@article{RybergBraeuerWeber2017, author = {Ryberg, Trond and Braeuer, Benjamin and Weber, Michael}, title = {Upper mantle structure at Walvis Ridge from P-n tomography}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {716}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2016.08.009}, pages = {121 -- 129}, year = {2017}, abstract = {Passive continental margins offer the unique opportunity to study the processes involved in continental extension and break-up. Within the LISPWAL (Llthospheric Structure of the Namibian continental Passive margin at the intersection with the Walvis Ridge from amphibious seismic investigations) project, combined on- and offshore seismic experiments were designed to characterize the Southern African passive margin at the Walvis Ridge in northern Namibia. In addition to extensive analysis of the crustal structures, we carried out seismic investigations targeting the velocity structure of the upper mantle in the landfall region of the Walvis Ridge with the Namibian coast. Upper mantle P-n travel time tomography from controlled source, amphibious seismic data was used to investigate the sub-Moho upper mantle seismic velocity. We succeeded in imaging upper mantle structures potentially associated with continental break-up and/or the Tristan da Cunha hotspot track. We found mostly coast-parallel sub-Moho velocity anomalies, interpreted as structures which were created during Gondwana break-up. (C)2016 Published by Elsevier B.V.}, language = {en} }