@article{KurasHeinckeSalehietal.2022, author = {Kuras, Agnieszka and Heincke, Bjoern H. and Salehi, Sara and Mielke, Christian and K{\"o}llner, Nicole and Rogass, Christian and Altenberger, Uwe and Burud, Ingunn}, title = {Integration of hyperspectral and magnetic data for geological characterization of the Niaqornarssuit Ultramafic Complex in West-Greenland}, series = {Remote sensing}, volume = {14}, journal = {Remote sensing}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs14194877}, pages = {23}, year = {2022}, abstract = {The integration of imaging spectroscopy and aeromagnetics provides a cost-effective and promising way to extend the initial analysis of a mineral deposit. While imaging spectroscopy retrieves surface spectral information, magnetic responses are used to determine magnetization at both shallower and greater depths using 2D and 3D modeling. Integration of imaging spectroscopy and magnetics improves upon knowledge concerning lithology with magnetic properties, enhances understanding of the geological origin of magnetic anomalies, and is a promising approach for analyzing a prospective area for minerals having a high iron-bearing content. To combine iron diagnostic information from airborne hyperspectral and magnetic data, we (a) used an iron absorption feature ratio to model pseudo-magnetic responses and compare them with the measured magnetic data and (b) estimated the apparent susceptibility along the surface by some equivalent source modeling, and compared them with iron ratios along the surface. For this analysis, a Modified Iron Feature Depth index was developed and compared to the surface geochemistry of the rock samples in order to validate the spectral information of iron. The comparison revealed a linear increase in iron absorption feature depths with iron content. The analysis was performed by empirically modeling the statistical relationship between the diagnostic absorption features of hyperspectral (HS) image spectra of selected rock samples and their corresponding geochemistry. Our results clearly show a link between the spectral absorption features and the magnetic response from iron-bearing ultra/-mafic rocks. The iron absorption feature ratio of Fe3+/Fe2+ integrated with aeromagnetic data (residual magnetic anomaly) allowed us to distinguish main rock types based on physical properties. This separation matches the lithology of the Niaqornarssuit complex, our study area in West Greenland.}, language = {en} } @article{CourbinLetaweMagainetal.2002, author = {Courbin, F. and Letawe, G. and Magain, P. and Wisotzki, Lutz and Jablonka, P. and Jahnke, Knud and Kuhlbrodt, B. and Alloin, Danielle and Meylan, G. and Minniti, D. and Burud, Ingunn}, title = {On-axis spatially resolved spectroscopy of low redshift quasar host galaxies: HE 1503+0228, at z=0.135}, year = {2002}, abstract = {We present the first result of a comprehensive spectroscopic study of quasar host galaxies. On-axis, spatially resolved spectra of low redshift quasars have been obtained with FORS1, mounted on the 8.2 m ESO Very Large Telescope, Antu. The spectra are spatially deconvolved using a spectroscopic version of the ``MCS deconvolution algorithm''. The algorithm decomposes two dimensional spectra into the individual spectra of the central point-like nucleus and of its host galaxy. Applied to HE 1503+0228 at z=0.135 (MB=-23.0), it provides us with the spectrum of the host galaxy between 3600 {\AA} and 8500 {\AA} (rest-frame), at a mean resolving power of 700. The data allow us to measure several of the important Lick indices. The stellar populations and gas ionization state of the host galaxy of HE 1503+0228 are very similar to the ones measured for normal non-AGN galaxies. Dynamical information is also available for the gas and stellar components of the galaxy. Using deconvolution and a deprojection algorithm, velocity curves are derived for emission lines, from the center up to 4arcsec away from the nucleus of the galaxy. Fitting a simple three-components mass model (point mass, spherical halo of dark matter, disk) to the position-velocity diagram, we infer a mass of M(r<1 kpc) = (2.0 +/- 0.3)x 1010 Msun within the central kiloparsec of the galaxy, and a mass integrated over 10 kpc of M(r<10 kpc) = (1.9 +/- 0.3) x 1011 Msun, with an additional 10 \% error due to the uncertainty on the inclination of the galaxy. This, in combination with the analysis of the stellar populations indicates that the host galaxy of HE 1503+0228, is a normal spiral galaxy. Based on observations made with ANTU/UT1 at ESO-Paranal observatory in Chile (program 65.P-0361(A)), and with the ESO 3.5 m NTT, at La Silla observatory (program 62.P-0643(B)).}, language = {en} } @article{CourbinLetaweMagainetal.2002, author = {Courbin, F. and Letawe, G. and Magain, P. and Wisotzki, Lutz and Jablonka, P. and Jahnke, Knud and Kuhlbrodt, B. and Alloin, Danielle and Meylan, G. and Minniti, D. and Burud, Ingunn}, title = {On-axis spatially resolved spectroscopy of low redshift quasar host galaxies: HE 1503+0228, at z=0.135}, year = {2002}, abstract = {We present the first result of a comprehensive spectroscopic study of quasar host galaxies. On-axis, spatially resolved spectra of low redshift quasars have been obtained with FORS1, mounted on the 8.2 m ESO Very Large Telescope, Antu. The spectra are spatially deconvolved using a spectroscopic version of the ``MCS deconvolution algorithm''. The algorithm decomposes two dimensional spectra into the individual spectra of the central point-like nucleus and of its host galaxy. Applied to HE 1503+0228 at z=0.135 (MB=-23.0), it provides us with the spectrum of the host galaxy between 3600 {\AA} and 8500 {\AA} (rest-frame), at a mean resolving power of 700. The data allow us to measure several of the important Lick indices. The stellar populations and gas ionization state of the host galaxy of HE 1503+0228 are very similar to the ones measured for normal non-AGN galaxies. Dynamical information is also available for the gas and stellar components of the galaxy. Using deconvolution and a deprojection algorithm, velocity curves are derived for emission lines, from the center up to 4arcsec away from the nucleus of the galaxy. Fitting a simple three- components mass model (point mass, spherical halo of dark matter, disk) to the position-velocity diagram, we infer a mass of M(r<1 kpc) = (2.0 +/- 0.3)x 1010 Msun within the central kiloparsec of the galaxy, and a mass integrated over 10 kpc of M(r<10 kpc) = (1.9 +/- 0.3) x 1011 Msun, with an additional 10\% error due to the uncertainty on the inclination of the galaxy. This, in combination with the analysis of the stellar populations indicates that the host galaxy of HE 1503+0228, is a normal spiral galaxy. Based on observations made with ANTU/UT1 at ESO-Paranal observatory in Chile (program 65.P-0361(A)), and with the ESO 3.5 m NTT, at La Silla observatory (program 62.P-0643(B)).}, language = {en} } @article{BersierFruchterStrolgeretal.2006, author = {Bersier, David and Fruchter, Andrew S. and Strolger, Louis-Gregory and Gorosabel, Javier and Levan, Andrew and Burud, Ingunn and Rhoads, James E. and Becker, Andrew C. and Cassan, Andrew C. and Chornock, Ryan and Covino, Stefano and De Jong, Roelof S. and Dominis, Dijana and Filippenko, Alexei V. and Hjorth, Jens and Holmberg, Johan and Malesani, Daniele and Mobasher, Bahram and Olsen, Kurt A. G. and Stefanon, Mauro and Castro Cer{\´o}n, Jos{\´e} Mar{\´i}a C. and Fynbo, Johan P. U. and Holland, Stephen T. and Kouveliotou, Chryssa and Pedersen, Hans-Georg and Tanvir, Nieal R. and Woosley, S. E.}, title = {Evidence for a supernova associated with the X-ray flash 020903}, issn = {0004-637X}, doi = {10.1086/502640}, year = {2006}, abstract = {We present ground-based and Hubble Space Telescope optical observations of the X-ray flash ( XRF) 020903, covering 300 days. The afterglow showed a very rapid rise in the first day, followed by a relatively slow decay in the next few days. There was a clear bump in the light curve after similar to 25 days, accompanied by a drastic change in the spectral energy distribution. The light curve and the spectral energy distribution are naturally interpreted as describing the emergence and subsequent decay of a supernova ( SN), similar to SN 1998bw. At peak luminosity, the SN is estimated to be 0.8 +/- 0.1 mag fainter than SN 1998bw. This argues in favor of the existence of a SN associated with this XRF. A spectrum obtained 35 days after the burst shows emission lines from the host galaxy. We use this spectrum to put an upper limit on the oxygen abundance of the host at [O/H] <= 0.6 dex. We also discuss a possible trend between the softness of several bursts and the early behavior of the optical afterglow, in the sense that XRFs and X-ray-rich gamma- ray bursts ( GRBs) seem to have a plateau phase or even a rising light curve. This can be naturally explained in models in which XRFs are similar to GRBs but are seen off the jet axis.}, language = {en} }