@article{BaerFegerFajoletal.2018, author = {B{\"a}r, Ludmilla and Feger, Martina and Fajol, Abul and Klotz, Lars-Oliver and Zeng, Shufei and Lang, Florian and Hocher, Berthold and F{\"o}ller, Michael}, title = {Insulin suppresses the production of fibroblast growth factor 23 (FGF23)}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {115}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {22}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1800160115}, pages = {5804 -- 5809}, year = {2018}, abstract = {Fibroblast growth factor 23 (FGF23) is produced by bone cells and regulates renal phosphate and vitamin D metabolism, as well as causing left ventricular hypertrophy. FGF23 deficiency results in rapid aging, whereas high plasma FGF23 levels are found in several disorders, including kidney or cardiovascular diseases. Regulators of FGF23 production include parathyroid hormone (PTH), calcitriol, dietary phosphate, and inflammation. We report that insulin and insulin-like growth factor 1 (IGF1) are negative regulators of FGF23 production. In UMR106 osteoblast-like cells, insulin and IGF1 down-regulated FGF23 production by inhibiting the transcription factor forkhead box protein O1 (FOXO1) through phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB)/Akt signaling. Insulin deficiency caused a surge in the serum FGF23 concentration in mice, which was reversed by administration of insulin. In women, a highly significant negative correlation between FGF23 plasma concentration and increase in plasma insulin level following an oral glucose load was found. Our results provide strong evidence that insulin/IGF1dependent PI3K/PKB/Akt/FOXO1 signaling is a powerful suppressor of FGF23 production in vitro as well as in mice and in humans.}, language = {en} } @article{GlosseFegerMutigetal.2018, author = {Glosse, Philipp and Feger, Martina and Mutig, Kerim and Chen, Hong and Hirche, Frank and Hasan, Ahmed Abdallah Abdalrahman Mohamed and Gaballa, Mohamed Mahmoud Salem Ahmed and Hocher, Berthold and Lang, Florian and F{\"o}ller, Michael}, title = {AMP-activated kinase is a regulator of fibroblast growth factor 23 production}, series = {Kidney international : official journal of the International Society of Nephrology}, volume = {94}, journal = {Kidney international : official journal of the International Society of Nephrology}, number = {3}, publisher = {Elsevier}, address = {New York}, issn = {0085-2538}, doi = {10.1016/j.kint.2018.03.006}, pages = {491 -- 501}, year = {2018}, abstract = {Fibroblast growth factor 23 (FGF23) is a proteohormone regulating renal phosphate transport and vitamin D metabolism as well as inducing left heart hypertrophy. FGF23-deficient mice suffer from severe tissue calcification, accelerated aging and a myriad of aging-associated diseases. Bone cells produce FGF23 upon store-operated calcium ion entry (SOCE) through the calcium selective ion channel Orai1. AMP-activated kinase (AMPK) is a powerful energy sensor helping cells survive states of energy deficiency, and AMPK down-regulates Orai1. Here we investigated the role of AMPK in FGF23 production. Fgf23 gene transcription was analyzed by qRT-PCR and SOCE by fluorescence optics in UMR106 osteoblast-like cells while the serum FGF23 concentration and phosphate metabolism were assessed in AMPKa1-knockout and wild-type mice. The AMPK activator, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) down-regulated, whereas the AMPK inhibitor, dorsomorphin dihydrochloride (compound C) and AMPK gene silencing induced Fgf23 transcription. AICAR decreased membrane abundance of Orai1 and SOCE. SOCE inhibitors lowered Fgf23 gene expression induced by AMPK inhibition. AMPKa1-knockout mice had a higher serum FGF23 concentration compared to wild-type mice. Thus, AMPK participates in the regulation of FGF23 production in vitro and in vivo. The inhibitory effect of AMPK on FGF23 production is at least in part mediated by Orai1-involving SOCE.}, language = {en} }