@article{HannemannKruegerDahm2014, author = {Hannemann, Katrin and Kr{\"u}ger, Frank and Dahm, Torsten}, title = {Measuring of clock drift rates and static time offsets of ocean bottom stations by means of ambient noise}, series = {Geophysical journal international}, volume = {196}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggt434}, pages = {1034 -- 1042}, year = {2014}, abstract = {Marine seismology usually relies on temporary deployments of stand alone seismic ocean bottom stations (OBS), which are initialized and synchronized on ship before deployment and re-synchronized and stopped on ship after recovery several months later. In between, the recorder clocks may drift and float at unknown rates. If the clock drifts are large or not linear and cannot be corrected for, seismological applications will be limited to methods not requiring precise common timing. Therefore, for example, array seismological methods, which need very accurate timing between individual stations, would not be applicable for such deployments. We use an OBS test-array of 12 stations and 75 km aperture, deployed for 10 months in the deep sea (4.5-5.5 km) of the mid-eastern Atlantic. The experiment was designed to analyse the potential of broad-band array seismology at the seafloor. After recovery, we identified some stations which either show unusual large clock drifts and/or static time offsets by having a large difference between the internal clock and the GPS-signal (skew). We test the approach of ambient noise cross-correlation to synchronize clocks of a deep water OBS array with km-scale interstation distances. We show that small drift rates and static time offsets can be resolved on vertical components with a standard technique. Larger clock drifts (several seconds per day) can only be accurately recovered if time windows of one input trace are shifted according to the expected drift between a station pair before the cross-correlation. We validate that the drifts extracted from the seismometer data are linear to first order. The same is valid for most of the hydrophones. Moreover, we were able to determine the clock drift at a station where no skew could be measured. Furthermore, we find that instable apparent drift rates at some hydrophones, which are uncorrelated to the seismometer drift recorded at the same digitizer, indicate a malfunction of the hydrophone.}, language = {en} } @article{HannemannPapazachosOhrnbergeretal.2014, author = {Hannemann, Katrin and Papazachos, Costas and Ohrnberger, Matthias and Savvaidis, Alexandros and Anthymidis, Marios and Lontsi, Agostiny Marrios}, title = {Three-dimensional shallow structure from high-frequency ambient noise tomography: New results for the Mygdonia basin-Euroseistest area, northern Greece}, series = {Journal of geophysical research : Solid earth}, volume = {119}, journal = {Journal of geophysical research : Solid earth}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1002/2013JB010914}, pages = {4979 -- 4999}, year = {2014}, abstract = {We examine the use of ambient noise cross-correlation tomography for shallow site characterization using a modified two-step approach. Initially, we extract Rayleigh wave traveltimes from correlation traces of vertical component seismic recordings from a local network installed in Mygdonia basin, northern Greece. The obtained Rayleigh wave traveltimes show significant spatial variability, as well as distance and frequency dependence due to the 3-D structure of the area, dispersion, and anelastic attenuation effects. The traveltime data sets are inverted through a surface wave tomography approach to determine group velocity maps for each frequency. The proposed tomographic inversion involves the use of approximate Fresnel volumes and interfrequency smoothing constraints to stabilize the results. In the last step, we determine a final 3-D velocity model using a node-based Monte Carlo 1-D dispersion curve inversion. The reliability of the final 3-D velocity model is examined by spatial and depth resolution analysis, as well as by inversion for different model parameterizations. The obtained results are in very good agreement with previous findings from seismic and other geophysical methods. The new 3-D VS model provides additional structural constraints for the shallow sediments and bedrock structure of the northern Mygdonia basin up to the depth of similar to 200-250 m. Present work results suggest that the migration of ambient tomography techniques from large scales (tens or hundreds of km) to local scales (few hundred meters) is possible but cannot be used as a black box technique for 3-D modeling and detailed geotechnical site characterization.}, language = {en} }