@article{AbdallaAharonianBenkhalietal.2019, author = {Abdalla, Hassan E. and Aharonian, Felix A. and Benkhali, F. Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arakawa, M. and Arcaro, C. and Armand, C. and Arrieta, M. and Backes, M. and Barnard, M. and Becherini, Y. and Tjus, J. Becker and Berge, D. and Bernhard, S. and Bernloehr, K. and Blackwell, R. and Bottcher, M. and Boisson, C. and Bolmont, J. and Bonnefoy, S. and Bordas, Pol and Bregeon, J. and Brun, F. and Brun, P. and Bryan, M. and Buechele, M. and Bulik, T. and Bylund, T. and Capasso, M. and Caroff, S. and Carosi, A. and Cerruti, M. and Chakraborty, N. and Chandra, S. and Chaves, R. C. G. and Chen, A. and Colafrancesco, S. and Condon, B. and Davids, I. D. and Deil, C. and Devin, J. and deWilt, P. and Dirson, L. and Djannati-Atai, A. and Dmytriiev, A. and Donath, A. and Doroshenko, V and Dyks, J. and Egberts, Kathrin and Emery, G. and Ernenwein, J-P and Eschbach, S. and Fegan, S. and Fiasson, A. and Fontaine, G. and Funk, S. and Fuessling, M. and Gabici, S. and Gallant, Y. A. and Gate, F. and Giavitto, G. and Glawion, D. and Glicenstein, J. F. and Gottschall, D. and Grondin, M-H and Hahn, J. and Haupt, M. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hinton, James Anthony and Hofmann, W. and Hoischen, Clemens and Holch, Tim Lukas and Holler, M. and Horns, D. and Huber, D. and Iwasaki, H. and Jacholkowska, A. and Jamrozy, M. and Jankowsky, D. and Jankowsky, F. and Jouvin, L. and Jung-Richardt, I and Kastendieck, M. A. and Katarzynski, K. and Katsuragawa, M. and Katz, U. and Kerszberg, D. and Khangulyan, D. and Khelifi, B. and King, J. and Klepser, S. and Kluzniak, W. and Komin, Nu and Kosack, K. and Krakau, S. and Kraus, M. and Kruger, P. P. and Lamanna, G. and Lau, J. and Lefaucheur, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J-P and Leser, Eva and Lohse, T. and Lorentz, M. and Lopez-Coto, R. and Lypova, I and Malyshev, D. and Marandon, V and Marcowith, Alexandre and Mariaud, C. and Marti-Devesa, G. and Marx, R. and Maurin, G. and Meintjes, P. J. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Moulin, Emmanuel and Murach, T. and Nakashima, S. and de Naurois, M. and Ndiyavala, H. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Ohm, S. and Ostrowski, M. and Oya, I and Padovani, M. and Panter, M. and Parsons, R. D. and Perennes, C. and Petrucci, P-O and Peyaud, B. and Piel, Q. and Pita, S. and Poireau, V and Noel, A. Priyana and Prokhorov, D. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and Reimer, A. and Reimer, O. and Renaud, M. and Rieger, F. and Rinchiuso, L. and Romoli, C. and Rowell, G. and Rudak, B. and Ruiz-Velasco, E. and Sahakian, V and Saito, S. and Sanchez, David M. and Santangelo, Andrea and Sasaki, M. and Schlickeiser, R. and Schussler, F. and Schulz, A. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Senniappan, M. and Seyffert, A. S. and Shafi, N. and Shilon, I and Shiningayamwe, K. and Simoni, R. and Sinha, A. and Sol, H. and Spanier, F. and Specovius, A. and Spir-Jacob, M. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Steppa, Constantin Beverly and Takahashi, T. and Tavernet, J-P and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tibaldo, L. and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsirou, M. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and van der Walt, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Wagner, R. M. and White, R. and Wierzcholska, A. and Yang, R. and Zaborov, D. and Zacharias, M. and Zanin, R. and Zdziarski, A. A. and Zech, Alraune and Zefi, F. and Ziegler, A. and Zorn, J. and Zywucka, N.}, title = {The 2014TeV gamma-Ray Flare of Mrk 501 Seen with HESS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {870}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {HESS Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/aaf1c4}, pages = {9}, year = {2019}, abstract = {The blazar Mrk 501 (z = 0.034) was observed at very-high-energy (VHE, E greater than or similar to 100 GeV) gamma-ray wavelengths during a bright flare on the night of 2014 June 23-24 (MJD 56832) with the H.E.S.S. phase-II array of Cherenkov telescopes. Data taken that night by H.E.S.S. at large zenith angle reveal an exceptional number of gamma-ray photons at multi-TeV energies, with rapid flux variability and an energy coverage extending significantly up to 20 TeV. This data set is used to constrain Lorentz invariance violation (LIV) using two independent channels: a temporal approach considers the possibility of an energy dependence in the arrival time of gamma-rays, whereas a spectral approach considers the possibility of modifications to the interaction of VHE gamma-rays with extragalactic background light (EBL) photons. The non-detection of energy-dependent time delays and the non-observation of deviations between the measured spectrum and that of a supposed power-law intrinsic spectrum with standard EBL attenuation are used independently to derive strong constraints on the energy scale of LIV (E-QG) in the subluminal scenario for linear and quadratic perturbations in the dispersion relation of photons. For the case of linear perturbations, the 95\% confidence level limits obtained are E-QG,E-1 > 3.6 x 10(17) GeV using the temporal approach and E-QG,E-1 > 2.6 x 10(19) GeV using the spectral approach. For the case of quadratic perturbations, the limits obtained are E-QG,E-2 > 8.5 x 10(10) GeV using the temporal approach and E-QG,E-2 > 7.8 x 10(11) GeV using the spectral approach.}, language = {en} } @article{AbdallaAharonianBenkhalietal.2018, author = {Abdalla, Hassan E. and Aharonian, Felix A. and Benkhali, F. Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arakawa, M. and Arcaro, C. and Armand, C. and Arrieta, M. and Backes, M. and Barnard, M. and Becherini, Y. and Tjus, J. Becker and Berge, D. and Bernhard, S. and Bernlohr, K. and Blackwell, R. and Bottcher, M. and Boisson, C. and Bolmont, J. and Bonnefoy, S. and Bordas, Pol and Bregeon, J. and Brun, F. and Brun, P. and Bryan, M. and Buechele, M. and Bulik, T. and Bylund, T. and Capasso, M. and Caroff, S. and Carosi, A. and Casanova, Sabrina and Cerruti, M. and Chakraborty, N. and Chandra, S. and Chen, A. and Colafrancesco, S. and Condon, B. and Davids, I. D. and Deil, C. and Devin, J. and deWilt, P. and Dirson, L. and Djannati-Atai, A. and Dmytriiev, A. and Donath, A. and Doroshenko, V and Dyks, J. and Egberts, Kathrin and Emery, G. and Ernenwein, J-P and Eschbach, S. and Fegan, S. and Fiasson, A. and Fontaine, G. and Funk, S. and Fuessling, M. and Gabici, S. and Gallant, Y. A. and Gate, F. and Giavitto, G. and Glawion, D. and Glicenstein, J. F. and Gottschall, D. and Grondin, M-H and Hahn, J. and Haupt, M. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hinton, J. A. and Hofmann, W. and Hoischen, Clemens and Holch, T. L. and Holler, M. and Horns, D. and Huber, D. and Iwasaki, H. and Jacholkowska, A. and Jamrozy, M. and Jankowsky, D. and Jankowsky, F. and Jouvin, L. and Jung-Richardt, I and Kastendieck, M. A. and Katarzynski, K. and Katsuragawa, M. and Katz, U. and Kerszberg, D. and Khangulyan, D. and Khelifi, B. and King, J. and Klepser, S. and Kluzniak, W. and Komin, Nu and Kosack, K. and Krakau, S. and Kraus, M. and Kr{\"u}ger, P. P. and Lamanna, G. and Lau, J. and Lefaucheur, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J-P and Leser, Eva and Lohse, T. and Lorentz, M. and Lopez-Coto, R. and Lypova, I and Malyshev, D. and Marandon, V and Marcowith, Alexandre and Mariaud, C. and Marti-Devesa, G. and Marx, R. and Maurin, G. and Meintjes, P. J. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Moulin, Emmanuel and Murach, T. and Nakashima, S. and de Naurois, M. and Ndiyavala, H. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Ohm, S. and Ostrowski, M. and Oya, I and Padovani, M. and Panter, M. and Parsons, R. D. and Perennes, C. and Petrucci, P-O and Peyaud, B. and Piel, Q. and Pita, S. and Poireau, V and Noel, A. Priyana and Prokhorov, D. A. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and Reimer, A. and Reimer, O. and Renaud, M. and Rieger, F. and Rinchiuso, L. and Romoli, C. and Rowell, G. and Rudak, B. and Ruiz-Velasco, E. and Sahakian, V and Saito, S. and Sanchez, D. A. and Santangelo, Andrea and Sasaki, M. and Schlickeiser, R. and Schussler, F. and Schulz, A. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Senniappan, M. and Seyffert, A. S. and Shafi, N. and Shilon, I and Shiningayamwe, K. and Simoni, R. and Sinha, A. and Sol, H. and Spanier, F. and Specovius, A. and Spir-Jacob, M. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Steppa, Constantin Beverly and Takahashi, T. and Tavernet, J-P and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tibaldo, L. and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsirou, M. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and van der Walt, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Wagner, R. M. and White, R. and Wierzcholska, A. and Yang, R. and Zaborov, D. and Zacharias, M. and Zanin, R. and Zdziarski, A. A. and Zech, Alraune and Zefi, F. and Ziegler, A. and Zorn, J. and Zywucka, N. and Kerr, M. and Johnston, S. and Shannon, R. M.}, title = {First ground-based measurement of sub-20 GeV to 100 GeV gamma-Rays from the Vela pulsar with HESS II}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {620}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201732153}, pages = {14}, year = {2018}, abstract = {Aims. We report on the measurement and investigation of pulsed high-energy y-ray emission from the Vela pulsar, PSR B0833-45, based on observations with the largest telescope of H.E.S.S., CT5, in monoscopic mode, and on data obtained with the Fermi-LAT. Methods. Data from 40.3 h of observations carried out with the H.E.S.S. II array from 2013 to 2015 have been used. A dedicated very low-threshold event reconstruction and analysis pipeline was developed to achieve the lowest possible energy threshold. Eight years of Fermi-LAT data were analysed and also used as reference to validate the CT5 telescope response model and analysis methods. Results. A pulsed gamma-ray signal at a significance level of more than 15 sigma is detected from the P2 peak of the Vela pulsar light curve. Of a total of 15 835 events, more than 6000 lie at an energy below 20 GeV, implying a significant overlap between H.E.S.S. II-CT5 and the Fermi-LAT. While the investigation of the pulsar light curve with the LAT confirms characteristics previously known up to 20 GeV in the tens of GeV energy range, CT5 data show a change in the pulse morphology of P2, i.e. an extreme sharpening of its trailing edge, together with the possible onset of a new component at 3.4 sigma significance level. Assuming a power-law model for the P2 spectrum, an excellent agreement is found for the photon indices (Gamma similar or equal to 4.1) obtained with the two telescopes above 10 GeV and an upper bound of 8\% is derived on the relative offset between their energy scales. Using data from both instruments, it is shown however that the spectrum of P2 in the 10-100 GeV has a pronounced curvature; this is a confirmation of the sub-exponential cut-off form found at lower energies with the LAT. This is further supported by weak evidence of an emission above 100 GeV obtained with CT5. In contrast, converging indications are found from both CT5 and LAT data for the emergence of a hard component above 50 GeV in the leading wing (LW2) of P2, which possibly extends beyond 100 GeV. Conclusions. The detection demonstrates the performance and understanding of CT5 from 100 GeV down to the sub-20 GeV domain, i.e. unprecedented low energy for ground-based gamma-ray astronomy. The extreme sharpening of the trailing edge of the P2 peak found in the H.E.S.S. II light curve of the Vela pulsar and the possible extension beyond 100 GeV of at least one of its features, LW2, provide further constraints to models of gamma-Ray emission from pulsars.}, language = {en} } @article{AbdallaAharonianBenkhalietal.2019, author = {Abdalla, Hassan E. and Aharonian, Felix A. and Benkhali, F. Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arakawa, M. and Arcaro, C. and Armand, C. and Arrieta, M. and Backes, M. and Barnard, M. and Becherini, Y. and Tjus, J. Becker and Berge, D. and Bernloehr, K. and Blackwell, R. and Bottcher, M. and Boisson, C. and Bolmont, J. and Bonnefoy, S. and Bordas, Pol and Bregeon, J. and Brun, F. and Brun, P. and Bryan, M. and Buchele, M. and Bulik, T. and Bylund, T. and Capasso, M. and Caroff, S. and Carosi, A. and Casanova, Sabrina and Cerruti, M. and Chakraborty, N. and Chand, T. and Chandra, S. and Chaves, R. C. G. and Chen, A. and Colafrancesco, S. and Condon, B. and Davids, I. D. and Deil, C. and Devin, J. and deWilt, P. and Dirson, L. and Djannati-Atai, A. and Dmytriiev, A. and Donath, A. and Doroshenko, V. and Dyks, J. and Egberts, Kathrin and Emery, G. and Ernenwein, J. -P. and Eschbach, S. and Fegan, S. and Fiasson, A. and Fontaine, G. and Funk, S. and Fuessling, M. and Gabici, S. and Gallant, Y. A. and Gate, F. and Giavitto, G. and Glawion, D. and Glicenstein, J. F. and Gottschall, D. and Grondin, M. -H. and Hahn, J. and Haupt, M. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hinton, James Anthony and Hofmann, W. and Hoischen, Clemens and Holch, Tim Lukas and Holler, M. and Horns, D. and Huber, D. and Iwasaki, H. and Jacholkowska, A. and Jamrozy, M. and Jankowsky, D. and Jankowsky, F. and Jouvin, L. and Jung-Richardt, I. and Kastendieck, M. A. and Katarzynski, K. and Katsuragawa, M. and Katz, U. and Khangulyan, D. and Khelifi, B. and King, J. and Klepser, S. and Kluzniak, W. and Komin, Nu. and Kosack, K. and Kraus, M. and Lamanna, G. and Lau, J. and Lefaucheur, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Leser, Eva and Lohse, T. and Lopez-Coto, R. and Lorentz, M. and Lypova, I. and Malyshev, D. and Marandon, V. and Marcowith, Alexandre and Mariaud, C. and Marti-Devesa, G. and Marx, R. and Maurin, G. and Meintjes, P. J. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Moore, C. and Moulin, Emmanuel and Murach, T. and Nakashima, S. and de Naurois, M. and Ndiyavala, H. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Ohm, S. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Perennes, C. and Petrucci, P. -O. and Peyaud, B. and Piel, Q. and Pita, S. and Poireau, V. and Noel, A. Priyana and Prokhorov, D. A. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and Reimer, A. and Reimer, O. and Renaud, M. and Rieger, F. and Rinchiuso, L. and Romoli, C. and Rowell, G. and Rudak, B. and Ruiz-Velasco, E. and Sahakian, V. and Saito, S. and Sanchez, David M. and Santangelo, Andrea and Sasaki, M. and Schlickeiser, R. and Schussler, F. and Schulz, A. and Schutte, H. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Senniappan, M. and Seyffert, A. S. and Shafi, N. and Shilon, I. and Shiningayamwe, K. and Simoni, R. and Sinha, A. and Sol, H. and Specovius, A. and Spir-Jacob, M. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Steppa, Constantin Beverly and Takahashi, T. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsirou, M. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and van der Walt, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Wagner, R. M. and White, R. and Wierzcholska, A. and Yang, R. and Yoneda, H. and Zaborov, D. and Zacharias, M. and Zanin, R. and Zdziarski, A. A. and Zech, Alraune and Ziegler, A. and Zorn, J. and Zywucka, N.}, title = {H.E.S.S. observations of the flaring gravitationally lensed galaxy PKS 1830-211}, series = {Monthly notices of the Royal Astronomical Society}, volume = {486}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {H E S S Collaboration}, issn = {0035-8711}, doi = {10.1093/mnras/stz1031}, pages = {3886 -- 3891}, year = {2019}, abstract = {PKS 1830-211 is a known macrolensed quasar located at a redshift of z = 2.5. Its highenergy gamma-ray emission has been detected with the Fermi-Large Area Telescope (LAT) instrument and evidence for lensing was obtained by several authors from its high-energy data. Observations of PKS 1830-211 were taken with the High Energy Stereoscopic System (H.E.S.S.) array of Imaging Atmospheric Cherenkov Telescopes in 2014 August, following a flare alert by the Fermi-LAT Collaboration. The H.E.S.S observations were aimed at detecting a gamma-ray flare delayed by 20-27 d from the alert flare, as expected from observations at other wavelengths. More than 12 h of good-quality data were taken with an analysis threshold of similar to 67 GeV. The significance of a potential signal is computed as a function of the date and the average significance over the whole period. Data are compared to simultaneous observations by Fermi-LAT. No photon excess or significant signal is detected. An upper limit on PKS 1830-211 flux above 67 GeV is computed and compared to the extrapolation of the Fermi-LAT flare spectrum.}, language = {en} } @article{AbdallaAharonianBenkhalietal.2019, author = {Abdalla, Hassan E. and Aharonian, Felix A. and Benkhali, F. Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arakawa, M. and Arcaro, C. and Armand, C. and Arrieta, M. and Backes, M. and Barnard, M. and Becherini, Y. and Tjus, J. Becker and Berge, D. and Bernloehr, K. and Blackwell, R. and Bottcher, M. and Boisson, C. and Bolmont, J. and Bonnefoy, S. and Bordas, Pol and Bregeon, J. and Brun, F. and Brun, P. and Bryan, M. and Buechele, M. and Bulik, T. and Bylund, T. and Capasso, M. and Caroff, S. and Carosi, A. and Casanova, Sabrina and Cerruti, M. and Chakraborty, N. and Chand, T. and Chandra, S. and Chaves, R. C. G. and Chen, A. and Colafrancesco, S. and Condon, B. and Davids, I. D. and Deil, C. and Devin, J. and deWilt, P. and Dirson, L. and Djannati-Atai, A. and Dmytriiev, A. and Donath, A. and Doroshenko, V and Dyks, J. and Egberts, Kathrin and Emery, G. and Ernenwein, J-P and Eschbach, S. and Fegan, S. and Fiasson, A. and Fontaine, G. and Funk, S. and Fuessling, M. and Gabici, S. and Gallant, Y. A. and Gate, F. and Giavitto, G. and Glawion, D. and Glicenstein, J. F. and Gottschall, D. and Grondin, M-H and Hahn, J. and Haupt, M. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hinton, James Anthony and Hofmann, W. and Hoischen, Clemens and Holch, Tim Lukas and Holler, M. and Horns, D. and Huber, D. and Iwasaki, H. and Jacholkowska, A. and Jamrozy, M. and Jankowsky, D. and Jankowsky, F. and Jouvin, L. and Jung-Richardt, I and Kastendieck, M. A. and Katarzynski, K. and Katsuragawa, M. and Katz, U. and Kerszberg, D. and Khangulyan, D. and Khelifi, B. and King, J. and Klepser, S. and Kluzniak, W. and Komin, Nu and Kosack, K. and Kraus, M. and Lamanna, G. and Lau, J. and Lefaucheur, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J-P and Leser, Eva and Lohse, T. and Lopez-Coto, R. and Lypova, I and Malyshev, D. and Marandon, V and Marcowith, Alexandre and Mariaud, C. and Marti-Devesa, G. and Marx, R. and Maurin, G. and Meintjes, P. J. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Moore, C. and Moulin, Emmanuel and Murach, T. and Nakashima, S. and de Naurois, M. and Ndiyavala, H. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Ohm, S. and Ostrowski, M. and Oya, I and Panter, M. and Parsons, R. D. and Perennes, C. and Petrucci, P-O and Peyaud, B. and Piel, Q. and Pita, S. and Poireau, V and Noel, A. Priyana and Prokhorov, D. A. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and Reimer, A. and Reimer, O. and Renaud, M. and Rieger, F. and Rinchiuso, L. and Romoli, C. and Rowell, G. and Rudak, B. and Ruiz-Velasco, E. and Sahakian, V and Saito, S. and Sanchez, David M. and Santangelo, Andrea and Sasaki, M. and Schlickeiser, R. and Schussler, F. and Schulz, A. and Schutte, H. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Senniappan, M. and Seyffert, A. S. and Shafi, N. and Shilon, I and Shiningayamwe, K. and Simoni, R. and Sinha, A. and Sol, H. and Specovius, A. and Spir-Jacob, M. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Steppa, Constantin Beverly and Takahashi, T. and Tavernet, J-P and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tibaldo, L. and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsirou, M. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and van der Walt, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Wagner, R. M. and White, R. and Wierzcholska, A. and Yang, R. and Yoneda, H. and Zaborov, D. and Zacharias, M. and Zanin, R. and Zdziarski, A. A. and Zech, Alraune and Zefi, F. and Ziegler, A. and Zorn, J. and Zywucka, N.}, title = {Particle transport within the pulsar wind nebula HESS J1825-137}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {621}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201834335}, pages = {18}, year = {2019}, abstract = {Context. We present a detailed view of the pulsar wind nebula (PWN) HESS J1825-137. We aim to constrain the mechanisms dominating the particle transport within the nebula, accounting for its anomalously large size and spectral characteristics. Aims. The nebula was studied using a deep exposure from over 12 years of H.E.S.S. I operation, together with data from H.E.S.S. II that improve the low-energy sensitivity. Enhanced energy-dependent morphological and spatially resolved spectral analyses probe the very high energy (VHE, E > 0.1 TeV) gamma-ray properties of the nebula. Methods. The nebula emission is revealed to extend out to 1.5 degrees from the pulsar, similar to 1.5 times farther than previously seen, making HESS J1825-137, with an intrinsic diameter of similar to 100 pc, potentially the largest gamma-ray PWN currently known. Characterising the strongly energy-dependent morphology of the nebula enables us to constrain the particle transport mechanisms. A dependence of the nebula extent with energy of R proportional to E alpha with alpha = -0.29 +/- 0.04(stat) +/- 0.05(sys) disfavours a pure diffusion scenario for particle transport within the nebula. The total gamma-ray flux of the nebula above 1 TeV is found to be (1.12 +/- 0.03(stat) +/- 0.25(sys)) +/- 10(-11) cm(-2) s(-1), corresponding to similar to 64\% of the flux of the Crab nebula. Results. HESS J1825-137 is a PWN with clearly energy-dependent morphology at VHE gamma-ray energies. This source is used as a laboratory to investigate particle transport within intermediate-age PWNe. Based on deep observations of this highly spatially extended PWN, we produce a spectral map of the region that provides insights into the spectral variation within the nebula.}, language = {en} } @article{AbdallaAharonianBenkhalietal.2019, author = {Abdalla, Hassan E. and Aharonian, Felix A. and Benkhali, F. Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arakawa, M. and Arcaro, C. and Armand, C. and Backes, M. and Barnard, M. and Becherini, Y. and Berge, D. and Bernloehr, K. and Blackwell, R. and Bottcher, M. and Boisson, C. and Bolmont, J. and Bonnefoy, S. and Bregeon, J. and Brun, F. and Brun, P. and Bryan, M. and Buechele, M. and Bulik, T. and Bylund, T. and Capasso, M. and Caroff, S. and Carosi, A. and Casanova, Sabrina and Cerruti, M. and Chakraborty, N. and Chand, T. and Chandra, S. and Chaves, R. C. G. and Chen, A. and Colafrancesco, S. and Condon, B. and Davids, I. D. and Deil, C. and Devin, J. and deWilt, P. and Dirson, L. and Djannati-Atai, A. and Dmytriiev, A. and Donath, A. and Doroshenko, V and Dyks, J. and Egberts, Kathrin and Emery, G. and Ernenwein, J-P and Eschbach, S. and Feijen, K. and Fegan, S. and Fiasson, A. and Fontaine, G. and Funk, S. and Fuessling, M. and Gabici, S. and Gallant, Y. A. and Gate, F. and Giavitto, G. and Glawion, D. and Glicenstein, J. F. and Gottschall, D. and Grondin, M-H and Hahn, J. and Haupt, M. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hinton, James Anthony and Hofmann, W. and Hoischen, Clemens and Holch, Tim Lukas and Holler, M. and Horns, D. and Huber, D. and Iwasaki, H. and Jacholkowska, A. and Jamrozy, M. and Jankowsky, D. and Jankowsky, F. and Jouvin, L. and Jung-Richardt, I and Kastendieck, M. A. and Katarzynski, K. and Katsuragawa, M. and Katz, U. and Khangulyan, D. and Khelifi, B. and King, J. and Klepser, S. and Kluzniak, W. and Komin, Nu and Kosack, K. and Kostunin, D. and Kraus, M. and Lamanna, G. and Lau, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J-P and Leser, Eva and Lohse, T. and Lopez-Coto, R. and Lypova, I and Malyshev, D. and Marandon, V and Marcowith, Alexandre and Mariaud, C. and Marti-Devesa, G. and Marx, R. and Maurin, G. and Maxted, N. and Meintjes, P. J. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Moore, C. and Moulin, Emmanuel and Murach, T. and Nakashima, S. and de Naurois, M. and Ndiyavala, H. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Ohm, S. and Wilhelmi, E. de Ona and Ostrowski, M. and Oya, I and Panter, M. and Parsons, R. D. and Perennes, C. and Petrucci, P-O and Peyaud, B. and Piel, Q. and Pita, S. and Poireau, V and Noel, A. Priyana and Prokhorov, D. A. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and Reimer, A. and Reimer, O. and Renaud, M. and Rieger, F. and Rinchiuso, L. and Romoli, C. and Rowell, G. and Rudak, B. and Ruiz-Velasco, E. and Sahakian, V and Saito, S. and Sanchez, David M. and Santangelo, Andrea and Sasaki, M. and Schlickeiser, R. and Schussler, F. and Schulz, A. and Schutte, H. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Senniappan, M. and Seyffert, A. S. and Shafi, N. and Shilon, I and Shiningayamwe, K. and Simoni, R. and Sinha, A. and Sol, H. and Specovius, A. and Spir-Jacob, M. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Steppa, Constantin Beverly and Takahashi, T. and Tavernet, J-P and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tibaldo, Luigi and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsirou, M. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and van der Walt, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and White, R. and Wierzcholska, A. and Yang, R. and Yoneda, H. and Zaborov, D. and Zacharias, M. and Zanin, R. and Zdziarski, A. A. and Zech, Alraune and Ziegler, A. and Zorn, J. and Zywucka, N.}, title = {H.E.S.S. and Suzaku observations of the Vela X pulsar wind nebula}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {627}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935458}, pages = {16}, year = {2019}, abstract = {Context. Pulsar wind nebulae (PWNe) represent the most prominent population of Galactic very-high-energy gamma-ray sources and are thought to be an efficient source of leptonic cosmic rays. Vela X is a nearby middle-aged PWN, which shows bright X-ray and TeV gamma-ray emission towards an elongated structure called the cocoon. Aims. Since TeV emission is likely inverse-Compton emission of electrons, predominantly from interactions with the cosmic microwave background, while X-ray emission is synchrotron radiation of the same electrons, we aim to derive the properties of the relativistic particles and of magnetic fields with minimal modelling. Methods. We used data from the Suzaku XIS to derive the spectra from three compact regions in Vela X covering distances from 0.3 to 4 pc from the pulsar along the cocoon. We obtained gamma-ray spectra of the same regions from H.E.S.S. observations and fitted a radiative model to the multi-wavelength spectra. Results. The TeV electron spectra and magnetic field strengths are consistent within the uncertainties for the three regions, with energy densities of the order 10(-12) erg cm(-3). The data indicate the presence of a cutoff in the electron spectrum at energies of similar to 100 TeV and a magnetic field strength of similar to 6 mu G. Constraints on the presence of turbulent magnetic fields are weak. Conclusions. The pressure of TeV electrons and magnetic fields in the cocoon is dynamically negligible, requiring the presence of another dominant pressure component to balance the pulsar wind at the termination shock. Sub-TeV electrons cannot completely account for the missing pressure, which may be provided either by relativistic ions or from mixing of the ejecta with the pulsar wind. The electron spectra are consistent with expectations from transport scenarios dominated either by advection via the reverse shock or by diffusion, but for the latter the role of radiative losses near the termination shock needs to be further investigated in the light of the measured cutoff energies. Constraints on turbulent magnetic fields and the shape of the electron cutoff can be improved by spectral measurements in the energy range greater than or similar to 10 keV.}, language = {en} } @article{AbdallaCollaborationAbramowskietal.2018, author = {Abdalla, Hassan E. and Collaboration, H. E. S. S. and Abramowski, A. and Aharonian, Felix A. and Benkhali, F. Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arakawa, M. and Armand, C. and Arrieta, M. and Backes, M. and Balzer, A. and Barnard, M. and Becherini, Y. and Tjus, J. Becker and Berge, D. and Bernhard, S. and Bernloehr, K. and Blackwell, R. and Bottcher, M. and Boisson, C. and Bolmont, J. and Bonnefoy, S. and Bordas, Pol and Bregeon, J. and Brun, F. and Brun, P. and Bryan, M. and Buechele, M. and Bulik, T. and Capasso, M. and Caroff, S. and Carosi, A. and Casanova, Sabrina and Cerruti, M. and Chakraborty, N. and Chaves, R. C. G. and Chen, A. and Chevalier, J. and Colafrancesco, S. and Condon, B. and Conrad, J. and Davids, I. D. and Decock, J. and Deil, C. and Devin, J. and deWilt, P. and Dirson, L. and Djannati-Atai, A. and Donath, A. and Dyks, J. and Edwards, T. and Egberts, Kathrin and Emery, G. and Ernenwein, J. -P. and Eschbach, S. and Farnier, C. and Fegan, S. and Fernandes, M. V. and Fiasson, A. and Fontaine, G. and Funk, S. and Fuessling, M. and Gabici, S. and Gallant, Y. A. and Garrigoux, T. and Gate, F. and Giavitto, G. and Glawion, D. and Glicenstein, J. F. and Gottschall, D. and Grondin, M. -H. and Hahn, J. and Haupt, M. and Hawkes, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hinton, J. A. and Hofmann, W. and Hoischen, Clemens and Holch, T. L. and Holler, M. and Horns, D. and Ivascenko, A. and Iwasaki, H. and Jacholkowska, A. and Jamrozy, M. and Jankowsky, D. and Jankowsky, F. and Jingo, M. and Jouvin, L. and Jung-Richardt, I. and Kastendieck, M. A. and Katarzynski, K. and Katsuragawa, M. and Katz, U. and Kerszberg, D. and Khangulyan, D. and Khelifi, B. and King, J. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Komin, Nu. and Kosack, K. and Krakau, S. and Kraus, M. and Kruger, P. P. and Laffon, H. and Lamanna, G. and Lau, J. and Lefaucheur, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Leser, Eva and Lohse, T. and Lorentz, M. and Liu, R. and Lopez-Coto, R. and Lypova, I. and Malyshev, D. and Marandon, V. and Marcowith, Alexandre and Mariaud, C. and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and Meintjes, P. J. and Meyer, M. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Mora, K. and Moulin, Emmanuel and Murach, T. and Nakashima, S. and de Naurois, M. and Ndiyavala, H. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Ohm, S. and Ostrowski, M. and Oya, I. and Padovani, M. and Panter, M. and Parsons, R. D. and Pekeur, N. W. and Pelletier, G. and Perennes, C. and Petrucci, P. -O. and Peyaud, B. and Piel, Q. and Pita, S. and Poireau, V. and Prokhorov, D. A. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Rinchiuso, L. and Romoli, C. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Saito, S. and Sanchez, D. A. and Santangelo, Andrea and Sasaki, M. and Schlickeiser, R. and Schussler, F. and Schulz, A. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Seyffert, A. S. and Shafi, N. and Shilon, I. and Shiningayamwe, K. and Simoni, R. and Sol, H. and Spanier, F. and Spir-Jacob, M. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Steppa, Constantin Beverly and Sushch, I. and Takahashi, T. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tibaldo, L. and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsirou, M. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and van der Walt, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Viana, A. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, R. and Zaborov, D. and Zacharias, M. and Zanin, R. and Zdziarski, A. A. and Zech, Alraune and Zefi, F. and Ziegler, A. and Zorn, J. and Zywucka, N.}, title = {Detection of variable VHE gamma-ray emission from the extra-galactic gamma-ray binary LMC P3}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {610}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201732426}, pages = {5}, year = {2018}, abstract = {Context. Recently, the high-energy (HE, 0.1-100 GeV) gamma-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic gamma-ray binary. Aims. This work aims at the detection of very-high-energy (VHE, >100 GeV) gamma-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods. LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period of the system in order to test for variability of the emission. Results. VHE gamma-ray emission is detected with a statistical significance of 6.4 sigma. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the 1-10 TeV energy range is (1.4 +/- 0.2) x 10(35) erg s(-1). A luminosity of (5 +/- 1) x 10(35) erg s(-1) is reached during 20\% of the orbit. HE and VHE gamma-ray emissions are anti-correlated. LMC P3 is the most luminous gamma-ray binary known so far.}, language = {en} } @article{AbdelilahSeyfriedIruelaArispePenningeretal.2022, author = {Abdelilah-Seyfried, Salim and Iruela-Arispe, M. Luisa and Penninger, Josef M. and Tournier-Lasserve, Elisabeth and Vikkula, Miikka and Cleaver, Ondine}, title = {Recalibrating vascular malformations and mechanotransduction by pharmacological intervention}, series = {Journal of clinical investigation}, volume = {132}, journal = {Journal of clinical investigation}, number = {8}, publisher = {American Society for Clinical Investigation}, address = {Ann Arbor}, issn = {0021-9738}, doi = {10.1172/JCI160227}, pages = {4}, year = {2022}, language = {en} } @article{AbdelwahabLandwehr2022, author = {Abdelwahab, Ahmed and Landwehr, Niels}, title = {Deep Distributional Sequence Embeddings Based on a Wasserstein Loss}, series = {Neural processing letters}, journal = {Neural processing letters}, publisher = {Springer}, address = {Dordrecht}, issn = {1370-4621}, doi = {10.1007/s11063-022-10784-y}, pages = {21}, year = {2022}, abstract = {Deep metric learning employs deep neural networks to embed instances into a metric space such that distances between instances of the same class are small and distances between instances from different classes are large. In most existing deep metric learning techniques, the embedding of an instance is given by a feature vector produced by a deep neural network and Euclidean distance or cosine similarity defines distances between these vectors. This paper studies deep distributional embeddings of sequences, where the embedding of a sequence is given by the distribution of learned deep features across the sequence. The motivation for this is to better capture statistical information about the distribution of patterns within the sequence in the embedding. When embeddings are distributions rather than vectors, measuring distances between embeddings involves comparing their respective distributions. The paper therefore proposes a distance metric based on Wasserstein distances between the distributions and a corresponding loss function for metric learning, which leads to a novel end-to-end trainable embedding model. We empirically observe that distributional embeddings outperform standard vector embeddings and that training with the proposed Wasserstein metric outperforms training with other distance functions.}, language = {en} } @article{AbdirashidLenhard2020, author = {Abdirashid, Hashim and Lenhard, Michael}, title = {Say it with double flowers}, series = {Journal of experimental botany}, volume = {71}, journal = {Journal of experimental botany}, number = {9}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/eraa109}, pages = {2469 -- 2471}, year = {2020}, abstract = {Every year, lovers world-wide rely on mutants to show their feelings on Valentine's Day. This is because many of the most popular ornamental flowering plants have been selected to form extra petals at the expense of reproductive organs to enhance their attractiveness and aesthetic value to humans. This so-called 'double flower' (DF) phenotype, first described more than 2000 years ago (Meyerowitz et al., 1989) is present, for example, in many modern roses, carnations, peonies, and camellias. Gattolin et al. (2020) now identify a unifying explanation for the molecular basis of many of these DF cultivars.}, language = {en} } @article{AbdissaHeydenreichMidiwoetal.2014, author = {Abdissa, Negera and Heydenreich, Matthias and Midiwo, Jacob O. and Ndakala, Albert and Majer, Zsuzsanna and Neumann, Beate and Stammler, Hans-Georg and Sewald, Norbert and Yenesew, Abiy}, title = {A xanthone and a phenylanthraquinone from the roots of Bulbine frutescens, and the revision of six seco-anthraquinones into xanthones}, series = {Phytochemistry letters}, volume = {9}, journal = {Phytochemistry letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1874-3900}, doi = {10.1016/j.phytol.2014.04.004}, pages = {67 -- 73}, year = {2014}, abstract = {Phytochemical investigation of the dichloromethane/methanol (1:1) extract of the roots of Bulbine frutescens led to the isolation of a new xanthone, 8-hydroxy-6-methylxanthone-1-carboxylic acid (1) and a new phenylanthraquinone, 6',8-O-dimethylknipholone (2) along with six known compounds. The structures were elucidated on the basis of NMR and MS spectral data analyses. The structure of compound 1 was confirmed through X-ray crystallography which was then used as a reference to propose the revision of the structures of six seco-anthraquinones into xanthones. The isolated compounds were evaluated for cytotoxicity against human cervix carcinoma KB-3-1 cells with the phenylanthraquinone knipholone being the most active (IC50 = 0.43 mu M). Two semi-synthetic knipholone derivatives, knipholone Mannich base and knipholone-1,3-oxazine, were prepared and tested for cytotoxic activity; both showed moderate activities (IC50 value of 1.89 and 2.50 mu M, respectively). (C) 2014 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.}, language = {en} } @article{AbdissaInduliAkalaetal.2013, author = {Abdissa, Negera and Induli, Martha and Akala, Hoseah M. and Heydenreich, Matthias and Midiwo, Jacob O. and Ndakala, Albert and Yenesew, Abiy}, title = {Knipholone cyclooxanthrone and an anthraquinone dimer with antiplasmodial activities from the roots of Kniphofia foliosa}, series = {Phytochemistry letters}, volume = {6}, journal = {Phytochemistry letters}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1874-3900}, doi = {10.1016/j.phytol.2013.02.005}, pages = {241 -- 245}, year = {2013}, abstract = {A new phenylanthrone, named knipholone cyclooxanthrone and a dimeric anthraquinone, 10-methoxy-10,7'-(chrysophanol anthrone)-chrysophanol were isolated from the roots of Kniphofia foliosa together with the rare naphthalene glycoside, dianellin. The structures were determined by NMR and mass spectroscopic techniques. The compounds showed antiplasmodial activities against the chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum with 10-methoxy-10,7'-(chrysophanol anthrone)-chrysophanol being the most active with IC50 values of 1.17 +/- 0.12 and 4.07 +/- 1.54 mu g/ml, respectively.}, language = {en} } @article{AbdoAckermannAjelloetal.2011, author = {Abdo, A. A. and Ackermann, Margit and Ajello, M. and Allafort, A. J. and Baldini, L. and Ballet, J. and Barbiellini, G. and Baring, M. G. and Bastieri, D. and Bechtol, K. C. and Bellazzini, R. and Berenji, B. and Blandford, R. D. and Bloom, E. D. and Bonamente, E. and Borgland, A. W. and Bouvier, A. and Brandt, T. J. and Bregeon, Johan and Brez, A. and Brigida, M. and Bruel, P. and Buehler, R. and Buson, S. and Caliandro, G. A. and Cameron, R. A. and Cannon, A. and Caraveo, P. A. and Carrigan, Svenja and Casandjian, J. M. and Cavazzuti, E. and Cecchi, C. and Celik, O. and Charles, E. and Chekhtman, A. and Cheung, C. C. and Chiang, J. and Ciprini, S. and Claus, R. and Cohen-Tanugi, J. and Conrad, Jan and Cutini, S. and Dermer, C. D. and de Palma, F. and do Couto e Silva, E. and Drell, P. S. and Dubois, R. and Dumora, D. and Favuzzi, C. and Fegan, S. J. and Ferrara, E. C. and Focke, W. B. and Fortin, P. and Frailis, M. and Fuhrmann, L. and Fukazawa, Y. and Funk, S. and Fusco, P. and Gargano, F. and Gasparrini, D. and Gehrels, N. and Germani, S. and Giglietto, N. and Giordano, F. and Giroletti, M. and Glanzman, T. and Godfrey, G. and Grenier, I. A. and Guillemot, L. and Guiriec, S. and Hayashida, M. and Hays, E. and Horan, D. and Hughes, R. E. and Johannesson, G. and Johnson, A. S. and Johnson, W. N. and Kadler, M. and Kamae, T. and Katagiri, H. and Kataoka, J. and Knoedlseder, J. and Kuss, M. and Lande, J. and Latronico, L. and Lee, S. -H. and Lemoine-Goumard, M. and Longo, F. and Loparco, F. and Lott, B. and Lovellette, M. N. and Lubrano, P. and Madejski, G. M. and Makeev, A. and Max-Moerbeck, W. and Mazziotta, Mario Nicola and McEnery, J. E. and Mehault, J. and Michelson, P. F. and Mitthumsiri, W. and Mizuno, T. and Moiseev, A. A. and Monte, C. and Monzani, M. E. and Morselli, A. and Moskalenko, I. V. and Murgia, S. and Naumann-Godo, M. and Nishino, S. and Nolan, P. L. and Norris, J. P. and Nuss, E. and Ohsugi, T. and Okumura, A. and Omodei, N. and Orlando, E. and Ormes, J. F. and Paneque, D. and Panetta, J. H. and Parent, D. and Pavlidou, V. and Pearson, T. J. and Pelassa, V. and Pepe, M. and Pesce-Rollins, M. and Piron, F. and Porter, T. A. and Raino, S. and Rando, R. and Razzano, M. and Readhead, A. and Reimer, A. and Reimer, O. and Richards, J. L. and Ripken, J. and Ritz, S. and Roth, M. and Sadrozinski, H. F. -W. and Sanchez, D. and Sander, A. and Scargle, J. D. and Sgro, C. and Siskind, E. J. and Smith, P. D. and Spandre, G. and Spinelli, P. and Stawarz, L. and Stevenson, M. and Strickman, M. S. and Sokolovsky, K. V. and Suson, D. J. and Takahashi, H. and Takahashi, T. and Tanaka, T. and Thayer, J. B. and Thayer, J. G. and Thompson, D. J. and Tibaldo, L. and Torres, F. and Tosti, G. and Tramacere, A. and Uchiyama, Y. and Usher, T. L. and Vandenbroucke, J. and Vasileiou, V. and Vilchez, N. and Vitale, V. and Waite, A. P. and Wang, P. and Wehrle, A. E. and Winer, B. L. and Wood, K. S. and Yang, Z. and Ylinen, T. and Zensus, J. A. and Ziegler, M. and Aleksic, J. and Antonelli, L. A. and Antoranz, P. and Backes, Michael and Barrio, J. A. and Gonzalez, J. Becerra and Bednarek, W. and Berdyugin, A. and Berger, K. and Bernardini, E. and Biland, A. and Blanch Bigas, O. and Bock, R. K. and Boller, A. and Bonnoli, G. and Bordas, Pol and Tridon, D. Borla and Bosch-Ramon, Valentin and Bose, D. and Braun, I. and Bretz, T. and Camara, M. and Carmona, E. and Carosi, A. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Dazzi, F. and de Angelis, A. and del Pozo, E. De Cea and De Lotto, B. and De Maria, M. and De Sabata, F. and Mendez, C. Delgado and Ortega, A. Diago and Doert, M. and Dominguez, A. and Prester, Dijana Dominis and Dorner, D. and Doro, M. and Elsaesser, D. and Ferenc, D. and Fonseca, M. V. and Font, L. and Lopen, R. J. Garcia and Garczarczyk, M. and Gaug, M. and Giavitto, G. and Godinovi, N. and Hadasch, D. and Herrero, A. and Hildebrand, D. and Hoehne-Moench, D. and Hose, J. and Hrupec, D. and Jogler, T. and Klepser, S. and Kraehenbuehl, T. and Kranich, D. and Krause, J. and La Barbera, A. and Leonardo, E. and Lindfors, E. and Lombardi, S. and Lopez, M. and Lorenz, E. and Majumdar, P. and Makariev, E. and Maneva, G. and Mankuzhiyil, N. and Mannheim, K. and Maraschi, L. and Mariotti, M. and Martinez, M. and Mazin, D. and Meucci, M. and Miranda, J. M. and Mirzoyan, R. and Miyamoto, H. and Moldon, J. and Moralejo, A. and Nieto, D. and Nilsson, K. and Orito, R. and Oya, I. and Paoletti, R. and Paredes, J. M. and Partini, S. and Pasanen, M. and Pauss, F. and Pegna, R. G. and Perez-Torres, M. A. and Persic, M. and Peruzzo, J. and Pochon, J. and Moroni, P. G. Prada and Prada, F. and Prandini, E. and Puchades, N. and Puljak, I. and Reichardt, T. and Reinthal, R. and Rhode, W. and Ribo, M. and Rico, J. and Rissi, M. and Ruegamer, S. and Saggion, A. and Saito, K. and Saito, T. Y. and Salvati, M. and Sanchez-Conde, M. and Satalecka, K. and Scalzotto, V. and Scapin, V. and Schultz, C. and Schweizer, T. and Shayduk, M. and Shore, S. N. and Sierpowska-Bartosik, A. and Sillanpaa, A. and Sitarek, J. and Sobczynska, D. and Spanier, F. and Spiro, S. and Stamerra, A. and Steinke, B. and Storz, J. and Strah, N. and Struebig, J. C. and Suric, T. and Takalo, L. O. and Tavecchio, F. and Temnikov, P. and Terzic, T. and Tescaro, D. and Teshima, M. and Vankov, H. and Wagner, R. M. and Weitzel, Q. and Zabalza, V. and Zandanel, F. and Zanin, R. and Acciari, V. A. and Arlen, T. and Aune, T. and Benbow, W. and Boltuch, D. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Cannon, A. and Cesarini, A. and Ciupik, L. and Cui, W. and Dickherber, R. and Errando, M. and Falcone, A. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Godambe, S. and Grube, J. and Guenette, R. and Gyuk, G. and Hanna, D. and Holder, J. and Huang, D. and Hui, C. M. and Humensky, T. B. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Kieda, D. and Konopelko, A. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and McCutcheon, M. and Moriarty, P. and Mukherjee, R. and Ong, R. and Otte, N. and Pandel, D. and Perkins, J. S. and Pichel, A. and Pohl, M. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Rovero, A. C. and Schroedter, M. and Sembroski, G. H. and Senturk, G. D. and Steele, D. and Swordy, S. P. and Tesic, G. and Theiling, M. and Thibadeau, S. and Varlotta, A. and Vincent, S. and Wakely, S. P. and Ward, J. E. and Weekes, T. C. and Weinstein, A. and Weisgarber, T. and Williams, D. A. and Wood, M. and Zitzer, B. and Villata, M. and Raiteri, C. M. and Aller, H. D. and Aller, M. F. and Arkharov, A. A. and Blinov, D. A. and Calcidese, P. and Chen, W. P. and Efimova, N. V. and Kimeridze, G. and Konstantinova, T. S. and Kopatskaya, E. N. and Koptelova, E. and Kurtanidze, O. M. and Kurtanidze, S. O. and Lahteenmaki, A. and Larionov, V. M. and Larionova, E. G. and Larionova, L. V. and Ligustri, R. and Morozova, D. A. and Nikolashvili, M. G. and Sigua, L. A. and Troitsky, I. S. and Angelakis, E. and Capalbi, M. and Carraminana, A. and Carrasco, L. and Cassaro, P. and de la Fuente, E. and Gurwell, M. A. and Kovalev, Y. Y. and Kovalev, Yu. A. and Krichbaum, T. P. and Krimm, H. A. and Leto, Paolo and Lister, M. L. and Maccaferri, G. and Moody, J. W. and Mori, Y. and Nestoras, I. and Orlati, A. and Pagani, C. and Pace, C. and Pearson, R. and Perri, M. and Piner, B. G. and Pushkarev, A. B. and Ros, E. and Sadun, A. C. and Sakamoto, T. and Tornikoski, M. and Yatsu, Y. and Zook, A.}, title = {Insights into the high-energy gamma-Ray emission of markarian 501 fromextensive multifrequency observations in the fermi era}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {727}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {Fermi-LAT Collaboration, MAGIC Collaboration, VERITAS Collaboration}, issn = {0004-637X}, doi = {10.1088/0004-637X/727/2/129}, pages = {26}, year = {2011}, abstract = {We report on the gamma-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) gamma-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 +/- 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 +/- 0.14, and the softest one is 2.51 +/- 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size less than or similar to 0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (similar or equal to 10(44) erg s(-1)) constitutes only a small fraction (similar to 10(-3)) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude.}, language = {en} } @article{AbdoAckermannAjelloetal.2011, author = {Abdo, A. A. and Ackermann, Margit and Ajello, M. and Allafort, A. J. and Baldini, L. and Ballet, J. and Barbiellini, G. and Baring, M. G. and Bastieri, D. and Bellazzini, R. and Berenji, B. and Blandford, R. D. and Bloom, E. D. and Bonamente, E. and Borgland, A. W. and Bouvier, A. and Brandt, T. J. and Bregeon, Johan and Brigida, M. and Bruel, P. and Buehler, R. and Buson, S. and Caliandro, G. A. and Cameron, R. A. and Caraveo, P. A. and Casandjian, J. M. and Cecchi, C. and Chaty, S. and Chekhtman, A. and Cheung, C. C. and Chiang, J. and Cillis, A. N. and Ciprini, S. and Claus, R. and Cohen-Tanugi, J. and Conrad, Jan and Corbel, S. and Cutini, S. and de Angelis, A. and de Palma, F. and Dermer, C. D. and Digel, S. W. and do Couto e Silva, E. and Drell, P. S. and Drlica-Wagner, A. and Dubois, R. and Dumora, D. and Favuzzi, C. and Ferrara, E. C. and Fortin, P. and Frailis, M. and Fukazawa, Y. and Fukui, Y. and Funk, S. and Fusco, P. and Gargano, F. and Gasparrini, D. and Gehrels, N. and Germani, S. and Giglietto, N. and Giordano, F. and Giroletti, M. and Glanzman, T. and Godfrey, G. and Grenier, I. A. and Grondin, M. -H. and Guiriec, S. and Hadasch, D. and Hanabata, Y. and Harding, A. K. and Hayashida, M. and Hayashi, K. and Hays, E. and Horan, D. and Jackson, M. S. and Johannesson, G. and Johnson, A. S. and Kamae, T. and Katagiri, H. and Kataoka, J. and Kerr, M. and Knoedlseder, J. and Kuss, M. and Lande, J. and Latronico, L. and Lee, S. -H. and Lemoine-Goumard, M. and Longo, F. and Loparco, F. and Lovellette, M. N. and Lubrano, P. and Madejski, G. M. and Makeev, A. and Mazziotta, Mario Nicola and McEnery, J. E. and Michelson, P. F. and Mignani, R. P. and Mitthumsiri, W. and Mizuno, T. and Moiseev, A. A. and Monte, C. and Monzani, M. E. and Morselli, A. and Moskalenko, I. V. and Murgia, S. and Naumann-Godo, M. and Nolan, P. L. and Norris, J. P. and Nuss, E. and Ohsugi, T. and Okumura, A. and Orlando, E. and Ormes, J. F. and Paneque, D. and Parent, D. and Pelassa, V. and Pesce-Rollins, M. and Pierbattista, M. and Piron, F. and Pohl, Martin and Porter, T. A. and Raino, S. and Rando, R. and Razzano, M. and Reimer, O. and Reposeur, T. and Ritz, S. and Romani, R. W. and Roth, M. and Sadrozinski, H. F. -W. and Parkinson, P. M. Saz and Sgro, C. and Smith, D. A. and Smith, P. D. and Spandre, G. and Spinelli, P. and Strickman, M. S. and Tajima, H. and Takahashi, H. and Takahashi, T. and Tanaka, T. and Thayer, J. G. and Thayer, J. B. and Thompson, D. J. and Tibaldo, L. and Tibolla, O. and Torres, D. F. and Tosti, G. and Tramacere, A. and Troja, E. and Uchiyama, Y. and Vandenbroucke, J. and Vasileiou, V. and Vianello, G. and Vilchez, N. and Vitale, V. and Waite, A. P. and Wang, P. and Winer, B. L. and Wood, K. S. and Yamamoto, H. and Yamazaki, R. and Yang, Z. and Ziegler, M.}, title = {Observations of the young supernova remnant RX J1713.7-3946 with the fermi large area telescope}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {734}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/734/1/28}, pages = {9}, year = {2011}, abstract = {We present observations of the young supernova remnant (SNR) RX J1713.7-3946 with the Fermi Large Area Telescope (LAT). We clearly detect a source positionally coincident with the SNR. The source is extended with a best-fit extension of 0 degrees.55 +/- 0 degrees.04 matching the size of the non-thermal X-ray and TeV gamma-ray emission from the remnant. The positional coincidence and the matching extended emission allow us to identify the LAT source with SNR RX J1713.7-3946. The spectrum of the source can be described by a very hard power law with a photon index of Gamma = 1.5 +/- 0.1 that coincides in normalization with the steeper H. E. S. S.-detected gamma-ray spectrum at higher energies. The broadband gamma-ray emission is consistent with a leptonic origin as the dominant mechanism for the gamma-ray emission.}, language = {en} } @article{AbdolvahabMetzlerEjtehadi2011, author = {Abdolvahab, Rouhollah Haji and Metzler, Ralf and Ejtehadi, Mohammad Reza}, title = {First passage time distribution of chaperone driven polymer translocation through a nanopore homopolymer and heteropolymer cases}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {135}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {24}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.3669427}, pages = {8}, year = {2011}, abstract = {Combining the advection-diffusion equation approach with Monte Carlo simulations we study chaperone driven polymer translocation of a stiff polymer through a nanopore. We demonstrate that the probability density function of first passage times across the pore depends solely on the Peclet number, a dimensionless parameter comparing drift strength and diffusivity. Moreover it is shown that the characteristic exponent in the power-law dependence of the translocation time on the chain length, a function of the chaperone-polymer binding energy, the chaperone concentration, and the chain length, is also effectively determined by the Peclet number. We investigate the effect of the chaperone size on the translocation process. In particular, for large chaperone size, the translocation progress and the mean waiting time as function of the reaction coordinate exhibit pronounced sawtooth-shapes. The effects of a heterogeneous polymer sequence on the translocation dynamics is studied in terms of the translocation velocity, the probability distribution for the translocation progress, and the monomer waiting times. (C) 2011 American Institute of Physics.}, language = {en} } @article{AbdouAlonsoBrunetal.2022, author = {Abdou, Nicole and Alonso, Bruno and Brun, Nicolas and Landois, Perine and Taubert, Andreas and Hesemann, Peter and Mehdi, Ahmad}, title = {Ionic guest in ionic host}, series = {Materials chemistry frontiers}, volume = {6}, journal = {Materials chemistry frontiers}, number = {7}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2052-1537}, doi = {10.1039/d2qm00021k}, pages = {939 -- 947}, year = {2022}, abstract = {Ionosilica ionogels, i.e. composites consisting of an ionic liquid (IL) guest confined in an ionosilica host matrix, were synthesized via a non-hydrolytic sol-gel procedure from a tris-trialcoxysilylated amine precursor using the IL [BMIM]NTf2 as solvent. Various ionosilica ionogels were prepared starting from variable volumes of IL in the presence of formic acid. The resulting brittle and nearly colourless monoliths are composed of different amounts of IL guests confined in an ionosilica host as evidenced via thermogravimetric analysis, FT-IR, and C-13 CP-MAS solid-state NMR spectroscopy. In the following, we focused on confinement effects between the ionic host and guest. Special host-guest interactions between the IL guest and the ionosilica host were evidenced by H-1 solid-state NMR, Raman spectroscopy, and broadband dielectric spectroscopy (BDS) measurements. The three techniques indicate a strongly reduced ion mobility in the ionosilica ionogel composites containing small volume fractions of confined IL, compared to conventional silica-based ionogels. We conclude that the ionic ionosilica host stabilizes an IL layer on the host surface; this then results in a strongly reduced ion mobility compared to conventional silica hosts. The ion mobility progressively increases for systems containing higher volume fractions of IL and finally reaches the values observed in conventional silica based ionogels. These results therefore point towards strong interactions and confinement effects between the ionic host and the ionic guest on the ionosilica surface. Furthermore, this approach allows confining high volume fractions of IL into self-standing monoliths while preserving high ionic conductivity. These effects may be of interest in domains where IL phases must be anchored on solid supports to avoid leaching or IL spilling, e.g., in catalysis, in gas separation/sequestration devices or for the elaboration of solid electrolytes for (lithium-ion) batteries and supercapacitors.}, language = {en} } @article{AbdoulCarimeBaldIllenbergeretal.2018, author = {Abdoul-Carime, Hassan and Bald, Ilko and Illenberger, Eugen and Kopyra, Janina}, title = {Selective Synthesis of Ethylene and Acetylene from Dimethyl Sulfide Cold Films Controlled by Slow Electrons}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {122}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {42}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.8b07377}, pages = {24137 -- 24142}, year = {2018}, abstract = {One of the major challenges in chemical synthesis is to trigger and control a specific reaction route leading to a specific final product, while side products are avoided. Methodologies based on resonant processes at the molecular level, for example, photochemistry, offer the possibility of inducing selective reactions. Electrons at energies below the molecular ionization potential (<10 eV) are known to dissociate molecules via resonant processes with higher cross sections and specificity than photons. Here we show that even subexcitation electrons with energies as low as 1 eV produce ethylene and acetylene from dimethyl sulfide in competing reactions. However, the production of ethylene can specifically be targeted by controlling the energy of electrons (similar to 3 to 4 eV). Finally, pure ethylene is selectively desorbed by heating the substrate from 90 to 105 K. Beyond the synthesis of these versatile hydrocarbons for various industrial applications from a biogenic sulfur compound, our findings demonstrate the feasibility of electron induced selective chemistry applicable on the nanoscale.}, language = {en} } @article{AbdrakhmatovWalkerCampbelletal.2016, author = {Abdrakhmatov, Kanatbek E. and Walker, R. T. and Campbell, G. E. and Carr, A. S. and Elliott, A. and Hillemann, Christian and Hollingsworth, J. and Landgraf, Angela and Mackenzie, D. and Mukambayev, A. and Rizza, M. and Sloan, R. A.}, title = {Multisegment rupture in the 11 July 1889 Chilik earthquake (M-w 8.0-8.3), Kazakh Tien Shan, interpreted from remote sensing, field survey, and paleoseismic trenching}, series = {Journal of geophysical research : Solid earth}, volume = {121}, journal = {Journal of geophysical research : Solid earth}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1002/2015JB012763}, pages = {4615 -- 4640}, year = {2016}, abstract = {The 11 July 1889 Chilik earthquake (M-w 8.0-8.3) forms part of a remarkable sequence of large earthquakes in the late nineteenth and early twentieth centuries in the northern Tien Shan. Despite its importance, the source of the 1889 earthquake remains unknown, though the macroseismic epicenter is sited in the Chilik valley, similar to 100 km southeast of Almaty, Kazakhstan (similar to 2 million population). Several short fault segments that have been inferred to have ruptured in 1889 are too short on their own to account for the estimated magnitude. In this paper we perform detailed surveying and trenching of the similar to 30 km long Saty fault, one of the previously inferred sources, and find that it was formed in a single earthquake within the last 700 years, involving surface slip of up to 10 m. The scarp-forming event, likely to be the 1889 earthquake, was the only surface-rupturing event for at least 5000 years and potentially for much longer. From satellite imagery we extend the mapped length of fresh scarps within the 1889 epicentral zone to a total of similar to 175 km, which we also suggest as candidate ruptures from the 1889 earthquake. The 175 km of rupture involves conjugate oblique left-lateral and right-lateral slip on three separate faults, with step overs of several kilometers between them. All three faults were essentially invisible in the Holocene geomorphology prior to the last slip. The recurrence interval between large earthquakes on any of these faults, and presumably on other faults of the Tien Shan, may be longer than the timescale over which the landscape is reset, providing a challenge for delineating sources of future hazard.}, language = {en} } @article{AbebeHakiSchweigertetal.2019, author = {Abebe, Zeweter and Haki, Gulelat Desse and Schweigert, Florian J. and Henkel, Ina M. and Baye, Kaleab}, title = {Low breastmilk vitamin A concentration is prevalent in rural Ethiopia}, series = {European journal of clinical nutrition}, volume = {73}, journal = {European journal of clinical nutrition}, number = {8}, publisher = {Nature Publ. Group}, address = {London}, issn = {0954-3007}, doi = {10.1038/s41430-018-0334-4}, pages = {1110 -- 1116}, year = {2019}, abstract = {Background There is scant information on the breastmilk vitamin A (BMVA) concentration of lactating women in developing countries, partly due to lack of methods applicable in-field. Objective To assess BMVA concentrations of samples collected from lactating women of children aged 6-23 months, in Mecha district, Ethiopia. Subjects/methods Data on socio-demographic and anthropometric characteristics were collected from randomly selected lactating women (n = 104). Breast milk samples were collected and vitamin A concentrations were analyzed using HPLC and iCheck FLUORO then the two measurements were compared. Results The prevalence of underweight (BMI < 18.5 kg/m(2)) among lactating women was 17\%. Seventy six percent of the BMVA values were < 1.05 mu mol/l and 81\% were < 8 mu g/g fat. The mean BMVA concentration accounted to 41\% of the estimated average value for mothers in developing countries. The BMVA values from HPLC and iCheck were correlated (r = 0.59, p = < 0.001), but it was not strong. Conclusions The result indicates the low vitamin A status of the lactating women and their children. It further indicates that intake assessments should not use average BMVA composition. The possibility of using iCheck for monitoring interventions designed to improve vitamin A status of lactating women with low BMVA requires further investigation.}, language = {en} } @article{AbegazPeter1995, author = {Abegaz, Berhanu M. and Peter, Martin G.}, title = {Emodine and emodinanthrone rhamnoside acetates from fruits of rhamnus prinoides}, issn = {0031-9422}, year = {1995}, language = {en} } @article{AbelShepelyansky2011, author = {Abel, M. W. and Shepelyansky, Dima L.}, title = {Google matrix of business process management}, series = {The European physical journal : B, Condensed matter and complex systems}, volume = {84}, journal = {The European physical journal : B, Condensed matter and complex systems}, number = {4}, publisher = {Springer}, address = {New York}, issn = {1434-6028}, doi = {10.1140/epjb/e2010-10710-y}, pages = {493 -- 500}, year = {2011}, abstract = {Development of efficient business process models and determination of their characteristic properties are subject of intense interdisciplinary research. Here, we consider a business process model as a directed graph. Its nodes correspond to the units identified by the modeler and the link direction indicates the causal dependencies between units. It is of primary interest to obtain the stationary flow on such a directed graph, which corresponds to the steady-state of a firm during the business process. Following the ideas developed recently for the World Wide Web, we construct the Google matrix for our business process model and analyze its spectral properties. The importance of nodes is characterized by PageRank and recently proposed CheiRank and 2DRank, respectively. The results show that this two-dimensional ranking gives a significant information about the influence and communication properties of business model units. We argue that the Google matrix method, described here, provides a new efficient tool helping companies to make their decisions on how to evolve in the exceedingly dynamic global market.}, language = {en} } @article{Abel2004, author = {Abel, Markus}, title = {Nonparametric modeling and spatiotemporal dynamical systems}, issn = {0218-1274}, year = {2004}, abstract = {This article describes how to use statistical data analysis to obtain models directly from data. The focus is put on finding nonlinearities within a generalized additive model. These models are found by means of backfitting or more general algorithms, like the alternating conditional expectation value one. The method is illustrated by numerically generated data. As an application, the example of vortex ripple dynamics, a highly complex fluid-granular system, is treated}, language = {en} } @article{AbelAhnertKurthsetal.2005, author = {Abel, Markus and Ahnert, Karsten and Kurths, R. and Mandelj, S.}, title = {Additive nonparametric reconstruction of dynamical systems from time series}, issn = {1063-651X}, year = {2005}, abstract = {We present a nonparametric way to retrieve an additive system of differential equations in embedding space from a single time series. These equations can be treated with dynamical systems theory and allow for long-term predictions. We apply our method to a modified chaotic Chua oscillator in order to demonstrate its potential}, language = {en} } @article{AbelBergweilerGerhard2006, author = {Abel, Markus and Bergweiler, Steffen and Gerhard, Reimund}, title = {Synchronization of organ pipes : experimental observations and modeling}, issn = {0001-4966}, doi = {10.1121/1.217044}, year = {2006}, abstract = {We report measurements on the synchronization properties of organ pipes. First, we investigate influence of an external acoustical signal from a loudspeaker on the sound of an organ pipe. Second, the mutual influence of two pipes with different pitch is analyzed. In analogy to the externally driven, or mutually coupled self-sustained oscillators, one observes a frequency locking, which can be explained by synchronization theory. Further, we measure the dependence of the frequency of the signals emitted by two mutually detuned pipes with varying distance between the pipes. The spectrum shows a broad '' hump '' structure, not found for coupled oscillators. This indicates a complex coupling of the two organ pipes leading to nonlinear beat phenomena.}, language = {en} } @article{AbelCelaniErgnietal.2002, author = {Abel, Markus and Celani, A. and Ergni, V. and Vulpiani, A.}, title = {Front speed enhancement in cellular flows}, issn = {1054-1500}, year = {2002}, language = {en} } @article{AbelCelaniVergenietal.2001, author = {Abel, Markus and Celani, A. and Vergeni, D. and Vulpiani, A.}, title = {Front propagation in laminar flows}, year = {2001}, abstract = {The Problem of front propagation in flowing media is addressed for laminar velocity fields in two dimensions. Three representative cases are discussed: stationary cellular flow, stationary shear flow, and percolating flow. Production terms of Fisher-Kolmogorov-Petrovskii-Piskunov type and of Arrhenius type are considered under the assumption of no feedback of the concentration on the velocity. Numerical simulations of advection-reaction-diffusion equations have been performed by an algorithm based on discrete-time maps. The results show a generic enhancement of the speed of front propagation by the underlying flow. For small molecular diffusivity, the front speed Vf depends on the typical flow velocity U as a power law with an exponent depending on the topological properties of the flow, and on the ratio of reactive and advective time scales. For open-streamline flows we find always Vf~U, whereas for cellular flows we observe Vf~U1/4 for fast advection and Vf~U3/4 for slow advection.}, language = {en} } @article{AbelFlachPikovskij1998, author = {Abel, Markus and Flach, S. and Pikovskij, Arkadij}, title = {Localisation in a coupled standard map lattice}, year = {1998}, abstract = {We study spatially localized excitations in a lattice of coupled standard maps. Time-periodic solutions (breathers) exist in a range of coupling that is shown to shrink as the period grows to infinity, thus excluding the possibility of time-quasiperiodic breathers. The evolution of initially localized chaotic and quasiperiodic states in a lattice is studied numerically. Chaos is demonstrated to spread}, language = {en} } @article{AbelFlachPikovskij1998, author = {Abel, Markus and Flach, S. and Pikovskij, Arkadij}, title = {Localization in a coupled standard map lattice}, year = {1998}, language = {en} } @article{AbelPikovskij1997, author = {Abel, Markus and Pikovskij, Arkadij}, title = {Parametric excitation of breathers in a nonlinear lattice}, year = {1997}, abstract = {We investigate localized periodic solutions (breathers) in a lattice of parametrically driven, nonlinear dissipative oscillators. These breathers are demonstrated to be exponentially localized, with two characteristic localization lengths. The crossover between the two lengths is shown to be related to the transition in the phase of the lattice oscillations.}, language = {en} } @article{AbelSpicci1998, author = {Abel, Markus and Spicci, M.}, title = {Nonlinear localization periodic solutions in a coupled map lattice}, year = {1998}, abstract = {We prove the existence of nonlinear localized time-periodic solutions in a chain of symplectic mappings with nearest neighbour coupling. This is a class of systems whose behaviour can be seen as representation of a lattice of pendula. The effect of discrete time changes the mathematical as well as the numerical procedures. Applying the discrete version of Floquet theory eases and clarifies the procedure of proving the existence of the localized time-periodic solutions. As an extension of the concept of rotobreathers one can produce solutions which rotate at every site of the lattice. To consider these we use a general definition of localization.}, language = {en} } @article{AbelStojkovicBreuer2006, author = {Abel, Markus and Stojkovic, Dragan and Breuer, Michael}, title = {Nonlinear stochastic estimation of wall models for LES}, issn = {0142-727X}, doi = {10.1016/j.heatfluidflow.2005.10.011}, year = {2006}, abstract = {A key technology for large eddy simulation (LES) of complex flows is an appropriate wall modeling strategy. In this paper we apply for the first time a fully nonparametric procedure for the estimation of generalized additive models (GAM) by conditional statistics. As a database, we use DNS and wall-resolved LES data of plane channel flow for Reynolds numbers, Re = 2800, 4000 (DNS) and 10,935, 22,776 (LES). The statistical method applied is a quantitative tool for the identification of important model terms, allowing for an identification of some of the near-wall physics. The results are given as nonparametric functions which cannot be attained by other methods. We investigated a generalized model which includes Schumann's and Piomelli et al.'s model. A strong influence of the pressure gradient in the viscous sublayer is found; for larger wall distances the spanwise pressure gradient even dominates the tau(w,zy). component. The first a posteriori LES results are given.}, language = {en} } @article{AbelerCalakiAndreeetal.2010, author = {Abeler, Johannes and Calaki, Juljana and Andree, Kai and Basek, Christoph}, title = {The power of apology}, issn = {0165-1765}, doi = {10.1016/j.econlet.2010.01.033}, year = {2010}, abstract = {How should firms react to customer complaints after an unsatisfactory purchase? In a field experiment, we test the effect of different reactions and find that a cheap-talk apology yields significantly better outcomes for the firm than offering a monetary compensation.}, language = {en} } @article{AbercrombieAndersonBaldwinetal.2009, author = {Abercrombie, Laura Good and Anderson, Cynthia M. and Baldwin, Bruce G. and Bang, In-Chul and Beldade, Ricardo and Bernardi, Giacomo and Boubou, Angham and Branca, Antoine and Bretagnolle, Francois and Bruford, Michael W. and Buonamici, Anna and Burnett, Robert K. and Canal, D. and Cardenas, H. and Caullet, Coraline and Chen, S. Y. and Chun, Y. J. and Cossu, C. and Crane, Charles F. and Cros-Arteil, Sandrine and Cudney-Bueno, Richard and Danti, Roberto and Davila, Jos{\´e} Antonio and Della Rocca, Gianni and Dobata, Shigeto and Dunkle, Larry D. and Dupas, Stephane and others}, title = {Permanent genetic resources added to molecular ecology resources database 1 January 2009-30 April 2009}, issn = {1755-098X}, doi = {10.1111/j.1755-0998.2009.02746.x}, year = {2009}, abstract = {This article documents the addition of 283 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Agalinis acuta; Ambrosia artemisiifolia; Berula erecta; Casuarius casuarius; Cercospora zeae-maydis; Chorthippus parallelus; Conyza canadensis; Cotesia sesamiae; Epinephelus acanthistius; Ficedula hypoleuca; Grindelia hirsutula; Guadua angustifolia; Leucadendron rubrum; Maritrema novaezealandensis; Meretrix meretrix; Nilaparvata lugens; Oxyeleotris marmoratus; Phoxinus neogaeus; Pristomyrmex punctatus; Pseudobagrus brevicorpus; Seiridium cardinale; Stenopsyche marmorata; Tetranychus evansi and Xerus inauris. These loci were cross-tested on the following species: Agalinis decemloba; Agalinis tenella; Agalinis obtusifolia; Agalinis setacea; Agalinis skinneriana; Cercospora zeina; Cercospora kikuchii; Cercospora sorghi; Mycosphaerella graminicola; Setosphaeria turcica; Magnaporthe oryzae; Cotesia flavipes; Cotesia marginiventris; Grindelia Xpaludosa; Grindelia chiloensis; Grindelia fastigiata; Grindelia lanceolata; Grindelia squarrosa; Leucadendron coniferum; Leucadendron salicifolium; Leucadendron tinctum; Leucadendron meridianum; Laodelphax striatellus; Sogatella furcifera; Phoxinus eos; Phoxinus rigidus; Phoxinus brevispinosus; Phoxinus bicolor; Tetranychus urticae; Tetranychus turkestani; Tetranychus ludeni; Tetranychus neocaledonicus; Tetranychus amicus; Amphitetranychus viennensis; Eotetranychus rubiphilus; Eotetranychus tiliarium; Oligonychus perseae; Panonychus citri; Bryobia rubrioculus; Schizonobia bundi; Petrobia harti; Xerus princeps; Spermophilus tridecemlineatus and Sciurus carolinensis.}, language = {en} } @article{AberleMalzahnBauerLewandowskaetal.2012, author = {Aberle-Malzahn, Nicole and Bauer, Barbara and Lewandowska, A. and Gaedke, Ursula and Sommer, U.}, title = {Warming induces shifts in microzooplankton phenology and reduces time-lags between phytoplankton and protozoan production}, series = {Marine biology : international journal on life in oceans and coastal waters}, volume = {159}, journal = {Marine biology : international journal on life in oceans and coastal waters}, number = {11}, publisher = {Springer}, address = {New York}, issn = {0025-3162}, doi = {10.1007/s00227-012-1947-0}, pages = {2441 -- 2453}, year = {2012}, abstract = {Indoor mesocosm experiments were conducted to test for potential climate change effects on the spring succession of Baltic Sea plankton. Two different temperature (Delta 0 A degrees C and Delta 6 A degrees C) and three light scenarios (62, 57 and 49 \% of the natural surface light intensity on sunny days), mimicking increasing cloudiness as predicted for warmer winters in the Baltic Sea region, were simulated. By combining experimental and modeling approaches, we were able to test for a potential dietary mismatch between phytoplankton and zooplankton. Two general predator-prey models, one representing the community as a tri-trophic food chain and one as a 5-guild food web were applied to test for the consequences of different temperature sensitivities of heterotrophic components of the plankton. During the experiments, we observed reduced time-lags between the peaks of phytoplankton and protozoan biomass in response to warming. Microzooplankton peak biomass was reached by 2.5 day A degrees C-1 earlier and occurred almost synchronously with biomass peaks of phytoplankton in the warm mesocosms (Delta 6 A degrees C). The peak magnitudes of microzooplankton biomass remained unaffected by temperature, and growth rates of microzooplankton were higher at Delta 6 A degrees C (mu(a dagger 0 A degrees C) = 0.12 day(-1) and mu(a dagger 6 A degrees C) = 0.25 day(-1)). Furthermore, warming induced a shift in microzooplankton phenology leading to a faster species turnover and a shorter window of microzooplankton occurrence. Moderate differences in the light levels had no significant effect on the time-lags between autotrophic and heterotrophic biomass and on the timing, biomass maxima and growth rate of microzooplankton biomass. Both models predicted reduced time-lags between the biomass peaks of phytoplankton and its predators (both microzooplankton and copepods) with warming. The reduction of time-lags increased with increasing Q(10) values of copepods and protozoans in the tritrophic food chain. Indirect trophic effects modified this pattern in the 5-guild food web. Our study shows that instead of a mismatch, warming might lead to a stronger match between protist grazers and their prey altering in turn the transfer of matter and energy toward higher trophic levels.}, language = {en} } @article{AbetzJiangGopfert2004, author = {Abetz, Volker and Jiang, S. M. and Gopfert, A.}, title = {Novel pattern formation in blends of asymmetric ABC triblock terpolymers}, issn = {1618-7229}, year = {2004}, abstract = {A series of polystyrene-block-poly(1,2-butadiene)-block-poly(2-vinyl-pyridine) (SBV) triblock terpolymers were used to prepare blends with symmetric polystyrene-block-poly(2-vinylpyridine) (SV) and poly(2-vinylpyridine)-block-poly- (cyclohexyl methacrylate) (VC) diblock copolymers. Morphological characterization was carried out by transmission electron microscopy. These triblock terpolymers self-assemble into various core-shell type or lamellar morphologies. In the SBV/SV blends, macrophase separation between the two block copolymers, continuous centrosymmetric lamellae and stacks of non-centrosymmetric lamellae with anti-parallel orientation were found. In the blends of SBV/VC, macrophase separation was never observed, what is due to the specific interactions between S and C domains. These systems showed among other morphologies also a cylindrical morphology in which rings surround the cylinders}, language = {en} } @article{AbeysekaraArchambaultArcheretal.2016, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Biteau, Jonathan and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Christiansen, J. L. and Ciupik, L. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Dumm, J. and Eisch, J. D. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pelassa, V. and Petrashyk, A. and Petry, D. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Ratliff, G. and Reyes, L. C. and Reynolds, P. T. and Reynolds, K. and Richards, G. T. and Roache, E. and Rulten, C. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {VERITAS and multiwavelength observations of the BL Lacertae object 1ES 1741+196}, series = {Monthly notices of the Royal Astronomical Society}, volume = {459}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw664}, pages = {2550 -- 2557}, year = {2016}, abstract = {We present results from multiwavelength observations of the BL Lacertae object 1ES 1741 + 196, including results in the very high energy gamma-ray regime using the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The VERITAS time-averaged spectrum, measured above 180 GeV, is well modelled by a power law with a spectral index of 2.7 +/- 0.7(stat) +/- 0.2(syst). The integral flux above 180 GeV is (3.9 +/- 0.8(stat) +/- 1.0(syst)) x 10(-8) m(-2) s(-1), corresponding to 1.6 per cent of the Crab nebula flux on average. The multiwavelength spectral energy distribution of the source suggests that 1ES 1741+196 is an extreme-high-frequency-peaked BL Lacertae object. The observations analysed in this paper extend over a period of six years, during which time no strong flares were observed in any band. This analysis is therefore one of the few characterizations of a blazar in a non-flaring state.}, language = {en} } @article{AbeysekaraArchambaultArcheretal.2017, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Cerruti, M. and Connolly, M. P. and Cui, W. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Huetten, M. and Hanna, D. and Hervet, O. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {Discovery of Very-high-energy Emission from RGB J2243+203 and Derivation of Its Redshift Upper Limit}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, volume = {233}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0067-0049}, doi = {10.3847/1538-4365/aa8d76}, pages = {1188 -- 1204}, year = {2017}, abstract = {Very-high-energy (VHE; > 100 GeV) gamma-ray emission from the blazar RGB J2243+203 was discovered with the VERITAS Cherenkov telescope array, during the period between 2014 December 21 and 24. The VERITAS energy spectrum from this source can be fitted by a power law with a photon index of 4.6 +/- 0.5, and a flux normalization at 0.15 TeV of (6.3 +/- 1.1) x 10(-10) cm(-2) s(-1) TeV-1. The integrated Fermi-LAT flux from 1 to 100 GeV during the VERITAS detection is (4.1 +/- 0.8) x 10(-8) cm(-2) s(-1), which is an order of magnitude larger than the four-year-averaged flux in the same energy range reported in the 3FGL catalog, (4.0 +/- 0.1 x 10(-9) cm(-2) s(-1)). The detection with VERITAS triggered observations in the X-ray band with the Swift-XRT. However, due to scheduling constraints Swift-XRT observations were performed 67 hr after the VERITAS detection, rather than simultaneously with the VERITAS observations. The observed X-ray energy spectrum between 2 and 10 keV can be fitted with a power law with a spectral index of 2.7 +/- 0.2, and the integrated photon flux in the same energy band is (3.6 +/- 0.6) x 10(-13) cm(-2) s(-1). EBL-model-dependent upper limits of the blazar redshift have been derived. Depending on the EBL model used, the upper limit varies in the range from z < 0.9 to z < 1.1.}, language = {en} } @article{AbeysekaraArchambaultArcheretal.2016, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Buchovecky, M. and Buckley, J. H. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Christiansen, J. L. and Ciupik, L. and Cui, W. and Dickinson, H. J. and Eisch, J. D. and Errando, M. and Falcone, A. and Fegan, D. J. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hakansson, Nils and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Petrashyk, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Ratliff, G. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Williams, D. A. and Zitzer, B.}, title = {A SEARCH FOR BRIEF OPTICAL FLASHES ASSOCIATED WITH THE SETI TARGET KIC 8462852}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {818}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8205/818/2/L33}, pages = {6}, year = {2016}, abstract = {The F-type star KIC. 8462852 has recently been identified as an exceptional target for search for extraterrestrial intelligence (SETI) observations. We describe an analysis methodology for optical SETI, which we have used to analyze nine hours of serendipitous archival observations of KIC. 8462852 made with the VERITAS gamma-ray observatory between 2009 and 2015. No evidence of pulsed optical beacons, above a pulse intensity at the Earth of approximately 1 photon m(-2), is found. We also discuss the potential use of imaging atmospheric Cherenkov telescope arrays in searching for extremely short duration optical transients in general.}, language = {en} } @article{AbeysekaraArchambaultArcheretal.2017, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, Wystan and Bird, Ralph and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cerruti, M. and Chen, X. and Ciupik, L. and Cui, W. and Dickinson, H. J. and Eisch, J. D. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Hutten, M. and Hakansson, N. and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nguyen, T. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pelassa, V. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Fegan, S. and Giebels, B. and Horan, D. and Berdyugin, A. and Kuan, J. and Lindfors, E. and Nilsson, K. and Oksanen, A. and Prokoph, H. and Reinthal, R. and Takalo, L. and Zefi, F.}, title = {A Luminous and Isolated Gamma-Ray Flare from the Blazar B2 1215+30}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {836}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration;Fermi-LAT Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/836/2/205}, pages = {6}, year = {2017}, abstract = {B2 1215+30 is a BL-Lac-type blazar that was first detected at TeV energies by the MAGIC atmospheric Cherenkov telescopes and subsequently confirmed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS) observatory with data collected between 2009 and 2012. In 2014 February 08, VERITAS detected a large-amplitude flare from B2. 1215+30 during routine monitoring observations of the blazar 1ES. 1218+304, located in the same field of view. The TeV flux reached 2.4 times the Crab Nebula flux with a variability timescale of <3.6 hr. Multiwavelength observations with Fermi-LAT, Swift, and the Tuorla Observatory revealed a correlated high GeV flux state and no significant optical counterpart to the flare, with a spectral energy distribution where the gamma-ray luminosity exceeds the synchrotron luminosity. When interpreted in the framework of a onezone leptonic model, the observed emission implies a high degree of beaming, with Doppler factor delta > 10, and an electron population with spectral index p < 2.3.}, language = {en} } @article{AbeysekaraArcherAuneetal.2018, author = {Abeysekara, A. U. and Archer, A. and Aune, Taylor and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Bugaev, V. and Cui, Wei and Daniel, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Fleischhack, H. and Flinders, A. and Fortson, L. and Furniss, Amy and Gotthelf, Eric V. and Grube, J. and Hanna, David and Hervet, O. and Holder, J. and Huang, K. and Hughes, G. and Humensky, T. B. and Huetten, M. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, David and Krause, Maria and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, Gernot and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Pandel, Dirk and Park, Nahee and Petrashyk, A. and Pohl, Martin and Popkow, Alexis and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rousselle, J. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, Karlen and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Ward, J. E. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Zitzer, B.}, title = {A Very High Energy gamma-Ray Survey toward the Cygnus Region of the Galaxy}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {861}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aac4a2}, pages = {33}, year = {2018}, abstract = {We present results from deep observations toward the Cygnus region using 300 hr of very high energy (VHE)gamma-ray data taken with the VERITAS Cerenkov telescope array and over 7 yr of high-energy.-ray data taken with the Fermi satellite at an energy above 1 GeV. As the brightest region of diffuse gamma-ray emission in the northern sky, the Cygnus region provides a promising area to probe the origins of cosmic rays. We report the identification of a potential Fermi-LAT counterpart to VER J2031+415 (TeV J2032+4130) and resolve the extended VHE source VER J2019+368 into two source candidates (VER J2018+367* and VER J2020+368*) and characterize their energy spectra. The Fermi-LAT morphology of 3FGL J2021.0+4031e (the Gamma Cygni supernova remnant) was examined, and a region of enhanced emission coincident with VER J2019+407 was identified and jointly fit with the VERITAS data. By modeling 3FGL J2015.6+3709 as two sources, one located at the location of the pulsar wind nebula CTB 87 and one at the quasar QSO J2015+371, a continuous spectrum from 1 GeV to 10 TeV was extracted for VER J2016+371 (CTB 87). An additional 71 locations coincident with Fermi-LAT sources and other potential objects of interest were tested for VHE gamma-ray emission, with no emission detected and upper limits on the differential flux placed at an average of 2.3\% of the Crab Nebula flux. We interpret these observations in a multiwavelength context and present the most detailed gamma-ray view of the region to date.}, language = {en} } @article{AbeysekaraArcherBenbowetal.2019, author = {Abeysekara, A. U. and Archer, A. and Benbow, Wystan and Bird, Ralph and Brill, A. and Brose, Robert and Buchovecky, M. and Calderon-Madera, D. and Christiansen, J. L. and Cui, W. and Daniel, M. K. and Falcone, A. and Feng, Q. and Fernandez-Alonso, M. and Finley, J. P. and Fortson, Lucy and Furniss, Amy and Gent, A. and Giuri, C. and Gueta, O. and Hanna, David and Hassan, T. and Hervet, Oliver and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, P. and Kertzman, M. and Kieda, David and Krause, Maria and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, Gernot and Moriarty, P. and Mukherjee, Reshmi and Nievas-Rosillo, M. and Ong, R. A. and Pfrang, Konstantin Johannes and Pohl, Martin and Prado, R. R. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Ribeiro, D. and Richards, G. T. and Roache, E. and Rovero, A. C. and Sadeh, Iftach and Santander, M. and Sembroski, G. H. and Shahinyan, Karlen and Sushch, Iurii and Svraka, T. and Weinstein, A. and Wells, R. M. and Wilcox, Patrick and Wilhelm, Alina and Williams, David Arnold and Williamson, T. J. and Zitzer, B.}, title = {Measurement of the Extragalactic Background Light Spectral Energy Distribution with VERITAS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {885}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab4817}, pages = {8}, year = {2019}, abstract = {The extragalactic background light (EBL), a diffuse photon field in the optical and infrared range, is a record of radiative processes over the universe?s history. Spectral measurements of blazars at very high energies (>100 GeV) enable the reconstruction of the spectral energy distribution (SED) of the EBL, as the blazar spectra are modified by redshift- and energy-dependent interactions of the gamma-ray photons with the EBL. The spectra of 14 VERITAS-detected blazars are included in a new measurement of the EBL SED that is independent of EBL SED models. The resulting SED covers an EBL wavelength range of 0.56?56 ?m, and is in good agreement with lower limits obtained by assuming that the EBL is entirely due to radiation from cataloged galaxies.}, language = {en} } @article{AbeysekaraArcherBenbowetal.2018, author = {Abeysekara, A. U. and Archer, A. and Benbow, Wystan and Bird, Ralph and Brill, A. and Brose, Robert and Buckley, J. H. and Christiansen, Jessie L. and Chromey, A. J. and Daniel, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Fortson, L. and Furniss, Amy and Gillanders, Gerard H. and Gueta, O. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, David and Krause, Maria and Krennrich, F. and Lang, M. J. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, Marcos and Scott, S. S. and Sembroski, G. H. and Shahinyan, Karlen and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B. and Kaur, A.}, title = {VERITAS Observations of the BL Lac Object TXS 0506+056}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {861}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {2041-8205}, doi = {10.3847/2041-8213/aad053}, pages = {6}, year = {2018}, abstract = {On 2017 September 22, the IceCube Neutrino Observatory reported the detection of the high-energy neutrino event IC 170922A, of potential astrophysical origin. It was soon determined that the neutrino direction was consistent with the location of the gamma-ray blazar TXS 0506+056. (3FGL J0509.4+ 0541), which was in an elevated gamma-ray emission state as measured by the Fermi satellite. Very Energetic Radiation Imaging Telescope Array System (VERITAS) observations of the neutrino/blazar region started on 2017 September 23 in response to the neutrino alert and continued through 2018 February 6. While no significant very-high-energy (VHE; E > 100 GeV) emission was observed from the blazar by VERITAS in the two-week period immediately following the IceCube alert, TXS 0506+ 056 was detected by VERITAS with a significance of 5.8 standard deviations (sigma) in the full 35 hr data set. The average photon flux of the source during this period was (8.9 +/- 1.6). x. 10(-12) cm(-2) s(-1), or 1.6\% of the Crab Nebula flux, above an energy threshold of 110 GeV, with a soft spectral index of 4.8. +/-. 1.3.}, language = {en} } @article{AbeysekaraArcherBenbowetal.2018, author = {Abeysekara, A. U. and Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Chromey, A. J. and Connolly, M. P. and Cui, Wei and Daniel, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Fortson, L. and Furniss, Amy and Huetten, M. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kertzman, M. and Kieda, David and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Park, Nahee and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, Marcos and Sembroski, G. H. and Shahinyan, Karlen and Sushch, I. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B. and Abdollahi, S. and Ajello, Marco and Baldini, Luca and Barbiellini, G. and Bastieri, Denis and Bellazzini, Ronaldo and Berenji, B. and Bissaldi, Elisabetta and Blandford, R. D. and Bonino, R. and Bottacini, E. and Brandt, Terri J. and Bruel, P. and Buehler, R. and Cameron, R. A. and Caputo, R. and Caraveo, P. A. and Castro, D. and Cavazzuti, E. and Charles, Eric and Chiaro, G. and Ciprini, S. and Cohen-Tanugi, Johann and Costantin, D. and Cutini, S. and de Palma, F. and Di Lalla, N. and Di Mauro, M. and Di Venere, L. and Dominguez, A. and Favuzzi, C. and Fegan, S. J. and Franckowiak, Anna and Fukazawa, Yasushi and Funk, Stefan and Fusco, Piergiorgio and Gargano, Fabio and Gasparrini, Dario and Giglietto, Nicola and Giordano, F. and Giroletti, Marcello and Green, D. and Grenier, I. A. and Guillemot, L. and Guiriec, Sylvain and Hays, Elizabeth and Hewitt, John W. and Horan, D. and Johannesson, G. and Kensei, S. and Kuss, M. and Larsson, Stefan and Latronico, L. and Lemoine-Goumard, Marianne and Li, J. and Longo, Francesco and Loparco, Francesco and Lovellette, M. N. and Lubrano, Pasquale and Magill, Jeffrey D. and Maldera, Simone and Mazziotta, Mario Nicola and McEnery, J. E. and Michelson, P. F. and Mitthumsiri, W. and Mizuno, Tsunefumi and Monzani, Maria Elena and Morselli, Aldo and Moskalenko, Igor V. and Negro, M. and Nuss, E. and Ojha, R. and Omodei, Nicola and Orienti, M. and Orlando, E. and Palatiello, M. and Paliya, Vaidehi S. and Paneque, D. and Perkins, Jeremy S. and Persic, M. and Pesce-Rollins, Melissa and Petrosian, Vahe' and Piron, F. and Porter, Troy A. and Principe, G. and Raino, S. and Rando, Riccardo and Rani, B. and Razzano, Massimilano and Razzaque, Soebur and Reimer, A. and Reimer, Olaf and Reposeur, T. and Sgro, C. and Siskind, E. J. and Spandre, Gloria and Spinelli, P. and Suson, D. J. and Tajima, Hiroyasu and Thayer, J. B. and Thompson, David J. and Torres, Diego F. and Tosti, Gino and Troja, Eleonora and Valverde, J. and Vianello, Giacomo and Vogel, M. and Wood, K. and Yassine, M. and Alfaro, R. and Alvarez, C. and Alvarez, J. D. and Arceo, R. and Arteaga-Velazquez, J. C. and Rojas, D. Avila and Ayala Solares, H. A. and Becerril, A. and Belmont-Moreno, E. and BenZvi, S. Y. and Bernal, A. and Braun, J. and Brisbois, C. and Caballero-Mora, K. S. and Capistran, T. and Carraminana, A. and Casanova, Sabrina and Castillo, M. and Cotti, U. and Cotzomi, J. and Coutino de Leon, S. and De Leon, C. and De la Fuente, E. and Dichiara, S. and Dingus, B. L. and DuVernois, M. A. and Diaz-Velez, J. C. and Engel, K. and Enriquez-Rivera, O. and Fiorino, D. W. and Fleischhack, H. and Fraija, N. and Garcia-Gonzalez, J. A. and Garfias, F. and Gonzalez Munoz, A. and Gonzalez, M. M. and Goodman, J. A. and Hampel-Arias, Z. and Harding, J. P. and Hernandez, S. and Hernandez-Almada, A. and Hona, B. and Hueyotl-Zahuantitla, F. and Hui, C. M. and Huntemeyer, P. and Iriarte, A. and Jardin-Blicq, A. and Joshi, V. and Kaufmann, S. and Lara, A. and Lauer, R. J. and Lee, W. H. and Lennarz, D. and Leon Vargas, H. and Linnemann, J. T. and Longinotti, A. L. and Luis-Raya, G. and Luna-Garcia, R. and Lopez-Coto, R. and Malone, K. and Marinelli, S. S. and Martinez, O. and Martinez-Castellanos, I. and Martinez-Castro, J. and Martinez-Huerta, H. and Matthews, J. A. and Miranda-Romagnoli, P. and Moreno, E. and Mostafa, M. and Nayerhoda, A. and Nellen, L. and Newbold, M. and Nisa, M. U. and Noriega-Papaqui, R. and Pelayo, R. and Pretz, J. and Perez-Perez, E. G. and Ren, Z. and Rho, C. D. and Riviere, C. and Rosa-Gonzalez, D. and Rosenberg, M. and Ruiz-Velasco, E. and Salazar, H. and Greus, F. Salesa and Sandoval, A. and Schneider, M. and Arroyo, M. Seglar and Sinnis, G. and Smith, A. J. and Springer, R. W. and Surajbali, P. and Taboada, Ignacio and Tibolla, O. and Tollefson, K. and Torres, I. and Ukwatta, Tilan N. and Villasenor, L. and Weisgarber, T. and Westerhoff, Stefan and Wisher, I. G. and Wood, J. and Yapici, Tolga and Yodh, G. and Zepeda, A. and Zhou, H.}, title = {VERITAS and Fermi-LAT Observations of TeV Gamma-Ray Sources Discovered by HAWC in the 2HWC Catalog}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {866}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration Fermi-LAT Collaboration HAWC Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/aade4e}, pages = {18}, year = {2018}, abstract = {The High Altitude Water Cherenkov (HAWC) collaboration recently published their 2HWC catalog, listing 39 very high energy (VHE; >100 GeV) gamma-ray sources based on 507 days of observation. Among these, 19 sources are not associated with previously known teraelectronvolt (TeV) gamma-ray sources. We have studied 14 of these sources without known counterparts with VERITAS and Fermi-LAT. VERITAS detected weak gamma-ray emission in the 1 TeV-30 TeV band in the region of DA 495, a pulsar wind nebula coinciding with 2HWC J1953+294, confirming the discovery of the source by HAWC. We did not find any counterpart for the selected 14 new HAWC sources from our analysis of Fermi-LAT data for energies higher than 10 GeV. During the search, we detected gigaelectronvolt (GeV) gamma-ray emission coincident with a known TeV pulsar wind nebula, SNR G54.1+0.3 (VER J1930+188), and a 2HWC source, 2HWC J1930+188. The fluxes for isolated, steady sources in the 2HWC catalog are generally in good agreement with those measured by imaging atmospheric Cherenkov telescopes. However, the VERITAS fluxes for SNR G54.1+0.3, DA 495, and TeV J2032+4130 are lower than those measured by HAWC, and several new HAWC sources are not detected by VERITAS. This is likely due to a change in spectral shape, source extension, or the influence of diffuse emission in the source region.}, language = {en} } @article{AbeysekaraArcherBenbowetal.2018, author = {Abeysekara, A. U. and Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Bugaev, V. and Connolly, M. P. and Cui, Wei and Errando, Manel and Falcone, A. and Feng, Qi and Finley, John P. and Flinders, A. and Fortson, L. and Furniss, Amy and Gillanders, Gerard H. and Huetten, M. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, David and Krause, Maria and Krennrich, F. and Lang, M. J. and Lin, T. T. Y. and Maier, Gernot and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Park, N. and Perkins, Jeremy S. and Petrashyk, A. and Pohl, Martin and Popkow, Alexis and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, Karlen and Tyler, J. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Zitzer, B. and Vurm, Indrek and Beloborodov, Andrei}, title = {A Strong Limit on the Very-high-energy Emission from GRB 150323A}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {857}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/aab371}, pages = {6}, year = {2018}, abstract = {On 2015 March 23, the Very Energetic Radiation Imaging Telescope Array System (VERITAS) responded to a Swift-Burst Alert Telescope (BAT) detection of a gamma-ray burst, with observations beginning 270 s after the onset of BAT emission, and only 135 s after the main BAT emission peak. No statistically significant signal is detected above 140 GeV. The VERITAS upper limit on the fluence in a 40-minute integration corresponds to about 1\% of the prompt fluence. Our limit is particularly significant because the very-high-energy (VHE) observation started only similar to 2 minutes after the prompt emission peaked, and Fermi-Large Area Telescope observations of numerous other bursts have revealed that the high-energy emission is typically delayed relative to the prompt radiation and lasts significantly longer. Also, the proximity of GRB 150323A (z = 0.593) limits the attenuation by the extragalactic background light to similar to 50\% at 100-200 GeV. We conclude that GRB 150323A had an intrinsically very weak high-energy afterglow, or that the GeV spectrum had a turnover below similar to 100 GeV. If the GRB exploded into the stellar wind of a massive progenitor, the VHE non-detection constrains the wind density parameter to be A greater than or similar to 3 x 10(11) g . cm(-1), consistent with a standard Wolf-Rayet progenitor. Alternatively, the VHE emission from the blast wave would be weak in a very tenuous medium such as the interstellar medium, which therefore cannot be ruled out as the environment of GRB 150323A.}, language = {en} } @article{AbeysekaraBenbowBirdetal.2018, author = {Abeysekara, A. U. and Benbow, Wystan and Bird, Ralph and Brantseg, T. and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Connolly, M. P. and Cui, Wei and Daniel, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Fortson, L. and Furniss, Amy and Gillanders, Gerard H. and Gunawardhana, Isuru and Huetten, M. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kertzman, M. and Krennrich, F. and Lang, M. J. and Lin, T. T. Y. and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Park, N. and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, Karlen and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Williams, D. A. and Zitzer, B. and Jorstad, Svetlana G. and Marscher, Alan P. and Lister, Matthew L. and Kovalev, Yuri Y. and Pushkarev, A. B. and Savolainen, Tuomas and Agudo, I. and Molina, S. N. and Gomez, J. L. and Larionov, Valeri M. and Borman, G. A. and Mokrushina, A. A. and Tornikoski, Merja and Lahteenmaki, A. and Chamani, W. and Enestam, S. and Kiehlmann, S. and Hovatta, Talvikki and Smith, P. S. and Pontrelli, P.}, title = {Multiwavelength Observations of the Blazar BL Lacertae}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {856}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/aab35c}, pages = {14}, year = {2018}, abstract = {Combined with measurements made by very-long-baseline interferometry, the observations of fast TeV gamma-ray flares probe the structure and emission mechanism of blazar jets. However, only a handful of such flares have been detected to date, and only within the last few years have these flares been observed from lower-frequency-peaked BL. Lac objects and flat-spectrum radio quasars. We report on a fast TeV gamma-ray flare from the blazar BL. Lacertae observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS). with a rise time of similar to 2.3 hr and a decay time of similar to 36 min. The peak flux above 200 GeV is (4.2 +/- 0.6) x 10(-6) photon m(-2) s(-1) measured with a 4-minute-binned light curve, corresponding to similar to 180\% of the flux that is observed from the Crab Nebula above the same energy threshold. Variability contemporaneous with the TeV gamma-ray flare was observed in GeV gamma-ray, X-ray, and optical flux, as well as in optical and radio polarization. Additionally, a possible moving emission feature with superluminal apparent velocity was identified in Very Long Baseline Array observations at 43 GHz, potentially passing the radio core of the jet around the time of the gamma-ray flare. We discuss the constraints on the size, Lorentz factor, and location of the emitting region of the flare, and the interpretations with several theoretical models that invoke relativistic plasma passing stationary shocks.}, language = {en} } @article{AbeysekaraBenbowBirdetal.2018, author = {Abeysekara, A. U. and Benbow, Wystan and Bird, Ralph and Brill, A. and Brose, Robert and Buckley, J. H. and Chromey, A. J. and Daniel, M. K. and Falcone, A. and Finley, J. P. and Fortson, L. and Furniss, Amy and Gent, A. and Gillanders, Gerald H. and Hanna, David and Hassan, T. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Kaaret, Philip and Kar, P. and Kertzman, M. and Kieda, David and Krause, Maria and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, Gernot and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Park, Nahee and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Richards, Gregory T. and Roache, E. and Sadeh, I. and Santander, Marcos and Schlenstedt, S. and Sembroski, G. H. and Sushch, Iurii and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Williamson, T. J. and Zitzer, B. and Acciari, V. A. and Ansoldi, S. and Antonelli, L. A. and Engels, A. Arbet and Baack, D. and Babic, A. and Banerjee, B. and de Almeida, U. Barres and Barrio, J. A. and Becerra Gonzalez, Josefa and Bednarek, Wlodek and Bernardini, Elisa and Berti, A. and Besenrieder, J. and Bhattacharyya, W. and Bigongiari, C. and Biland, A. and Blanch, O. and Bonnoli, G. and Busetto, G. and Carosi, R. and Ceribella, G. and Cikota, S. and Colak, S. M. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Da Vela, P. and Dazzi, F. and De Angelis, A. and De Lotto, B. and Delfino, M. and Delgado, J. and Di Pierro, F. and Do Souto Espinera, E. and Dominguez, A. and Prester, D. Dominis and Dorner, D. and Doro, M. and Einecke, S. and Elsaesser, D. and Ramazani, V. Fallah and Fattorini, A. and Fernandez-Barral, A. and Ferrara, G. and Fidalgo, D. and Foffano, L. and Fonseca, M. V. and Font, L. and Fruck, C. and Galindo, D. and Gallozzi, S. and Lopez, R. J. Garcia and Garczarczyk, M. and Gasparyan, S. and Gaug, Markus and Giammaria, P. and Godinovic, N. and Guberman, D. and Hadasch, D. and Hahn, A. and Herrera, J. and Hoang, J. and Hrupec, D. and Inoue, S. and Ishio, K. and Iwamura, Y. and Kubo, H. and Kushida, J. and Kuvezdic, D. and Lamastra, A. and Lelas, D. and Leone, Francesco and Lindfors, E. and Lombardi, S. and Longo, Francesco and Lopez, M. and Lopez-Oramas, A. and Machado de Oliveira Fraga, B. and Maggio, C. and Majumdar, P. and Makariev, M. and Mallamaci, M. and Maneva, G. and Manganaro, M. and Mannheim, K. and Maraschi, L. and Mariotti, M. and Martinez, M. and Masuda, S. and Mazin, D. and Minev, M. and Miranda, J. M. and Mirzoyan, R. and Molina, E. and Moralejo, A. and Moreno, V. and Moretti, E. and Munar-Adrover, Pere and Neustroev, V. and Niedzwiecki, Andrzej and Rosillo, Mireia Nievas and Nigro, C. and Nilsson, Kari and Ninci, D. and Nishijima, K. and Noda, K. and Nogues, L. and Noethe, M. and Paiano, Simona and Palacio, J. and Paneque, D. and Paoletti, R. and Paredes, J. M. and Pedaletti, G. and Penil, P. and Peresano, M. and Persic, M. and Moroni, P. G. Prada and Prandini, E. and Puljak, I. and Garcia, J. R. and Rhode, W. and Ribo, Marc and Rico, J. and Righi, C. and Rugliancich, A. and Saha, Lab and Sahakyan, Narek and Saito, T. and Satalecka, K. and Schweizer, T. and Sitarek, J. and Snidaric, I. and Sobczynska, D. and Somero, A. and Stamerra, A. and Strzys, M. and Suric, T. and Tavecchio, Fabrizio and Temnikov, P. and Terzic, T. and Teshima, M. and Torres-Alba, N. and Tsujimoto, S. and van Scherpenberg, J. and Vanzo, G. and Vazquez Acosta, M. and Vovk, I. and Will, M. and Zaric, D.}, title = {Periastron Observations of TeV Gamma-Ray Emission from a Binary System with a 50-year Period}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {867}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration MAGIC Collaboration}, issn = {2041-8205}, doi = {10.3847/2041-8213/aae70e}, pages = {8}, year = {2018}, abstract = {We report on observations of the pulsar/Be star binary system PSR J2032+4127/MT91 213 in the energy range between 100 GeV and 20 TeV with the Very Energetic Radiation Imaging Telescope Array and Major Atmospheric Gamma Imaging Cherenkov telescope arrays. The binary orbit has a period of approximately 50 years, with the most recent periastron occurring on 2017 November 13. Our observations span from 18 months prior to periastron to one month after. A new point-like gamma-ray source is detected, coincident with the location of PSR J2032+4127/MT91 213. The gamma-ray light curve and spectrum are well characterized over the periastron passage. The flux is variable over at least an order of magnitude, peaking at periastron, thus providing a firm association of the TeV source with the pulsar/Be star system. Observations prior to periastron show a cutoff in the spectrum at an energy around 0.5 TeV. This result adds a new member to the small population of known TeV binaries, and it identifies only the second source of this class in which the nature and properties of the compact object are firmly established. We compare the gamma-ray results with the light curve measured with the X-ray Telescope on board the Neil Gehrels Swift Observatory and with the predictions of recent theoretical models of the system. We conclude that significant revision of the models is required to explain the details of the emission that we have observed, and we discuss the relationship between the binary system and the overlapping steady extended source, TeV J2032+4130.}, language = {en} } @article{AbiusoHolubecAndersetal.2022, author = {Abiuso, Paolo and Holubec, Viktor and Anders, Janet and Ye, Zhuolin and Cerisola, Federico and Perarnau-Llobet, Marti}, title = {Thermodynamics and optimal protocols of multidimensional quadratic Brownian systems}, series = {Journal of physics communications}, volume = {6}, journal = {Journal of physics communications}, number = {6}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2399-6528}, doi = {10.1088/2399-6528/ac72f8}, pages = {15}, year = {2022}, abstract = {We characterize finite-time thermodynamic processes of multidimensional quadratic overdamped systems. Analytic expressions are provided for heat, work, and dissipation for any evolution of the system covariance matrix. The Bures-Wasserstein metric between covariance matrices naturally emerges as the local quantifier of dissipation. General principles of how to apply these geometric tools to identify optimal protocols are discussed. Focusing on the relevant slow-driving limit, we show how these results can be used to analyze cases in which the experimental control over the system is partial.}, language = {en} } @article{AbonKneisCrisologoetal.2016, author = {Abon, Catherine Cristobal and Kneis, David and Crisologo, Irene and Bronstert, Axel and David, Carlos Primo Constantino and Heistermann, Maik}, title = {Evaluating the potential of radar-based rainfall estimates for streamflow and flood simulations in the Philippines}, series = {GEOMATICS NATURAL HAZARDS \& RISK}, volume = {7}, journal = {GEOMATICS NATURAL HAZARDS \& RISK}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1947-5705}, doi = {10.1080/19475705.2015.1058862}, pages = {1390 -- 1405}, year = {2016}, abstract = {This case study evaluates the suitability of radar-based quantitative precipitation estimates (QPEs) for the simulation of streamflow in the Marikina River Basin (MRB), the Philippines. Hourly radar-based QPEs were produced from reflectivity that had been observed by an S-band radar located about 90 km from the MRB. Radar data processing and precipitation estimation were carried out using the open source library wradlib. To assess the added value of the radar-based QPE, we used spatially interpolated rain gauge observations (gauge-only (GO) product) as a benchmark. Rain gauge observations were also used to quantify rainfall estimation errors at the point scale. At the point scale, the radar-based QPE outperformed the GO product in 2012, while for 2013, the performance was similar. For both periods, estimation errors substantially increased from daily to the hourly accumulation intervals. Despite this fact, both rainfall estimation methods allowed for a good representation of observed streamflow when used to force a hydrological simulation model of the MRB. Furthermore, the results of the hydrological simulation were consistent with rainfall verification at the point scale: the radar-based QPE performed better than the GO product in 2012, and equivalently in 2013. Altogether, we could demonstrate that, in terms of streamflow simulation, the radar-based QPE can perform as good as or even better than the GO product - even for a basin such as the MRB which has a comparatively dense rain gauge network. This suggests good prospects for using radar-based QPE to simulate and forecast streamflow in other parts of the Philippines where rain gauge networks are not as dense.}, language = {en} } @article{AbouserieSchildeTaubert2018, author = {Abouserie, Ahed and Schilde, Uwe and Taubert, Andreas}, title = {The crystal structure of N-butylpyridinium bis(μ2-dichlorido)-tetrachloridodicopper(II), C₁₈H₂₈N₂Cu₂Cl₆}, series = {Zeitschrift f{\"u}r Kristallographie - New Crystal Structures}, volume = {233}, journal = {Zeitschrift f{\"u}r Kristallographie - New Crystal Structures}, number = {4}, publisher = {de Gruyter}, address = {Berlin und M{\"u}nchen}, issn = {2194-4946}, doi = {10.1515/NCRS-2018-0099}, pages = {743 -- 746}, year = {2018}, abstract = {C₉H₁₄Cl₃CuN, monoclinic, P2₁/n (no. 14), a = 9.6625(6) {\AA}, b = 9.3486(3) {\AA}, c = 14.1168(8) {\AA}, β = 102.288(5)°, V = 1245.97(11) {\AA}³, Z = 4, Rgₜ(F) = 0.0182, wRᵣₑf(F²) = 0.0499, T = 210(2) K.}, language = {en} } @article{AbouserieZehbeMetzneretal.2017, author = {Abouserie, Ahed and Zehbe, Kerstin and Metzner, Philipp and Kelling, Alexandra and G{\"u}nter, Christina and Schilde, Uwe and Strauch, Peter and K{\"o}rzd{\"o}rfer, Thomas and Taubert, Andreas}, title = {Alkylpyridinium Tetrahalidometallate Ionic Liquids and Ionic Liquid Crystals: Insights into the Origin of Their Phase Behavior}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201700826}, pages = {5640 -- 5649}, year = {2017}, abstract = {Six N-alkylpyridinium salts [CnPy](2)[MCl4] (n = 4 or 12 and M = Co, Cu, Zn) were synthesized, and their structure and thermal properties were studied. The [C4Py](2)[MCl4] compounds are monoclinic and crystallize in the space group P2(1)/n. The crystals of the longer chain analogues [C12Py](2)[MCl4] are triclinic and crystallize in the space group P (1) over bar. Above the melting temperature, all compounds are ionic liquids (ILs). The derivatives with the longer C12 chain exhibit liquid crystallinity and the shorter chain compounds only show a melting transition. Consistent with single-crystal analysis, electron paramagnetic resonance spectroscopy suggests that the [CuCl4](2-) ions in the Cu-based ILs have a distorted tetrahedral geometry.}, language = {en} } @article{AbouserieZehbeMetzneretal.2017, author = {Abouserie, Ahed and Zehbe, Kerstin and Metzner, Philipp and Kelling, Alexandra and G{\"u}nter, Christina and Schilde, Uwe and Strauch, Peter and K{\"o}rzd{\"o}rfer, Thomas and Taubert, Andreas}, title = {Alkylpyridinium Tetrahalidometallate Ionic Liquids and Ionic Liquid Crystals: Insights into the Origin of Their Phase Behavior}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201700826}, pages = {5640 -- 5649}, year = {2017}, abstract = {Six N-alkylpyridinium salts [CnPy](2)[MCl4] (n = 4 or 12 and M = Co, Cu, Zn) were synthesized, and their structure and thermal properties were studied. The [C4Py](2)[MCl4] compounds are monoclinic and crystallize in the space group P2(1)/n. The crystals of the longer chain analogues [C12Py](2)[MCl4] are triclinic and crystallize in the space group P (1) over bar. Above the melting temperature, all compounds are ionic liquids (ILs). The derivatives with the longer C12 chain exhibit liquid crystallinity and the shorter chain compounds only show a melting transition. Consistent with single-crystal analysis, electron paramagnetic resonance spectroscopy suggests that the [CuCl4](2-) ions in the Cu-based ILs have a distorted tetrahedral geometry.}, language = {en} }