@phdthesis{Mitzscherling2020, author = {Mitzscherling, Julia}, title = {Microbial communities in submarine permafrost and their response to permafrost degradation and warming}, doi = {10.25932/publishup-47124}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471240}, school = {Universit{\"a}t Potsdam}, pages = {I, 231}, year = {2020}, abstract = {The Arctic region is especially impacted by global warming as temperatures in high latitude regions have increased and are predicted to further rise at levels above the global average. This is crucial to Arctic soils and the shallow shelves of the Arctic Ocean as they are underlain by permafrost. Perennially frozen ground is a habitat for a large number and great diversity of viable microorganisms, which can remain active even under freezing conditions. Warming and thawing of permafrost makes trapped soil organic carbon more accessible to microorganisms. They can transform it to the greenhouse gases carbon dioxide, methane and nitrous oxide. On the other hand, it is assumed that thawing of the frozen ground stimulates microbial activity and carbon turnover. This can lead to a positive feedback loop of warming and greenhouse gas release. Submarine permafrost covers most areas of the Siberian Arctic Shelf and contains a large though unquantified carbon pool. However, submarine permafrost is not only affected by changes in the thermal regime but by drastic changes in the geochemical composition as it formed under terrestrial conditions and was inundated by Holocene sea level rise and coastal erosion. Seawater infiltration into permafrost sediments resulted in an increase of the pore water salinity and, thus, in thawing of permafrost in the upper sediment layers even at subzero temperatures. The permafrost below, which was not affected by seawater, remained ice-bonded, but warmed through seawater heat fluxes. The objective of this thesis was to study microbial communities in submarine permafrost with a focus on their response to seawater influence and long-term warming using a combined approach of molecular biological and physicochemical analyses. The microbial abundance, community composition and structure as well as the diversity were investigated in drill cores from two locations in the Laptev Sea, which were subjected to submarine conditions for centuries to millennia. The microbial abundance was measured through total cell counts and copy numbers of the 16S rRNA gene and of functional genes. The latter comprised genes which are indicative for methane production (mcrA) and sulfate reduction (dsrB). The microbial community was characterized by high-throughput-sequencing of the 16S rRNA gene. Physicochemical analyses included the determination of the pore water geochemical and stable isotopic composition, which were used to describe the degree of seawater influence. One major outcome of the thesis is that the submarine permafrost stratified into different so-called pore water units centuries as well as millennia after inundation: (i) sediments that were mixed with seafloor sediments, (ii) sediments that were infiltrated with seawater, and (iii) sediments that were unaffected by seawater. This stratification was reflected in the submarine permafrost microbial community composition only millennia after inundation but not on time-scales of centuries. Changes in the community composition as well as abundance were used as a measure for microbial activity and the microbial response to changing thermal and geochemical conditions. The results were discussed in the context of permafrost temperature, pore water composition, paleo-climatic proxies and sediment age. The combination of permafrost warming and increasing salinity as well as permafrost warming alone resulted in a disturbance of the microbial communities at least on time-scales of centuries. This was expressed by a loss of microbial abundance and bacterial diversity. At the same time, the bacterial community of seawater unaffected but warmed permafrost was mainly determined by environmental and climatic conditions at the time of sediment deposition. A stimulating effect of warming was observed only in seawater unaffected permafrost after millennia-scale inundation, visible through increased microbial abundance and reduced amounts of substrate. Despite submarine exposure for centuries to millennia, the community of bacteria in submarine permafrost still generally resembled the community of terrestrial permafrost. It was dominated by phyla like Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadetes and Proteobacteria, which can be active under freezing conditions. Moreover, the archaeal communities of both study sites were found to harbor high abundances of marine and terrestrial anaerobic methane oxidizing archaea (ANME). Results also suggested ANME populations to be active under in situ conditions at subzero temperatures. Modeling showed that potential anaerobic oxidation of methane (AOM) could mitigate the release of almost all stored or microbially produced methane from thawing submarine permafrost. Based on the findings presented in this thesis, permafrost warming and thawing under submarine conditions as well as permafrost warming without thaw are supposed to have marginal effects on the microbial abundance and community composition, and therefore likely also on carbon mobilization and the formation of methane. Thawing under submarine conditions even stimulates AOM and thus mitigates the release of methane.}, language = {en} } @phdthesis{Hammer2012, author = {Hammer, Paul}, title = {Transkriptomweite Untersuchungen von Prostata-Krebszelllinien im Kontext medizinischer Strahlentherapie}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63190}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Die Strahlentherapie ist neben der Chemotherapie und einer operativen Entfernung die st{\"a}rkste Waffe f{\"u}r die Bek{\"a}mpfung b{\"o}sartiger Tumore in der Krebsmedizin. Nach Herz-Kreislauf-Erkrankungen ist Krebs die zweith{\"a}ufigste Todesursache in der westlichen Welt, wobei Prostatakrebs heutzutage die h{\"a}ufigste, m{\"a}nnliche Krebserkrankung darstellt. Trotz technologischer Fortschritte der radiologischen Verfahren kann es noch viele Jahre nach einer Radiotherapie zu einem Rezidiv kommen, was zum Teil auf die hohe Resistenzf{\"a}higkeit einzelner, entarteter Zellen des lokal vorkommenden Tumors zur{\"u}ckgef{\"u}hrt werden kann. Obwohl die moderne Strahlenbiologie viele Aspekte der Resistenzmechanismen n{\"a}her beleuchtet hat, bleiben Fragestellungen, speziell {\"u}ber das zeitliche Ansprechen eines Tumors auf ionisierende Strahlung, gr{\"o}ßtenteils unbeantwortet, da systemweite Untersuchungen nur begrenzt vorliegen. Als Zellmodelle wurden vier Prostata-Krebszelllinien (PC3, DuCaP, DU-145, RWPE-1) mit unterschiedlichen Strahlungsempfindlichkeiten kultiviert und auf ihre {\"U}berlebensf{\"a}higkeit nach ionisierender Bestrahlung durch einen Trypanblau- und MTT-Vitalit{\"a}tstest gepr{\"u}ft. Die proliferative Kapazit{\"a}t wurde mit einem Koloniebildungstest bestimmt. Die PC3 Zelllinie, als Strahlungsresistente, und die DuCaP Zelllinie, als Strahlungssensitive, zeigten dabei die gr{\"o}ßten Differenzen bez{\"u}glich der Strahlungsempfindlichkeit. Auf Grundlage dieser Ergebnisse wurden die beiden Zelllinien ausgew{\"a}hlt, um anhand ihrer transkriptomweiten Genexpressionen, eine Identifizierung potentieller Marker f{\"u}r die Prognose der Effizienz einer Strahlentherapie zu erm{\"o}glichen. Weiterhin wurde mit der PC3 Zelllinie ein Zeitreihenexperiment durchgef{\"u}hrt, wobei zu 8 verschiedenen Zeitpunkten nach Bestrahlung mit 1 Gy die mRNA mittels einer Hochdurchsatz-Sequenzierung quantifiziert wurde, um das dynamisch zeitversetzte Genexpressionsverhalten auf Resistenzmechanismen untersuchen zu k{\"o}nnen. Durch das Setzen eines Fold Change Grenzwertes in Verbindung mit einem P-Wert < 0,01 konnten aus 10.966 aktiven Genen 730 signifikant differentiell exprimierte Gene bestimmt werden, von denen 305 st{\"a}rker in der PC3 und 425 st{\"a}rker in der DuCaP Zelllinie exprimiert werden. Innerhalb dieser 730 Gene sind viele stressassoziierte Gene wiederzufinden, wie bspw. die beiden Transmembranproteingene CA9 und CA12. Durch Berechnung eines Netzwerk-Scores konnten aus den GO- und KEGG-Datenbanken interessante Kategorien und Netzwerke abgeleitet werden, wobei insbesondere die GO-Kategorien Aldehyd-Dehydrogenase [NAD(P)+] Aktivit{\"a}t (GO:0004030) und der KEGG-Stoffwechselweg der O-Glykan Biosynthese (hsa00512) als relevante Netzwerke auff{\"a}llig wurden. Durch eine weitere Interaktionsanalyse konnten zwei vielversprechende Netzwerke mit den Transkriptionsfaktoren JUN und FOS als zentrale Elemente identifiziert werden. Zum besseren Verst{\"a}ndnis des dynamisch zeitversetzten Ansprechens der strahlungsresistenten PC3 Zelllinie auf ionisierende Strahlung, konnten anhand der 10.840 exprimierten Gene und ihrer Expressionsprofile {\"u}ber 8 Zeitpunkte interessante Einblicke erzielt werden. W{\"a}hrend es innerhalb von 30 min (00:00 - 00:30) nach Bestrahlung zu einer schnellen Runterregulierung der globalen Genexpression kommt, folgen in den drei darauffolgenden Zeitabschnitten (00:30 - 01:03; 01:03 - 02:12; 02:12 - 04:38) spezifische Expressionserh{\"o}hungen, die eine Aktivierung sch{\"u}tzender Netzwerke, wie die Hochregulierung der DNA-Reparatursysteme oder die Arretierung des Zellzyklus, ausl{\"o}sen. In den abschließenden drei Zeitbereichen (04:38 - 09:43; 09:43 - 20:25; 20:25 - 42:35) liegt wiederum eine Ausgewogenheit zwischen Induzierung und Supprimierung vor, wobei die absoluten Genexpressionsver{\"a}nderungen ansteigen. Beim Vergleich der Genexpressionen kurz vor der Bestrahlung mit dem letzten Zeitpunkt (00:00 - 42:53) liegen mit 2.670 die meisten ver{\"a}ndert exprimierten Gene vor, was einer massiven, systemweiten Genexpressions{\"a}nderung entspricht. Signalwege wie die ATM-Regulierung des Zellzyklus und der Apoptose, des NRF2-Signalwegs nach oxidativer Stresseinwirkung und die DNA-Reparaturmechanismen der homologen Rekombination, des nicht-homologen End Joinings, der MisMatch-, der Basen-Exzision- und der Strang-Exzision-Reparatur spielen bei der zellul{\"a}ren Antwort eine tragende Rolle. {\"A}ußerst interessant sind weiterhin die hohen Aktivit{\"a}ten RNA-gesteuerter Ereignisse, insbesondere von small nucleolar RNAs und Pseudouridin-Prozessen. Demnach scheinen diese RNA-modifizierenden Netzwerke einen bisher unbekannten funktionalen und sch{\"u}tzenden Einfluss auf das Zell{\"u}berleben nach ionisierender Bestrahlung zu haben. All diese sch{\"u}tzenden Netzwerke mit ihren zeitspezifischen Interaktionen sind essentiell f{\"u}r das Zell{\"u}berleben nach Einwirkung von oxidativem Stress und zeigen ein komplexes aber im Einklang befindliches Zusammenspiel vieler Einzelkomponenten zu einem systemweit ablaufenden Programm.}, language = {de} } @phdthesis{Genderjahn2018, author = {Genderjahn, Steffi}, title = {Biosignatures of Present and Past Microbial Life in Southern African Geoarchives}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410110}, school = {Universit{\"a}t Potsdam}, pages = {XI, 166, xxii}, year = {2018}, abstract = {Global climate change is one of the greatest challenges of the 21st century, with influence on the environment, societies, politics and economies. The (semi-)arid areas of Southern Africa already suffer from water scarcity. There is a great variety of ongoing research related to global climate history but important questions on regional differences still exist. In southern African regions terrestrial climate archives are rare, which makes paleoclimate studies challenging. Based on the assumption that continental pans (sabkhas) represent a suitable geo-archive for the climate history, two different pans were studied in the southern and western Kalahari Desert. A combined approach of molecular biological and biogeochemical analyses is utilized to investigate the diversity and abundance of microorganisms and to trace temporal and spatial changes in paleoprecipitation in arid environments. The present PhD thesis demonstrates the applicability of pan sediments as a late Quaternary geo-archive based on microbial signature lipid biomarkers, such as archaeol, branched and isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) as well as phospholipid fatty acids (PLFA). The microbial signatures contained in the sediment provide information on the current or past microbial community from the Last Glacial Maximum to the recent epoch, the Holocene. The results are discussed in the context of regional climate evolution in southwestern Africa. The seasonal shift of the Innertropical Convergence Zone (ITCZ) along the equator influences the distribution of precipitation- and climate zones. The different expansion of the winter- and summer rainfall zones in southern Africa was confirmed by the frequency of certain microbial biomarkers. A period of increased precipitation in the south-western Kalahari could be described as a result of the extension of the winter rainfall zone during the last glacial maximum (21 ± 2 ka). Instead a period of increased paleoprecipitation in the western Kalahari was indicated during the Late Glacial to Holocene transition. This was possibly caused by a southwestern shift in the position of the summer rainfall zone associated to the southward movement of the ITCZ. Furthermore, for the first time this study characterizes the bacterial and archaeal life based on 16S rRNA gene high-throughput sequencing in continental pan sediments and provides an insight into the recent microbial community structure. Near-surface processes play an important role for the modern microbial ecosystem in the pans. Water availability as well as salinity might determine the abundance and composition of the microbial communities. The microbial community of pan sediments is dominated by halophilic and dry-adapted archaea and bacteria. Frequently occurring microorganisms such as, Halobacteriaceae, Bacillus and Gemmatimonadetes are described in more detail in this study.}, language = {en} } @phdthesis{Fischer2022, author = {Fischer, Axel}, title = {Investigating the impact of genomic compartments contributing to non-Mendelian inheritance based on high throughput sequencing data}, doi = {10.25932/publishup-54900}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549001}, school = {Universit{\"a}t Potsdam}, pages = {vii, 122}, year = {2022}, abstract = {More than a century ago the phenomenon of non-Mendelian inheritance (NMI), defined as any type of inheritance pattern in which traits do not segregate in accordance with Mendel's laws, was first reported. In the plant kingdom three genomic compartments, the nucleus, chloroplast, and mitochondrion, can participate in such a phenomenon. High-throughput sequencing (HTS) proved to be a key technology to investigate NMI phenomena by assembling and/or resequencing entire genomes. However, generation, analysis and interpretation of such datasets remain challenging by the multi-layered biological complexity. To advance our knowledge in the field of NMI, I conducted three studies involving different HTS technologies and implemented two new algorithms to analyze them. In the first study I implemented a novel post-assembly pipeline, called Semi-Automated Graph-Based Assembly Curator (SAGBAC), which visualizes non-graph-based assemblies as graphs, identifies recombinogenic repeat pairs (RRPs), and reconstructs plant mitochondrial genomes (PMG) in a semiautomated workflow. We applied this pipeline to assemblies of three Oenothera species resulting in a spatially folded and circularized model. This model was confirmed by PCR and Southern blot analyses and was used to predict a defined set of 70 PMG isoforms. With Illumina Mate Pair and PacBio RSII data, the stoichiometry of the RRPs was determined quantitatively differing up to three-fold. In the second study I developed a post-multiple sequence alignment algorithm, called correlation mapping (CM), which correlates segment-wise numbers of nucleotide changes to a numeric ascertainable phenotype. We applied this algorithm to 14 wild type and 18 mutagenized plastome assemblies within the Oenothera genus and identified two genes, accD and ycf2 that may cause the competitive behavior of plastid genotypes as plastids can be biparental inherited in Oenothera. Moreover, lipid composition of the plastid envelope membrane is affected by polymorphisms within these two genes. For the third study, I programmed a pipeline to investigate a NMI phenomenon, known as paramutation, in tomato by analyzing DNA and bisulfite sequencing data as well as microarray data. We identified the responsible gene (Solyc02g0005200) and were able to fully repress its caused phenotype by heterologous complementation with a paramutation insensitive transgene of the Arabidopsis thaliana orthologue. Additionally, a suppressor mutant shows a globally altered DNA methylation pattern and carries a large deletion leading to a gene fusion involving a histone deacetylase. In conclusion, my developed and implemented algorithms and data analysis pipelines are suitable to investigate NMI and led to novel insights about such phenomena by reconstructing PMGs (SAGBAC) as a requirement to study mitochondria-associated phenotypes, by identifying genes (CM) causing interplastidial competition as well by applying a DNA/Bisulfite-seq analysis pipeline to shed light in a transgenerational epigenetic inheritance phenomenon.}, language = {en} } @phdthesis{BysaniKondagari2023, author = {Bysani Kondagari, Viswanada Reddy}, title = {Engineering and evolution of saccharomyces cerevisiae for synthetic formatotrophic growth via the reductive glycine pathway}, doi = {10.25932/publishup-58222}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-582222}, school = {Universit{\"a}t Potsdam}, pages = {124}, year = {2023}, abstract = {Increasing demand for food, healthcare, and transportation arising from the growing world population is accompanied by and driving global warming challenges due to the rise of the atmospheric CO2 concentration. Industrialization for human needs has been increasingly releasing CO2 into the atmosphere for the last century or more. In recent years, the possibility of recycling CO2 to stabilize the atmospheric CO2 concentration and combat rising temperatures has gained attention. Thus, using CO2 as the feedstock to address future world demands is the ultimate solution while controlling the rapid climate change. Valorizing CO2 to produce activated and stable one-carbon feedstocks like formate and methanol and further upgrading them to industrial microbial processes to replace unsustainable feedstocks would be crucial for a future biobased circular economy. However, not all microbes can grow on formate as a feedstock, and those microbes that can grow are not well established for industrial processes. S. cerevisiae is one of the industrially well-established microbes, and it is a significant contributor to bioprocess industries. However, it cannot grow on formate as a sole carbon and energy source. Thus, engineering S. cerevisiae to grow on formate could potentially pave the way to sustainable biomass and value-added chemicals production. The Reductive Glycine Pathway (RGP), designed as the aerobic twin of the anaerobic Reductive Acetyl-CoA pathway, is an efficient formate and CO2 assimilation pathway. The RGP comprises of the glycine synthesis module (Mis1p, Gcv1p, Gcv2p, Gcv3p, and Lpd1p), the glycine to serine conversion module (Shmtp), the pyruvate synthesis module (Cha1p), and the energy supply module (Fdh1p). The RGP requires formate and elevated CO2 levels to operate the glycine synthesis module. In this study, I established the RGP in the yeast system using growth-coupled selection strategies to achieve formate and CO2-dependent biomass formation in aerobic conditions. Firstly, I constructed serine biosensor strains by disrupting the native serine and glycine biosynthesis routes in the prototrophic S288c and FL100 yeast strains and insulated serine, glycine, and one-carbon metabolism from the central metabolic network. These strains cannot grow on glucose as the sole carbon source but require the supply of serine or glycine to complement the engineered auxotrophies. Using growth as a readout, I employed these strains as selection hosts to establish the RGP. Initially, to achieve this, I engineered different serine-hydroxymethyltransferases in the genome of serine biosensor strains for efficient glycine to serine conversion. Then, I implemented the glycine synthesis module of the RGP in these strains for the glycine and serine synthesis from formate and CO2. I successfully conducted Adaptive Laboratory Evolution (ALE) using these strains, which yielded a strain capable of glycine and serine biosynthesis from formate and CO2. Significant growth improvements from 0.0041 h-1 to 0.03695 h-1 were observed during ALE. To validate glycine and serine synthesis, I conducted carbon tracing experiments with 13C formate and 13CO2, confirming that more than 90\% of glycine and serine biosynthesis in the evolved strains occurs via the RGP. Interestingly, labeling data also revealed that 10-15\% of alanine was labelled, indicating pyruvate synthesis from the formate-derived serine using native serine deaminase (Cha1p) activity. Thus, RGP contributes to a small pyruvate pool which is converted to alanine without any selection pressure for pyruvate synthesis from formate. Hence, this data confirms the activity of all three modules of RGP even in the presence of glucose. Further, ALE in glucose limiting conditions did not improve pyruvate flux via the RGP. Growth characterization of these strains showed that the best growth rates were achieved in formate concentrations between 25 mM to 300 mM. Optimum growth required 5\% CO2, and dropped when the CO2 concentration was reduced from 5\% to 2.5\%. Whole-genome sequencing of these evolved strains revealed mutations in genes that encode Gdh1p, Pet9p, and Idh1p. These enzymes might influence intracellular NADPH, ATP, and NADH levels, indicating adjustment to meet the energy demand of the RGP. I reverse-engineered the GDH1 truncation mutation on unevolved serine biosensor strains and reproduced formate dependent growth. To elucidate the effect of the GDH1 mutation on formate assimilation, I reintroduced this mutation in the S288c strain and conducted carbon-tracing experiments to compared formate assimilation between WT and ∆gdh1 mutant strains. Comparatively, enhanced formate assimilation was recorded in the ∆gdh1 mutant strain. Although the 13C carbon tracing experiments confirmed the activity of all three modules of the RGP, the overall pyruvate flux via the RGP might be limited by the supply of reducing power. Hence, in a different approach, I overexpressed the formate dehydrogenase (Fdh1p) for energy supply and serine deaminase (Cha1p) for active pyruvate synthesis in the S288c parental strain and established growth on formate and serine without glucose in the medium. Further reengineering and evolution of this strain with a consistent energy, and formate-derived serine supply for pyruvate synthesis, is essential to achieve complete formatotrophic growth in the yeast system.}, language = {en} }