively by six hours. Within each ensemble the first simulation starts on 1st July at 00 UTC and the last simulation starts on 5th July at 18 UTC and each simulation runs until 30th September. The analysed time period ranges from 6th July to 30th September, the time period that is covered by all ensemble members. The model runs without any nudging to allow a free development of each simulation to get the full internal variability within the HIRHAM5. As a measure of the model generated IV, the across-member standard deviation and the across-member variance is used and the dynamical and diabatic processes influencing the IV are estimated by applying a diagnostic budget study for the IV tendency of the potential temperature developed by Nikiema and Laprise [2010] and Nikiema and Laprise [2011]. The diagnostic budget study is based on the first law of thermodynamics for potential temperature and the mass-continuity equation. The resulting budget equation reveals seven contributions to the potential temperature IV tendency. As a first study, this work analyses the IV within the HIRHAM5. Therefore, atmospheric circulation parameters and the potential temperature for all four ensemble years are investigated. Similar to previous studies, the IV fluctuates strongly in time. Further, due to the fact that all ensemble members are forced with the same LBC, the IV depends on the vertical level within the troposphere, with high values in the lower troposphere and at 500 hPa and low values in the upper troposphere and at the surface. By the same reason, the spatial distribution shows low values of IV at the boundaries of the model domain. The diagnostic budget study for the IV tendency of potential temperature reveals that the seven contributions fluctuate in time like the IV. However, the individual terms reach different absolute magnitudes. The budget study identifies the horizontal and vertical 'baroclinic' terms as the main contributors to the IV tendency, with the horizontal 'baroclinic' term producing and the vertical 'baroclinic' term reducing the IV. The other terms fluctuate around zero, because they are small in general or are balanced due to the domain average. The comparison of the results obtained for the four different ensembles (summers 2006, 2007, 2009 and 2012) reveals that on average the findings for each ensemble are quite similar concerning the magnitude and the general pattern of IV and its contributions. However, near the surface a weaker IV is produced with decreasing sea ice extent. This is caused by a smaller impact of the horizontal 'baroclinic' term over some regions and by the changing diabatic processes, particularly a more intense reducing tendency of the IV due to condensative heating. However, it has to be emphasised that the behaviour of the IV and its dynamical and diabatic contributions are influenced mainly by complex atmospheric feedbacks and large-scale processes and not by the sea ice distribution. Additionally, a comparison with a second RCM covering the Arctic and using the same LBCs and IC is performed. For both models very similar results concerning the IV and its dynamical and diabatic contributions are found. Hence, this investigation leads to the conclusion that the IV is a natural phenomenon and is independent from the applied RCM.}, language = {en} } @article{SinghMellinger2015, author = {Singh, Rajeev and Mellinger, Axel}, title = {Measurement of through-thickness thermal diffusivity of thermoplastics using thermal wave method}, series = {Indian journal of physics}, volume = {89}, journal = {Indian journal of physics}, number = {4}, publisher = {Indian Association for the Cultivation of Science}, address = {Kolkata}, issn = {0973-1458}, doi = {10.1007/s12648-014-0579-2}, pages = {361 -- 368}, year = {2015}, abstract = {Thermo-physical properties, such as thermal conductivity, thermal diffusivity and specific heat are important quantities that are needed to interpret and characterize thermoplastic materials. Such characterization is necessary for many applications, ranging from aerospace engineering to food packaging, electrical and electronic industry and medical science. In this work, the thermal diffusivity of commercially available polymeric films is measured in the thickness direction at room temperature using thermal wave method. The results obtained with this method are in good agreement with theoretical and experimental values.}, language = {en} } @article{SillmannLentonLevermannetal.2015, author = {Sillmann, Jana and Lenton, Timothy M. and Levermann, Anders and Ott, Konrad and Hulme, Mike and Benduhn, Francois and Horton, Joshua B.}, title = {COMMENTARY: No emergency argument for climate engineering}, series = {Nature climate change}, volume = {5}, journal = {Nature climate change}, number = {4}, publisher = {Nature Publ. Group}, address = {London}, issn = {1758-678X}, pages = {290 -- 292}, year = {2015}, language = {en} } @phdthesis{Siegel2015, author = {Siegel, Daniel}, title = {Binary neutron star mergers and short gamma-ray bursts}, school = {Universit{\"a}t Potsdam}, pages = {255}, year = {2015}, language = {en} } @article{ShraderHamaguchiSturneretal.2015, author = {Shrader, C. R. and Hamaguchi, K. and Sturner, S. J. and Oskinova, Lida and Almeyda, T. and Petre, R.}, title = {Hifg-energy properties of the enigmatic be STAR gamma Cassiopeiae}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {799}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/799/1/84}, pages = {10}, year = {2015}, abstract = {We present the results of a broadband X-ray study of the enigmatic Be star Gamma Cassiopeiae (herein gamma Cas) based on observations made with both the Suzaku and INTEGRAL observatories.. Cas has long been recognized as the prototypical example of a small subclass of Be stars with moderately strong X-ray emission dominated by a hot thermal component in the 0.5-12 keV energy range (L-x approximate to 10(32)-10(33) erg s(-1)). This places them at the high end of the known luminosity distribution for stellar emission, but several orders of magnitude below typical accretion-powered Be X-ray binaries. The INTEGRAL observations spanned an eight-year baseline and represent the deepest measurement to date at energies above similar to 50 keV. We find that the INTEGRAL data are consistent within statistics to a constant intensity source above 20 keV, with emission extending up to similar to 100 keV, and that searches for all of the previously reported periodicities of the system at lower energies led to null results. We further find that our combined Suzaku and INTEGRAL spectrum, which we suggest is the most accurate broadband X-ray measurement of gamma Cas to date, is fitted extremely well with a thermal plasma emission model with a single absorption component. We found no compelling need for an additional non-thermal high-energy component. We discuss these results in the context of a currently favored models for gamma Cas and its analogs.}, language = {en} } @article{ShinCherstvyMetzler2015, author = {Shin, Jaeoh and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Self-subdiffusion in solutions of star-shaped crowders: non-monotonic effects of inter-particle interactions}, series = {New journal of physics : the open-access journal for physics}, volume = {17}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/17/11/113028}, pages = {12}, year = {2015}, abstract = {We examine by extensive computer simulations the self-diffusion of anisotropic star-like particles in crowded two-dimensional solutions. We investigate the implications of the area coverage fraction phi of the crowders and the crowder-crowder adhesion properties on the regime of transient anomalous diffusion. We systematically compute the mean squared displacement (MSD) of the particles, their time averaged MSD, and the effective diffusion coefficient. The diffusion is ergodic in the limit of long traces, such that the mean time averaged MSD converges towards the ensemble averaged MSD, and features a small residual amplitude spread of the time averaged MSD from individual trajectories. At intermediate time scales, we quantify the anomalous diffusion in the system. Also, we show that the translational-but not rotational-diffusivity of the particles Dis a nonmonotonic function of the attraction strength between them. Both diffusion coefficients decrease as the power law D(phi) similar to (1 - phi/phi*)(2 ... 2.4) with the area fraction phi occupied by the crowders and the critical value phi*. Our results might be applicable to rationalising the experimental observations of non-Brownian diffusion for a number of standard macromolecular crowders used in vitro to mimic the cytoplasmic conditions of living cells.}, language = {en} } @article{ShinCherstvyMetzler2015, author = {Shin, Jaeoh and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Kinetics of polymer looping with macromolecular crowding: effects of volume fraction and crowder size}, series = {Soft matter}, volume = {11}, journal = {Soft matter}, number = {3}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c4sm02007c}, pages = {472 -- 488}, year = {2015}, abstract = {The looping of polymers such as DNA is a fundamental process in the molecular biology of living cells, whose interior is characterised by a high degree of molecular crowding. We here investigate in detail the looping dynamics of flexible polymer chains in the presence of different degrees of crowding. From the analysis of the looping-unlooping rates and the looping probabilities of the chain ends we show that the presence of small crowders typically slows down the chain dynamics but larger crowders may in fact facilitate the looping. We rationalise these non-trivial and often counterintuitive effects of the crowder size on the looping kinetics in terms of an effective solution viscosity and standard excluded volume. It is shown that for small crowders the effect of an increased viscosity dominates, while for big crowders we argue that confinement effects (caging) prevail. The tradeoff between both trends can thus result in the impediment or facilitation of polymer looping, depending on the crowder size. We also examine how the crowding volume fraction, chain length, and the attraction strength of the contact groups of the polymer chain affect the looping kinetics and hairpin formation dynamics. Our results are relevant for DNA looping in the absence and presence of protein mediation, DNA hairpin formation, RNA folding, and the folding of polypeptide chains under biologically relevant high-crowding conditions.}, language = {en} } @article{ShinCherstvyMetzler2015, author = {Shin, Jaeoh and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Polymer looping is controlled by macromolecular crowding, spatial confinement, and chain stiffness}, series = {ACS Macro Letters}, volume = {4}, journal = {ACS Macro Letters}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {2161-1653}, doi = {10.1021/mz500709w}, pages = {202 -- 206}, year = {2015}, abstract = {We study by extensive computer simulations the looping characteristics of linear polymers with varying persistence length inside a spherical cavity in the presence of macromolecular crowding. For stiff chains, the looping probability and looping time reveal wildly oscillating patterns as functions of the chain length. The effects of crowding differ dramatically for flexible versus stiff polymers. While for flexible chains the looping kinetics is slowed down by the crowders, for stiffer chains the kinetics turns out to be either decreased or facilitated, depending on the polymer length. For severe confinement, the looping kinetics may become strongly facilitated by crowding. Our findings are of broad impact for DNA looping in the crowded and compartmentalized interior of living biological cells.}, language = {en} } @article{ShinCherstvyKimetal.2015, author = {Shin, Jaeoh and Cherstvy, Andrey G. and Kim, Won Kyu and Metzler, Ralf}, title = {Facilitation of polymer looping and giant polymer diffusivity in crowded solutions of active particles}, series = {New journal of physics : the open-access journal for physics}, volume = {17}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/17/11/113008}, pages = {12}, year = {2015}, abstract = {We study the dynamics of polymer chains in a bath of self-propelled particles (SPP) by extensive Langevin dynamics simulations in a two-dimensional model system. Specifically, we analyse the polymer looping properties versus the SPP activity and investigate how the presence of the active particles alters the chain conformational statistics. We find that SPPs tend to extend flexible polymer chains, while they rather compactify stiffer semiflexible polymers, in agreement with previous results. Here we show that higher activities of SPPs yield a higher effective temperature of the bath and thus facilitate the looping kinetics of a passive polymer chain. We explicitly compute the looping probability and looping time in a wide range of the model parameters. We also analyse the motion of a monomeric tracer particle and the polymer's centre of mass in the presence of the active particles in terms of the time averaged mean squared displacement, revealing a giant diffusivity enhancement for the polymer chain via SPP pooling. Our results are applicable to rationalising the dimensions and looping kinetics of biopolymers at constantly fluctuating and often actively driven conditions inside biological cells or in suspensions of active colloidal particles or bacteria cells.}, language = {en} } @article{ShenarOskinovaHamannetal.2015, author = {Shenar, Tomer and Oskinova, Lida and Hamann, Wolf-Rainer and Corcoran, Michael F. and Moffat, Anthony F. J. and Pablo, Herbert and Richardson, Noel D. and Waldron, Wayne L. and Huenemoerder, David P. and Maiz Apellaniz, Jesus and Nichols, Joy S. and Todt, Helge Tobias and Naze, Yael and Hoffman, Jennifer L. and Pollock, Andy M. T. and Negueruela, Ignacio}, title = {A coordinated X-Ray and optical campaign of the nearest massive eclipsing binary, delta ORIONIS Aa. IV. A multiwavelength, non-lte spectroscopic analysis}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {809}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/809/2/135}, pages = {20}, year = {2015}, abstract = {Eclipsing systems of massive stars allow one to explore the properties of their components in great detail. We perform a multi-wavelength, non-LTE analysis of the three components of the massive multiple system delta Ori A, focusing on the fundamental stellar properties, stellar winds, and X-ray characteristics of the system. The primary's distance-independent parameters turn out to be characteristic for its spectral type (O9.5 II), but usage of the Hipparcos parallax yields surprisingly low values for the mass, radius, and luminosity. Consistent values follow only if delta Ori lies at about twice the Hipparcos distance, in the vicinity of the sigma-Orionis cluster. The primary and tertiary dominate the spectrum and leave the secondary only marginally detectable. We estimate the V-band magnitude difference between primary and secondary to be Delta V approximate to 2.(m)8. The inferred parameters suggest that the secondary is an early B-type dwarf (approximate to B1 V), while the tertiary is an early B-type subgiant (approximate to B0 IV). We find evidence for rapid turbulent velocities (similar to 200 km s(-1)) and wind inhomogeneities, partially optically thick, in the primary's wind. The bulk of the X-ray emission likely emerges from the primary's stellar wind (logL(X)/L-Bol approximate to -6.85), initiating close to the stellar surface at R-0 similar to 1.1 R-*. Accounting for clumping, the mass-loss rate of the primary is found to be log (M) over dot approximate to -6.4 (M-circle dot yr(-1))., which agrees with hydrodynamic predictions, and provides a consistent picture along the X-ray, UV, optical, and radio spectral domains.}, language = {en} } @article{ShenarHamannTodt2015, author = {Shenar, Tomer and Hamann, Wolf-Rainer and Todt, Helge Tobias}, title = {The impact of rotation on the line profiles of Wolf-Rayet stars}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88008}, pages = {193 -- 196}, year = {2015}, abstract = {The distribution of angular momentum in massive stars is a critical component of their evolution, yet not much is known on the rotation velocities of Wolf-Rayet stars. There are various indications that rapidly rotating Wolf-Rayet stars should exist. Unfortunately, due to their expanding atmospheres, rotational velocities of Wolf-Rayet stars are very difficult to measure. In this work, we model the effects of rotation on the atmospheres of Wolf-Rayet stars by implementing a 3D integration scheme in the PoWR code. We further investigate whether the peculiar spectra of five Wolf-Rayet stars may imply rapid rotation, infer the corresponding rotation parameters, and discuss the implications of our results. We find that rotation helps to reproduce the unique spectra analyzed here. However, if rotation is indeed involved, the inferred rotational velocities at the stellar surface are large (∼ 200 km/s), and the implied co-rotation radii (∼ 10R∗) suggest the existence of very strong photospheric magnetic fields (∼ 20 kG).}, language = {en} } @article{SellbergMcQueenLaksmonoetal.2015, author = {Sellberg, Jonas A. and McQueen, Trevor A. and Laksmono, Hartawan and Schreck, Simon and Beye, Martin and DePonte, Daniel P. and Kennedy, Brian and Nordlund, Dennis and Sierra, Raymond G. and Schlesinger, Daniel and Tokushima, Takashi and Zhovtobriukh, Iurii and Eckert, Sebastian and Segtnan, Vegard H. and Ogasawara, Hirohito and Kubicek, Katharina and Techert, Simone and Bergmann, Uwe and Dakovski, Georgi L. and Schlotter, William F. and Harada, Yoshihisa and Bogan, Michael J. and Wernet, Philippe and F{\"o}hlisch, Alexander and Pettersson, Lars G. M. and Nilsson, Anders}, title = {X-ray emission spectroscopy of bulk liquid water in "no-man's land"}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {142}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {4}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4905603}, pages = {9}, year = {2015}, abstract = {The structure of bulk liquid water was recently probed by x-ray scattering below the temperature limit of homogeneous nucleation (T-H) of similar to 232 K [J. A. Sellberg et al., Nature 510, 381-384 (2014)]. Here, we utilize a similar approach to study the structure of bulk liquid water below T-H using oxygen K-edge x-ray emission spectroscopy (XES). Based on previous XES experiments [T. Tokushima et al., Chem. Phys. Lett. 460, 387-400 (2008)] at higher temperatures, we expected the ratio of the 1b(1)' and 1b(1)" peaks associated with the lone-pair orbital in water to change strongly upon deep supercooling as the coordination of the hydrogen (H-) bonds becomes tetrahedral. In contrast, we observed only minor changes in the lone-pair spectral region, challenging an interpretation in terms of two interconverting species. A number of alternative hypotheses to explain the results are put forward and discussed. Although the spectra can be explained by various contributions from these hypotheses, we here emphasize the interpretation that the line shape of each component changes dramatically when approaching lower temperatures, where, in particular, the peak assigned to the proposed disordered component would become more symmetrical as vibrational interference becomes more important. (C) 2015 AIP Publishing LLC.}, language = {en} } @phdthesis{Sborikas2015, author = {Sborikas, Martynas}, title = {Preparation and characterization of acoustic electret and electromechanical properties of polypropylene ferroelectrets}, pages = {129}, year = {2015}, language = {en} } @phdthesis{Sauter2015, author = {Sauter, Tilman}, title = {Function by structure}, school = {Universit{\"a}t Potsdam}, pages = {166}, year = {2015}, language = {en} } @misc{Sauer2015, type = {Master Thesis}, author = {Sauer, Tim-Oliver}, title = {Quasi-condensation in low-dimensional Bose gases}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87247}, school = {Universit{\"a}t Potsdam}, pages = {154}, year = {2015}, abstract = {The subject of the present thesis is the one-dimensional Bose gas. Since long-rang order is destroyed by infra-red fluctuations in one dimension, only the formation of a quasi-condensate is possible, which exhibits suppressed density fluctuations, but whose phase fluctuates strongly. It is shown that modified mean-field theories based on a symmetry-breaking approach can even characterise phase coherence properties of such a quasi-condensate properly. A correct description of the transition from the degenerate ideal Bose gas to the quasi-condensate, which is a smooth cross-over rather than a phase transition, is not possible though. Basic conditions for the applicability of the theories are not fulfilled in this regime, such that the existence of a critical point is predicted. The theories are compared on the basis of their excitation sprectum, equation of state, density fluctuations and related correlation functions. High-temperature expansions of the corresponding integrals are derived analytically for the numerical evaluation of the self-consistent integral equations. Apart from that, the Stochastic Gross-Pitaevskii equation (SGPE), a non-linear Langevin equation, is analysed numerically by means of Monte-Carlo simulations and the results are compared to those of the mean-field theories. In this context, a lot of attention is payed to the appropriate choice of the parameters. The simulations prove that the SGPE is capable of describing the cross-over properly, but highlight the limitations of the widely used local density approximation as well.}, language = {en} } @article{SandevChechkinKorabeletal.2015, author = {Sandev, Trifce and Chechkin, Aleksei V. and Korabel, Nickolay and Kantz, Holger and Sokolov, Igor M. and Metzler, Ralf}, title = {Distributed-order diffusion equations and multifractality: Models and solutions}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {92}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.92.042117}, pages = {19}, year = {2015}, abstract = {We study distributed-order time fractional diffusion equations characterized by multifractal memory kernels, in contrast to the simple power-law kernel of common time fractional diffusion equations. Based on the physical approach to anomalous diffusion provided by the seminal Scher-Montroll-Weiss continuous time random walk, we analyze both natural and modified-form distributed-order time fractional diffusion equations and compare the two approaches. The mean squared displacement is obtained and its limiting behavior analyzed. We derive the connection between the Wiener process, described by the conventional Langevin equation and the dynamics encoded by the distributed-order time fractional diffusion equation in terms of a generalized subordination of time. A detailed analysis of the multifractal properties of distributed-order diffusion equations is provided.}, language = {en} } @article{SandevChechkinKantzetal.2015, author = {Sandev, Trifce and Chechkin, Aleksei V. and Kantz, Holger and Metzler, Ralf}, title = {Diffusion and fokker-planck-smoluchowski equations with generalized memory kernel}, series = {Fractional calculus and applied analysis : an international journal for theory and applications}, volume = {18}, journal = {Fractional calculus and applied analysis : an international journal for theory and applications}, number = {4}, publisher = {De Gruyter}, address = {Berlin}, issn = {1311-0454}, doi = {10.1515/fca-2015-0059}, pages = {1006 -- 1038}, year = {2015}, abstract = {We consider anomalous stochastic processes based on the renewal continuous time random walk model with different forms for the probability density of waiting times between individual jumps. In the corresponding continuum limit we derive the generalized diffusion and Fokker-Planck-Smoluchowski equations with the corresponding memory kernels. We calculate the qth order moments in the unbiased and biased cases, and demonstrate that the generalized Einstein relation for the considered dynamics remains valid. The relaxation of modes in the case of an external harmonic potential and the convergence of the mean squared displacement to the thermal plateau are analyzed.}, language = {en} } @article{SanderShenarHainichetal.2015, author = {Sander, Andreas Alexander Christoph and Shenar, Tomer and Hainich, Rainer and Gimenez-Garcia, Ana and Todt, Helge Tobias and Hamann, Wolf-Rainer}, title = {On the consistent treatment of the quasi-hydrostatic layers in hot star atmospheres}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {577}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201425356}, pages = {13}, year = {2015}, abstract = {Context. Spectroscopic analysis remains the most common method to derive masses of massive stars, the most fundamental stellar parameter. While binary orbits and stellar pulsations can provide much sharper constraints on the stellar mass, these methods are only rarely applicable to massive stars. Unfortunately, spectroscopic masses of massive stars heavily depend on the detailed physics of model atmospheres. Aims. We demonstrate the impact of a consistent treatment of the radiative pressure on inferred gravities and spectroscopic masses of massive stars. Specifically, we investigate the contribution of line and continuum transitions to the photospheric radiative pressure. We further explore the effect of model parameters, e.g., abundances, on the deduced spectroscopic mass. Lastly, we compare our results with the plane-parallel TLUSTY code, commonly used for the analysis of massive stars with photospheric spectra. Methods. We calculate a small set of O-star models with the Potsdam Wolf-Rayet (PoWR) code using different approaches for the quasi-hydrostatic part. These models allow us to quantify the effect of accounting for the radiative pressure consistently. We further use PoWR models to show how the Doppler widths of line profiles and abundances of elements such as iron affect the radiative pressure, and, as a consequence, the derived spectroscopic masses. Results. Our study implies that errors on the order of a factor of two in the inferred spectroscopic mass are to be expected when neglecting the contribution of line and continuum transitions to the radiative acceleration in the photosphere. Usage of implausible microturbulent velocities, or the neglect of important opacity sources such as Fe, may result in errors of approximately 50\% in the spectroscopic mass. A comparison with TLUSTY model atmospheres reveals a very good agreement with PoWR at the limit of low mass-loss rates.}, language = {en} } @phdthesis{Sander2015, author = {Sander, Andreas Alexander Christoph}, title = {Radiatively driven winds of hot stars}, school = {Universit{\"a}t Potsdam}, pages = {153}, year = {2015}, language = {en} }