@phdthesis{IgualGil2022, author = {Igual Gil, Carla}, title = {Role of the GDF15-GFRAL pathway under skeletal muscle mitochondrial stress}, doi = {10.25932/publishup-55469}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-554693}, school = {Universit{\"a}t Potsdam}, pages = {IXIII, 73, XVII}, year = {2022}, abstract = {Growth differentiation factor 15 (GDF15) is a stress-induced cytokine secreted into the circulation by a number of tissues under different pathological conditions such as cardiovascular disease, cancer or mitochondrial dysfunction, among others. While GDF15 signaling through its recently identified hindbrain-specific receptor GDNF family receptor alpha-like (GFRAL) has been proposed to be involved in the metabolic stress response, its endocrine role under chronic stress conditions is still poorly understood. Mitochondrial dysfunction is characterized by the impairment of oxidative phosphorylation (OXPHOS), leading to inefficient functioning of mitochondria and consequently, to mitochondrial stress. Importantly, mitochondrial dysfunction is among the pathologies to most robustly induce GDF15 as a cytokine in the circulation. The overall aim of this thesis was to elucidate the role of the GDF15-GFRAL pathway under mitochondrial stress conditions. For this purpose, a mouse model of skeletal muscle-specific mitochondrial stress achieved by ectopic expression of uncoupling protein 1 (UCP1), the HSA-Ucp1-transgenic (TG) mouse, was employed. As a consequence of mitochondrial stress, TG mice display a metabolic remodeling consisting of a lean phenotype, an improved glucose metabolism, an increased metabolic flexibility and a metabolic activation of white adipose tissue. Making use of TG mice crossed with whole body Gdf15-knockout (GdKO) and Gfral-knockout (GfKO) mouse models, this thesis demonstrates that skeletal muscle mitochondrial stress induces the integrated stress response (ISR) and GDF15 in skeletal muscle, which is released into the circulation as a myokine (muscle-induced cytokine) in a circadian manner. Further, this work identifies GDF15-GFRAL signaling to be responsible for the systemic metabolic remodeling elicited by mitochondrial stress in TG mice. Moreover, this study reveals a daytime-restricted anorexia induced by the GDF15-GFRAL axis under muscle mitochondrial stress, which is, mechanistically, mediated through the induction of hypothalamic corticotropin releasing hormone (CRH). Finally, this work elucidates a so far unknown physiological outcome of the GDF15-GFRAL pathway: the induction of anxiety-like behavior. In conclusion, this study uncovers a muscle-brain crosstalk under skeletal muscle mitochondrial stress conditions through the induction of GDF15 as a myokine that signals through the hindbrain-specific GFRAL receptor to elicit a stress response leading to metabolic remodeling and modulation of ingestive- and anxiety-like behavior.}, language = {en} } @article{KlausIgualGilOst2021, author = {Klaus, Susanne and Igual Gil, Carla and Ost, Mario}, title = {Regulation of diurnal energy balance by mitokines}, series = {Cellular and molecular life sciences : CMLS}, volume = {78}, journal = {Cellular and molecular life sciences : CMLS}, number = {7}, publisher = {Springer International Publishing AG}, address = {Cham (ZG)}, issn = {1420-682X}, doi = {10.1007/s00018-020-03748-9}, pages = {3369 -- 3384}, year = {2021}, abstract = {The mammalian system of energy balance regulation is intrinsically rhythmic with diurnal oscillations of behavioral and metabolic traits according to the 24 h day/night cycle, driven by cellular circadian clocks and synchronized by environmental or internal cues such as metabolites and hormones associated with feeding rhythms. Mitochondria are crucial organelles for cellular energy generation and their biology is largely under the control of the circadian system. Whether mitochondrial status might also feed-back on the circadian system, possibly via mitokines that are induced by mitochondrial stress as endocrine-acting molecules, remains poorly understood. Here, we describe our current understanding of the diurnal regulation of systemic energy balance, with focus on fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15), two well-known endocrine-acting metabolic mediators. FGF21 shows a diurnal oscillation and directly affects the output of the brain master clock. Moreover, recent data demonstrated that mitochondrial stress-induced GDF15 promotes a day-time restricted anorexia and systemic metabolic remodeling as shown in UCP1-transgenic mice, where both FGF21 and GDF15 are induced as myomitokines. In this mouse model of slightly uncoupled skeletal muscle mitochondria GDF15 proved responsible for an increased metabolic flexibility and a number of beneficial metabolic adaptations. However, the molecular mechanisms underlying energy balance regulation by mitokines are just starting to emerge, and more data on diurnal patterns in mouse and man are required. This will open new perspectives into the diurnal nature of mitokines and action both in health and disease.}, language = {en} } @misc{KlausOst2020, author = {Klaus, Susanne and Ost, Mario}, title = {Mitochondrial uncoupling and longevity}, series = {Experimental gerontology}, volume = {130}, journal = {Experimental gerontology}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {0531-5565}, doi = {10.1016/j.exger.2019.110796}, year = {2020}, abstract = {Aging has been viewed both as a random process due to accumulation of molecular and cellular damage over time and as a programmed process linked to cellular pathway important for growth and maturation. These views converge on mitochondria as both the major producer of damaging reactive oxidant species (ROS) and as signaling organelles. A finite proton leak across the inner mitochondrial membrane leading to a slight uncoupling of oxidative phosphorylation and respiration is an intrinsic property of all mitochondria and according to the "uncoupling to survive" hypothesis it has evolved to protect against ROS production to minimize oxidative damage. This hypothesis is supported by evidence linking an increased endogenous, uncoupling protein (UCP1) mediated, as well as experimentally induced mitochondrial uncoupling to an increased lifespan in rodents. This is possibly due to the synergistic activation of molecular pathways linked to life extending effects of caloric restriction as well as a mitohormetic response. Mitohormesis is an adaptive stress response through mitonuclear signaling which increases stress resistance resulting in health promoting effects. Part of this response is the induction of fibroblast growth factor 21 (FGF21) and growth and differentiation factor 15 (GDF15), two stress-induced mitokines which elicit beneficial systemic metabolic effects via endocrine action.}, language = {en} } @article{OstIgualGilColemanetal.2020, author = {Ost, Mario and Igual Gil, Carla and Coleman, Verena and Keipert, Susanne and Efstathiou, Sotirios and Vidic, Veronika and Weyers, Miriam and Klaus, Susanne}, title = {Muscle-derived GDF15 drives diurnal anorexia and systemic metabolic remodeling during mitochondrial stress}, series = {EMBO reports}, volume = {21}, journal = {EMBO reports}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {1469-221X}, doi = {10.15252/embr.201948804}, pages = {14}, year = {2020}, abstract = {Mitochondrial dysfunction promotes metabolic stress responses in a cell-autonomous as well as organismal manner. The wasting hormone growth differentiation factor 15 (GDF15) is recognized as a biomarker of mitochondrial disorders, but its pathophysiological function remains elusive. To test the hypothesis that GDF15 is fundamental to the metabolic stress response during mitochondrial dysfunction, we investigated transgenic mice (Ucp1-TG) with compromised muscle-specific mitochondrial OXPHOS capacity via respiratory uncoupling. Ucp1-TG mice show a skeletal muscle-specific induction and diurnal variation of GDF15 as a myokine. Remarkably, genetic loss of GDF15 in Ucp1-TG mice does not affect muscle wasting or transcriptional cell-autonomous stress response but promotes a progressive increase in body fat mass. Furthermore, muscle mitochondrial stress-induced systemic metabolic flexibility, insulin sensitivity, and white adipose tissue browning are fully abolished in the absence of GDF15. Mechanistically, we uncovered a GDF15-dependent daytime-restricted anorexia, whereas GDF15 is unable to suppress food intake at night. Altogether, our evidence suggests a novel diurnal action and key pathophysiological role of mitochondrial stress-induced GDF15 in the regulation of systemic energy metabolism.}, language = {en} }