@article{ChromikKirstenHerdicketal.2022, author = {Chromik, Jonas and Kirsten, Kristina and Herdick, Arne and Kappattanavar, Arpita Mallikarjuna and Arnrich, Bert}, title = {SensorHub}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s22010408}, pages = {18}, year = {2022}, abstract = {Observational studies are an important tool for determining whether the findings from controlled experiments can be transferred into scenarios that are closer to subjects' real-life circumstances. A rigorous approach to observational studies involves collecting data from different sensors to comprehensively capture the situation of the subject. However, this leads to technical difficulties especially if the sensors are from different manufacturers, as multiple data collection tools have to run simultaneously. We present SensorHub, a system that can collect data from various wearable devices from different manufacturers, such as inertial measurement units, portable electrocardiographs, portable electroencephalographs, portable photoplethysmographs, and sensors for electrodermal activity. Additionally, our tool offers the possibility to include ecological momentary assessments (EMAs) in studies. Hence, SensorHub enables multimodal sensor data collection under real-world conditions and allows direct user feedback to be collected through questionnaires, enabling studies at home. In a first study with 11 participants, we successfully used SensorHub to record multiple signals with different devices and collected additional information with the help of EMAs. In addition, we evaluated SensorHub's technical capabilities in several trials with up to 21 participants recording simultaneously using multiple sensors with sampling frequencies as high as 1000 Hz. We could show that although there is a theoretical limitation to the transmissible data rate, in practice this limitation is not an issue and data loss is rare. We conclude that with modern communication protocols and with the increasingly powerful smartphones and wearables, a system like our SensorHub establishes an interoperability framework to adequately combine consumer-grade sensing hardware which enables observational studies in real life.}, language = {en} } @article{ChromikKlopfensteinPfitzneretal.2022, author = {Chromik, Jonas and Klopfenstein, Sophie Anne Ines and Pfitzner, Bjarne and Sinno, Zeena-Carola and Arnrich, Bert and Balzer, Felix and Poncette, Akira-Sebastian}, title = {Computational approaches to alleviate alarm fatigue in intensive care medicine: a systematic literature review}, series = {Frontiers in digital health}, volume = {4}, journal = {Frontiers in digital health}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2673-253X}, doi = {10.3389/fdgth.2022.843747}, pages = {15}, year = {2022}, abstract = {Patient monitoring technology has been used to guide therapy and alert staff when a vital sign leaves a predefined range in the intensive care unit (ICU) for decades. However, large amounts of technically false or clinically irrelevant alarms provoke alarm fatigue in staff leading to desensitisation towards critical alarms. With this systematic review, we are following the Preferred Reporting Items for Systematic Reviews (PRISMA) checklist in order to summarise scientific efforts that aimed to develop IT systems to reduce alarm fatigue in ICUs. 69 peer-reviewed publications were included. The majority of publications targeted the avoidance of technically false alarms, while the remainder focused on prediction of patient deterioration or alarm presentation. The investigated alarm types were mostly associated with heart rate or arrhythmia, followed by arterial blood pressure, oxygen saturation, and respiratory rate. Most publications focused on the development of software solutions, some on wearables, smartphones, or headmounted displays for delivering alarms to staff. The most commonly used statistical models were tree-based. In conclusion, we found strong evidence that alarm fatigue can be alleviated by IT-based solutions. However, future efforts should focus more on the avoidance of clinically non-actionable alarms which could be accelerated by improving the data availability.}, language = {en} } @article{ChromikPirlBeilharzetal.2021, author = {Chromik, Jonas and Pirl, Lukas and Beilharz, Jossekin Jakob and Arnrich, Bert and Polze, Andreas}, title = {Certainty in QRS detection with artificial neural networks}, series = {Biomedical signal processing and control}, volume = {68}, journal = {Biomedical signal processing and control}, publisher = {Elsevier}, address = {Oxford}, issn = {1746-8094}, doi = {10.1016/j.bspc.2021.102628}, pages = {12}, year = {2021}, abstract = {Detection of the QRS complex is a long-standing topic in the context of electrocardiography and many algorithms build upon the knowledge of the QRS positions. Although the first solutions to this problem were proposed in the 1970s and 1980s, there is still potential for improvements. Advancements in neural network technology made in recent years also lead to the emergence of enhanced QRS detectors based on artificial neural networks. In this work, we propose a method for assessing the certainty that is in each of the detected QRS complexes, i.e. how confident the QRS detector is that there is, in fact, a QRS complex in the position where it was detected. We further show how this metric can be utilised to distinguish correctly detected QRS complexes from false detections.}, language = {en} } @book{KubanRottaNolteetal.2024, author = {Kuban, Robert and Rotta, Randolf and Nolte, J{\"o}rg and Chromik, Jonas and Beilharz, Jossekin Jakob and Pirl, Lukas and Friedrich, Tobias and Lenzner, Pascal and Weyand, Christopher and Juiz, Carlos and Bermejo, Belen and Sauer, Joao and Coelh, Leandro dos Santos and Najafi, Pejman and P{\"u}nter, Wenzel and Cheng, Feng and Meinel, Christoph and Sidorova, Julia and Lundberg, Lars and Vogel, Thomas and Tran, Chinh and Moser, Irene and Grunske, Lars and Elsaid, Mohamed Esameldin Mohamed and Abbas, Hazem M. and Rula, Anisa and Sejdiu, Gezim and Maurino, Andrea and Schmidt, Christopher and H{\"u}gle, Johannes and Uflacker, Matthias and Nozza, Debora and Messina, Enza and Hoorn, Andr{\´e} van and Frank, Markus and Schulz, Henning and Alhosseini Almodarresi Yasin, Seyed Ali and Nowicki, Marek and Muite, Benson K. and Boysan, Mehmet Can and Bianchi, Federico and Cremaschi, Marco and Moussa, Rim and Abdel-Karim, Benjamin M. and Pfeuffer, Nicolas and Hinz, Oliver and Plauth, Max and Polze, Andreas and Huo, Da and Melo, Gerard de and Mendes Soares, F{\´a}bio and Oliveira, Roberto C{\´e}lio Lim{\~a}o de and Benson, Lawrence and Paul, Fabian and Werling, Christian and Windheuser, Fabian and Stojanovic, Dragan and Djordjevic, Igor and Stojanovic, Natalija and Stojnev Ilic, Aleksandra and Weidmann, Vera and Lowitzki, Leon and Wagner, Markus and Ifa, Abdessatar Ben and Arlos, Patrik and Megia, Ana and Vendrell, Joan and Pfitzner, Bjarne and Redondo, Alberto and R{\´i}os Insua, David and Albert, Justin Amadeus and Zhou, Lin and Arnrich, Bert and Szab{\´o}, Ildik{\´o} and Fodor, Szabina and Ternai, Katalin and Bhowmik, Rajarshi and Campero Durand, Gabriel and Shevchenko, Pavlo and Malysheva, Milena and Prymak, Ivan and Saake, Gunter}, title = {HPI Future SOC Lab - Proceedings 2019}, number = {158}, editor = {Meinel, Christoph and Polze, Andreas and Beins, Karsten and Strotmann, Rolf and Seibold, Ulrich and R{\"o}dszus, Kurt and M{\"u}ller, J{\"u}rgen}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-564-4}, issn = {1613-5652}, doi = {10.25932/publishup-59791}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-597915}, publisher = {Universit{\"a}t Potsdam}, pages = {xi, 301}, year = {2024}, abstract = {The "HPI Future SOC Lab" is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners. The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies. This technical report presents results of research projects executed in 2019. Selected projects have presented their results on April 9th and November 12th 2019 at the Future SOC Lab Day events.}, language = {en} } @book{WeyandChromikWolfetal.2017, author = {Weyand, Christopher and Chromik, Jonas and Wolf, Lennard and K{\"o}tte, Steffen and Haase, Konstantin and Felgentreff, Tim and Lincke, Jens and Hirschfeld, Robert}, title = {Improving hosted continuous integration services}, number = {108}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-377-0}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94251}, publisher = {Universit{\"a}t Potsdam}, pages = {viii, 114}, year = {2017}, abstract = {Developing large software projects is a complicated task and can be demanding for developers. Continuous integration is common practice for reducing complexity. By integrating and testing changes often, changesets are kept small and therefore easily comprehensible. Travis CI is a service that offers continuous integration and continuous deployment in the cloud. Software projects are build, tested, and deployed using the Travis CI infrastructure without interrupting the development process. This report describes how Travis CI works, presents how time-driven, periodic building is implemented as well as how CI data visualization can be done, and proposes a way of dealing with dependency problems.}, language = {en} }