@book{FlottererMaximovaSchneideretal.2022, author = {Flotterer, Boris and Maximova, Maria and Schneider, Sven and Dyck, Johannes and Z{\"o}llner, Christian and Giese, Holger and H{\´e}ly, Christelle and Gaucherel, C{\´e}dric}, title = {Modeling and Formal Analysis of Meta-Ecosystems with Dynamic Structure using Graph Transformation}, series = {Technische Berichte des Hasso-Plattner-Instituts f{\"u}r Digital Engineering an der Universit{\"a}t Potsdam}, journal = {Technische Berichte des Hasso-Plattner-Instituts f{\"u}r Digital Engineering an der Universit{\"a}t Potsdam}, number = {147}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-533-0}, issn = {1613-5652}, doi = {10.25932/publishup-54764}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-547643}, publisher = {Universit{\"a}t Potsdam}, pages = {47}, year = {2022}, abstract = {The dynamics of ecosystems is of crucial importance. Various model-based approaches exist to understand and analyze their internal effects. In this paper, we model the space structure dynamics and ecological dynamics of meta-ecosystems using the formal technique of Graph Transformation (short GT). We build GT models to describe how a meta-ecosystem (modeled as a graph) can evolve over time (modeled by GT rules) and to analyze these GT models with respect to qualitative properties such as the existence of structural stabilities. As a case study, we build three GT models describing the space structure dynamics and ecological dynamics of three different savanna meta-ecosystems. The first GT model considers a savanna meta-ecosystem that is limited in space to two ecosystem patches, whereas the other two GT models consider two savanna meta-ecosystems that are unlimited in the number of ecosystem patches and only differ in one GT rule describing how the space structure of the meta-ecosystem grows. In the first two GT models, the space structure dynamics and ecological dynamics of the meta-ecosystem shows two main structural stabilities: the first one based on grassland-savanna-woodland transitions and the second one based on grassland-desert transitions. The transition between these two structural stabilities is driven by high-intensity fires affecting the tree components. In the third GT model, the GT rule for savanna regeneration induces desertification and therefore a collapse of the meta-ecosystem. We believe that GT models provide a complementary avenue to that of existing approaches to rigorously study ecological phenomena.}, language = {en} } @article{DyckGieseLambers2019, author = {Dyck, Johannes and Giese, Holger and Lambers, Leen}, title = {Automatic verification of behavior preservation at the transformation level for relational model transformation}, series = {Software and systems modeling}, volume = {18}, journal = {Software and systems modeling}, number = {5}, publisher = {Springer}, address = {Heidelberg}, issn = {1619-1366}, doi = {10.1007/s10270-018-00706-9}, pages = {2937 -- 2972}, year = {2019}, abstract = {The correctness of model transformations is a crucial element for model-driven engineering of high-quality software. In particular, behavior preservation is an important correctness property avoiding the introduction of semantic errors during the model-driven engineering process. Behavior preservation verification techniques show some kind of behavioral equivalence or refinement between source and target model of the transformation. Automatic tool support is available for verifying behavior preservation at the instance level, i.e., for a given source and target model specified by the model transformation. However, until now there is no sound and automatic verification approach available at the transformation level, i.e., for all source and target models. In this article, we extend our results presented in earlier work (Giese and Lambers, in: Ehrig et al (eds) Graph transformations, Springer, Berlin, 2012) and outline a new transformation-level approach for the sound and automatic verification of behavior preservation captured by bisimulation resp.simulation for outplace model transformations specified by triple graph grammars and semantic definitions given by graph transformation rules. In particular, we first show how behavior preservation can be modeled in a symbolic manner at the transformation level and then describe that transformation-level verification of behavior preservation can be reduced to invariant checking of suitable conditions for graph transformations. We demonstrate that the resulting checking problem can be addressed by our own invariant checker for an example of a transformation between sequence charts and communicating automata.}, language = {en} } @phdthesis{Dyck2020, author = {Dyck, Johannes}, title = {Verification of graph transformation systems with k-inductive invariants}, doi = {10.25932/publishup-44274}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442742}, school = {Universit{\"a}t Potsdam}, pages = {X, 364}, year = {2020}, abstract = {With rising complexity of today's software and hardware systems and the hypothesized increase in autonomous, intelligent, and self-* systems, developing correct systems remains an important challenge. Testing, although an important part of the development and maintainance process, cannot usually establish the definite correctness of a software or hardware system - especially when systems have arbitrarily large or infinite state spaces or an infinite number of initial states. This is where formal verification comes in: given a representation of the system in question in a formal framework, verification approaches and tools can be used to establish the system's adherence to its similarly formalized specification, and to complement testing. One such formal framework is the field of graphs and graph transformation systems. Both are powerful formalisms with well-established foundations and ongoing research that can be used to describe complex hardware or software systems with varying degrees of abstraction. Since their inception in the 1970s, graph transformation systems have continuously evolved; related research spans extensions of expressive power, graph algorithms, and their implementation, application scenarios, or verification approaches, to name just a few topics. This thesis focuses on a verification approach for graph transformation systems called k-inductive invariant checking, which is an extension of previous work on 1-inductive invariant checking. Instead of exhaustively computing a system's state space, which is a common approach in model checking, 1-inductive invariant checking symbolically analyzes graph transformation rules - i.e. system behavior - in order to draw conclusions with respect to the validity of graph constraints in the system's state space. The approach is based on an inductive argument: if a system's initial state satisfies a graph constraint and if all rules preserve that constraint's validity, we can conclude the constraint's validity in the system's entire state space - without having to compute it. However, inductive invariant checking also comes with a specific drawback: the locality of graph transformation rules leads to a lack of context information during the symbolic analysis of potential rule applications. This thesis argues that this lack of context can be partly addressed by using k-induction instead of 1-induction. A k-inductive invariant is a graph constraint whose validity in a path of k-1 rule applications implies its validity after any subsequent rule application - as opposed to a 1-inductive invariant where only one rule application is taken into account. Considering a path of transformations then accumulates more context of the graph rules' applications. As such, this thesis extends existing research and implementation on 1-inductive invariant checking for graph transformation systems to k-induction. In addition, it proposes a technique to perform the base case of the inductive argument in a symbolic fashion, which allows verification of systems with an infinite set of initial states. Both k-inductive invariant checking and its base case are described in formal terms. Based on that, this thesis formulates theorems and constructions to apply this general verification approach for typed graph transformation systems and nested graph constraints - and to formally prove the approach's correctness. Since unrestricted graph constraints may lead to non-termination or impracticably high execution times given a hypothetical implementation, this thesis also presents a restricted verification approach, which limits the form of graph transformation systems and graph constraints. It is formalized, proven correct, and its procedures terminate by construction. This restricted approach has been implemented in an automated tool and has been evaluated with respect to its applicability to test cases, its performance, and its degree of completeness.}, language = {en} }