@book{AdrianoBleifussChengetal.2019, author = {Adriano, Christian and Bleifuß, Tobias and Cheng, Lung-Pan and Diba, Kiarash and Fricke, Andreas and Grapentin, Andreas and Jiang, Lan and Kovacs, Robert and Krejca, Martin Stefan and Mandal, Sankalita and Marwecki, Sebastian and Matthies, Christoph and Mattis, Toni and Niephaus, Fabio and Pirl, Lukas and Quinzan, Francesco and Ramson, Stefan and Rezaei, Mina and Risch, Julian and Rothenberger, Ralf and Roumen, Thijs and Stojanovic, Vladeta and Wolf, Johannes}, title = {Technical report}, number = {129}, editor = {Meinel, Christoph and Plattner, Hasso and D{\"o}llner, J{\"u}rgen Roland Friedrich and Weske, Mathias and Polze, Andreas and Hirschfeld, Robert and Naumann, Felix and Giese, Holger and Baudisch, Patrick and Friedrich, Tobias and B{\"o}ttinger, Erwin and Lippert, Christoph}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-465-4}, issn = {1613-5652}, doi = {10.25932/publishup-42753}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427535}, publisher = {Universit{\"a}t Potsdam}, pages = {vi, 267}, year = {2019}, abstract = {Design and Implementation of service-oriented architectures imposes a huge number of research questions from the fields of software engineering, system analysis and modeling, adaptability, and application integration. Component orientation and web services are two approaches for design and realization of complex web-based system. Both approaches allow for dynamic application adaptation as well as integration of enterprise application. Commonly used technologies, such as J2EE and .NET, form de facto standards for the realization of complex distributed systems. Evolution of component systems has lead to web services and service-based architectures. This has been manifested in a multitude of industry standards and initiatives such as XML, WSDL UDDI, SOAP, etc. All these achievements lead to a new and promising paradigm in IT systems engineering which proposes to design complex software solutions as collaboration of contractually defined software services. Service-Oriented Systems Engineering represents a symbiosis of best practices in object-orientation, component-based development, distributed computing, and business process management. It provides integration of business and IT concerns. The annual Ph.D. Retreat of the Research School provides each member the opportunity to present his/her current state of their research and to give an outline of a prospective Ph.D. thesis. Due to the interdisciplinary structure of the research school, this technical report covers a wide range of topics. These include but are not limited to: Human Computer Interaction and Computer Vision as Service; Service-oriented Geovisualization Systems; Algorithm Engineering for Service-oriented Systems; Modeling and Verification of Self-adaptive Service-oriented Systems; Tools and Methods for Software Engineering in Service-oriented Systems; Security Engineering of Service-based IT Systems; Service-oriented Information Systems; Evolutionary Transition of Enterprise Applications to Service Orientation; Operating System Abstractions for Service-oriented Computing; and Services Specification, Composition, and Enactment.}, language = {en} } @phdthesis{Marwecki2021, author = {Marwecki, Sebastian}, title = {Virtualizing physical space}, doi = {10.25932/publishup-52033}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-520332}, school = {Universit{\"a}t Potsdam}, pages = {xi, 128}, year = {2021}, abstract = {The true cost for virtual reality is not the hardware, but the physical space it requires, as a one-to-one mapping of physical space to virtual space allows for the most immersive way of navigating in virtual reality. Such "real-walking" requires physical space to be of the same size and the same shape of the virtual world represented. This generally prevents real-walking applications from running on any space that they were not designed for. To reduce virtual reality's demand for physical space, creators of such applications let users navigate virtual space by means of a treadmill, altered mappings of physical to virtual space, hand-held controllers, or gesture-based techniques. While all of these solutions succeed at reducing virtual reality's demand for physical space, none of them reach the same level of immersion that real-walking provides. Our approach is to virtualize physical space: instead of accessing physical space directly, we allow applications to express their need for space in an abstract way, which our software systems then map to the physical space available. We allow real-walking applications to run in spaces of different size, different shape, and in spaces containing different physical objects. We also allow users immersed in different virtual environments to share the same space. Our systems achieve this by using a tracking volume-independent representation of real-walking experiences — a graph structure that expresses the spatial and logical relationships between virtual locations, virtual elements contained within those locations, and user interactions with those elements. When run in a specific physical space, this graph representation is used to define a custom mapping of the elements of the virtual reality application and the physical space by parsing the graph using a constraint solver. To re-use space, our system splits virtual scenes and overlap virtual geometry. The system derives this split by means of hierarchically clustering of our virtual objects as nodes of our bi-partite directed graph that represents the logical ordering of events of the experience. We let applications express their demands for physical space and use pre-emptive scheduling between applications to have them share space. We present several application examples enabled by our system. They all enable real-walking, despite being mapped to physical spaces of different size and shape, containing different physical objects or other users. We see substantial real-world impact in our systems. Today's commercial virtual reality applications are generally designing to be navigated using less immersive solutions, as this allows them to be operated on any tracking volume. While this is a commercial necessity for the developers, it misses out on the higher immersion offered by real-walking. We let developers overcome this hurdle by allowing experiences to bring real-walking to any tracking volume, thus potentially bringing real-walking to consumers. Die eigentlichen Kosten f{\"u}r Virtual Reality Anwendungen entstehen nicht prim{\"a}r durch die erforderliche Hardware, sondern durch die Nutzung von physischem Raum, da die eins-zu-eins Abbildung von physischem auf virtuellem Raum die immersivste Art von Navigation erm{\"o}glicht. Dieses als „Real-Walking" bezeichnete Erlebnis erfordert hinsichtlich Gr{\"o}ße und Form eine Entsprechung von physischem Raum und virtueller Welt. Resultierend daraus k{\"o}nnen Real-Walking-Anwendungen nicht an Orten angewandt werden, f{\"u}r die sie nicht entwickelt wurden. Um den Bedarf an physischem Raum zu reduzieren, lassen Entwickler von Virtual Reality-Anwendungen ihre Nutzer auf verschiedene Arten navigieren, etwa mit Hilfe eines Laufbandes, verf{\"a}lschten Abbildungen von physischem zu virtuellem Raum, Handheld-Controllern oder gestenbasierten Techniken. All diese L{\"o}sungen reduzieren zwar den Bedarf an physischem Raum, erreichen jedoch nicht denselben Grad an Immersion, den Real-Walking bietet. Unser Ansatz zielt darauf, physischen Raum zu virtualisieren: Anstatt auf den physischen Raum direkt zuzugreifen, lassen wir Anwendungen ihren Raumbedarf auf abstrakte Weise formulieren, den unsere Softwaresysteme anschließend auf den verf{\"u}gbaren physischen Raum abbilden. Dadurch erm{\"o}glichen wir Real-Walking-Anwendungen R{\"a}ume mit unterschiedlichen Gr{\"o}ßen und Formen und R{\"a}ume, die unterschiedliche physische Objekte enthalten, zu nutzen. Wir erm{\"o}glichen auch die zeitgleiche Nutzung desselben Raums durch mehrere Nutzer verschiedener Real-Walking-Anwendungen. Unsere Systeme erreichen dieses Resultat durch eine Repr{\"a}sentation von Real-Walking-Erfahrungen, die unabh{\"a}ngig sind vom gegebenen Trackingvolumen - eine Graphenstruktur, die die r{\"a}umlichen und logischen Beziehungen zwischen virtuellen Orten, den virtuellen Elementen innerhalb dieser Orte, und Benutzerinteraktionen mit diesen Elementen, ausdr{\"u}ckt. Bei der Instanziierung der Anwendung in einem bestimmten physischen Raum wird diese Graphenstruktur und ein Constraint Solver verwendet, um eine individuelle Abbildung der virtuellen Elemente auf den physischen Raum zu erreichen. Zur mehrmaligen Verwendung des Raumes teilt unser System virtuelle Szenen und {\"u}berlagert virtuelle Geometrie. Das System leitet diese Aufteilung anhand eines hierarchischen Clusterings unserer virtuellen Objekte ab, die als Knoten unseres bi-partiten, gerichteten Graphen die logische Reihenfolge aller Ereignisse repr{\"a}sentieren. Wir verwenden pr{\"a}emptives Scheduling zwischen den Anwendungen f{\"u}r die zeitgleiche Nutzung von physischem Raum. Wir stellen mehrere Anwendungsbeispiele vor, die Real-Walking erm{\"o}glichen - in physischen R{\"a}umen mit unterschiedlicher Gr{\"o}ße und Form, die verschiedene physische Objekte oder weitere Nutzer enthalten. Wir sehen in unseren Systemen substantielles Potential. Heutige Virtual Reality-Anwendungen sind bisher zwar so konzipiert, dass sie auf einem beliebigen Trackingvolumen betrieben werden k{\"o}nnen, aber aus kommerzieller Notwendigkeit kein Real-Walking beinhalten. Damit entgeht Entwicklern die Gelegenheit eine h{\"o}here Immersion herzustellen. Indem wir es erm{\"o}glichen, Real-Walking auf jedes Trackingvolumen zu bringen, geben wir Entwicklern die M{\"o}glichkeit Real-Walking zu ihren Nutzern zu bringen.}, language = {en} } @misc{MarweckiBaudisch2018, author = {Marwecki, Sebastian and Baudisch, Patrick}, title = {Scenograph}, series = {UIST '18: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology}, journal = {UIST '18: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {978-1-4503-5948-1}, doi = {10.1145/3242587.3242648}, pages = {511 -- 520}, year = {2018}, abstract = {When developing a real-walking virtual reality experience, designers generally create virtual locations to fit a specific tracking volume. Unfortunately, this prevents the resulting experience from running on a smaller or differently shaped tracking volume. To address this, we present a software system called Scenograph. The core of Scenograph is a tracking volume-independent representation of real-walking experiences. Scenograph instantiates the experience to a tracking volume of given size and shape by splitting the locations into smaller ones while maintaining narrative structure. In our user study, participants' ratings of realism decreased significantly when existing techniques were used to map a 25m2 experience to 9m2 and an L-shaped 8m2 tracking volume. In contrast, ratings did not differ when Scenograph was used to instantiate the experience.}, language = {en} } @misc{MarweckiWilsonOfeketal.2019, author = {Marwecki, Sebastian and Wilson, Andrew D. and Ofek, Eyal and Franco, Mar Gonzalez and Holz, Christian}, title = {Mise-Unseen}, series = {UIST '19: Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology}, journal = {UIST '19: Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {978-1-4503-6816-2}, doi = {10.1145/3332165.3347919}, pages = {777 -- 789}, year = {2019}, abstract = {Creating or arranging objects at runtime is needed in many virtual reality applications, but such changes are noticed when they occur inside the user's field of view. We present Mise-Unseen, a software system that applies such scene changes covertly inside the user's field of view. Mise-Unseen leverages gaze tracking to create models of user attention, intention, and spatial memory to determine if and when to inject a change. We present seven applications of Mise-Unseen to unnoticeably modify the scene within view (i) to hide that task difficulty is adapted to the user, (ii) to adapt the experience to the user's preferences, (iii) to time the use of low fidelity effects, (iv) to detect user choice for passive haptics even when lacking physical props, (v) to sustain physical locomotion despite a lack of physical space, (vi) to reduce motion sickness during virtual locomotion, and (vii) to verify user understanding during story progression. We evaluated Mise-Unseen and our applications in a user study with 15 participants and find that while gaze data indeed supports obfuscating changes inside the field of view, a change is rendered unnoticeably by using gaze in combination with common masking techniques.}, language = {en} } @misc{SchneiderShigeyamaKovacsetal.2018, author = {Schneider, Oliver and Shigeyama, Jotaro and Kovacs, Robert and Roumen, Thijs Jan and Marwecki, Sebastian and B{\"o}ckhoff, Nico and Gl{\"o}ckner, Daniel Amadeus Johannes and Bounama, Jonas and Baudisch, Patrick}, title = {DualPanto}, series = {UIST '18: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology}, journal = {UIST '18: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology}, publisher = {Association for Computing Machinery}, address = {New York}, isbn = {978-1-4503-5948-1}, doi = {10.1145/3242587.3242604}, pages = {877 -- 887}, year = {2018}, abstract = {We present a new haptic device that enables blind users to continuously track the absolute position of moving objects in spatial virtual environments, as is the case in sports or shooter games. Users interact with DualPanto by operating the me handle with one hand and by holding on to the it handle with the other hand. Each handle is connected to a pantograph haptic input/output device. The key feature is that the two handles are spatially registered with respect to each other. When guiding their avatar through a virtual world using the me handle, spatial registration enables users to track moving objects by having the device guide the output hand. This allows blind players of a 1-on-1 soccer game to race for the ball or evade an opponent; it allows blind players of a shooter game to aim at an opponent and dodge shots. In our user study, blind participants reported very high enjoyment when using the device to play (6.5/7).}, language = {en} }