@article{MishraPrasadAnoopetal.2015, author = {Mishra, Praveen Kumar and Prasad, Sushma and Anoop, A. and Plessen, Birgit and Jehangir, Arshid and Gaye, Birgit and Menzel, Philip and Weise, Stephan M. and Yousuf, Abdul R.}, title = {Carbonate isotopes from high altitude Tso Moriri Lake (NW Himalayas) provide clues to late glacial and Holocene moisture source and atmospheric circulation changes}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {425}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2015.02.031}, pages = {76 -- 83}, year = {2015}, abstract = {High resolution isotopic (delta O-18 and delta C-13) investigations on endogenic carbonates (calcite/aragonite) from Tso Moriri Lake, NW Himalaya show dramatic fluctuations during the late glacial and the early Holocene, and a persistent enrichment trend during the late Holocene. Changes in this lake are largely governed by the [input (meltwater + monsoon precipitation)/evaporationj (WE) ratio, also reflected in changes in the carbonate mineralogy with aragonite being formed during periods of lowest I/E. Using new isotopic data on endogenic carbonates in combination with the available data on geochemistry, mineralogy, and reconstructed mean annual precipitation, we demonstrate that the late glacial and early Holocene carbonate delta O-18 variability resulted from fluctuating Indian summer monsoon (ISM) precipitation in NW Himalaya. This region experienced increasing ISM precipitation between ca. 13.1 and 11.7 cal ka and highest ISM precipitation during the early Holocene (11.2-8.5 cal ka). However, during the late Holocene, evaporation was the dominant control on the carbonate delta O-18. Regional comparison of reconstructed hydrological changes from Tso Moriri Lake with other archives from the Asian summer monsoon and westerlies domain shows that the intensified westerly influence that resulted in higher lake levels (after 8 cal ka) in central Asia was not strongly felt in NW Himalaya. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{MishraAnoopSchettleretal.2015, author = {Mishra, Praveen Kumar and Anoop, Ambili and Schettler, Georg and Prasad, Sushma and Jehangir, Arshid and Menzel, Peter and Naumann, Rudolf and Yousuf, A. R. and Basavaiah, Nathani and Deenadayalan, Kannan and Wiesner, Martin G. and Gaye, Birgit}, title = {Reconstructed late Quaternary hydrological changes from Lake Tso Moriri, NW Himalaya}, series = {Quaternary international : the journal of the International Union for Quaternary Research}, volume = {371}, journal = {Quaternary international : the journal of the International Union for Quaternary Research}, publisher = {Elsevier}, address = {Oxford}, issn = {1040-6182}, doi = {10.1016/j.quaint.2014.11.040}, pages = {76 -- 86}, year = {2015}, abstract = {We present the results of our investigations on the radiocarbon dated core sediments from the Lake Tso Moriri, NW Himalaya aimed at reconstructing palaeohydrological changes in this climatically sensitive region. Based on the detailed geochemical, mineralogical and sedimentological analysis, we recognise several short-term fluctuations superimposed upon seven major palaeohydrological stages identified in this lake since similar to 26 cal ka. Stage I (>20.2 cal ka): shallow lake characterised by input of coarse-grained detrital sediments; Stage II (20.2-16.4 cal ka): lake deepening and intensification of this trend ca. 18 cal ka; Stage III (16.4-11.2 cal ka): rising lake levels with a short term wet phase (13.1-11.7 cal ka); Stage IV (11.2-8.5 cal ka): early Holocene hydrological maxima and highest lake levels inferred to have resulted from early Holocene Indian monsoon intensification, as records from central Asia indicate weaker westerlies during this interval; Stage V (8.5-5.5 cal ka): mid-Holocene climate deterioration; Stage VI (5.5-2.7 cal ka): progressive lowering of lake level; Stage VII (2.7-0 cal ka): onset of modern conditions. The reconstructed hydrological variability in Lake Tso Moriri is governed by temperature changes (meltwater inflow) and monsoon precipitation (increased runoff). A regional comparison shows considerable differences with other palaeorecords from peninsular India during late Holocene. (C) 2014 Elsevier Ltd and INQUA. All rights reserved.}, language = {en} } @article{SarkarPrasadWilkesetal.2015, author = {Sarkar, Saswati and Prasad, Sushma and Wilkes, Heinz and Riedel, Nils and Stebich, Martina and Basavaiah, Nathani and Sachse, Dirk}, title = {Monsoon source shifts during the drying mid-Holocene: Biomarker isotope based evidence from the core 'monsoon zone' (CMZ) of India}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {123}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2015.06.020}, pages = {144 -- 157}, year = {2015}, abstract = {A better understanding of past variations of the Indian Summer Monsoon (ISM), that plays a vital role for the still largely agro-based economy in India, can lead to a better assessment of its potential impact under global climate change scenarios. However, our knowledge of spatiotemporal patterns of ISM strength is limited due to the lack of high-resolution, continental paleohydrological records. Here, we reconstruct centennial-scale hydrological variability during the Holocene associated to changes in the intensity of the ISM based on a record of lipid biomarker abundances and compound-specific stable isotopic composition of a 10 m long sediment core from saline alkaline Lonar Lake, situated in the core 'monsoon zone' of central India. We identified three main periods of distinct hydrology during the Holocene in central India. The period between 10.1 and 6 cal ka BP was likely the wettest during the Holocene. Lower average chain length (ACL) index values (29.4-28.6) and negative delta C-13(wax) values (-34.8 parts per thousand to -27.8 parts per thousand) of leaf wax n-alkanes indicate the dominance of woody C-3 vegetation in the catchment, and negative delta D-wax values (concentration weighted average) (-171 parts per thousand to -147 parts per thousand) suggest a wet period due to an intensified monsoon. After 6 cal ka BP, a gradual shift to less negative delta C-13(wax) values (particularly for the grass derived n-C-31) and appearance of the triterpene lipid tetrahymanol, generally considered as a marker for salinity and water column stratification, mark the onset of drier conditions. At 5.1 cal ka BP an increasing flux of leaf wax n-alkanes along with the highest flux of tetrahymanol indicate a major lowering of the lake level. Between 4.8 and 4 cal ka BP, we find evidence for a transition to arid conditions, indicated by high and strongly variable tetrahymanol flux. In addition, a pronounced shift to less negative delta C-13(wax) values, in particular for n-C-31 (-25.2 parts per thousand to -22.8 parts per thousand), during this period indicates a change of dominant vegetation to C-4 grasses. In agreement with other proxy data, such as deposition of evaporite minerals, we interpret this period to reflect the driest conditions in the region during the last 10.1 ka. This transition led to protracted late Holocene arid conditions after 4 ka with the presence of a permanent saline lake, supported by the sustained presence of tetrahymanol and more positive average delta D-wax values (-122 parts per thousand to -141 parts per thousand). A late Holocene peak of cyanobacterial biomarker input at 1.3 cal ka BP might represent an event of lake eutrophication, possibly due to human impact and the onset of cattle/livestock farming in the catchment. A unique feature of our record is the presence of a distinct transitional period between 4.8 and 4 cal ka BP, which was characterized by some of the most negative delta D-wax values during the Holocene (up to -180 parts per thousand), when all other proxy data indicate the driest conditions during the Holocene. These negative delta D-wax values can as such most reasonably be explained by a shift in moisture source area and/or pathways or rainfall seasonality during this transitional period. We hypothesize that orbital induced weakening of the summer solar insolation and associated reorganization of the general atmospheric circulation, as a possible southward displacement of the tropical rainbelt, led to an unstable hydroclimate in central India between 4.8 and 4 ka.}, language = {en} } @article{PrasadAnoopRiedeletal.2014, author = {Prasad, Sushma and Anoop, A. and Riedel, N. and Sarkar, Saswati and Menzel, P. and Basavaiah, Nathani and Krishnan, R. and Fuller, D. and Plessen, Birgit and Gaye, B. and Roehl, U. and Wilkes, H. and Sachse, Dirk and Sawant, R. and Wiesner, M. G. and Stebich, M.}, title = {Prolonged monsoon droughts and links to Indo-Pacific warm pool: A Holocene record from Lonar Lake, central India}, series = {Earth \& planetary science letters}, volume = {391}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2014.01.043}, pages = {171 -- 182}, year = {2014}, abstract = {Concerns about the regional impact of global climate change in a warming scenario have highlighted the gaps in our understanding of the Indian Summer Monsoon (ISM, also referred to as the Indian Ocean summer monsoon) and the absence of long term palaeoclimate data from the central Indian core monsoon zone (CMZ). Here we present the first high resolution, well-dated, multiproxy reconstruction of Holocene palaeoclimate from a 10 m long sediment core raised from the Lonar Lake in central India. We show that while the early Holocene onset of-intensified monsoon in the CMZ is similar to that reported from other ISM records, the Lonar data shows two prolonged droughts (PD, multidecadal to centennial periods of weaker monsoon) between 4.6-3.9 and 2-0.6 cal ka. A comparison of our record with available data from other ISM influenced sites shows that the impact of these PD was observed in varying degrees throughout the ISM realm and coincides with intervals of higher solar irradiance. We demonstrate that (i) the regional warming in the Indo-Pacific Warm Pool (IPWP) plays an important role in causing ISM PD through changes in meridional overturning circulation and position of the anomalous Walker cell; (ii) the long term influence of conditions like El Nino-Southern Oscillation (ENSO) on the ISM began only ca. 2 cal ka BP and is coincident with the warming of the southern IPWP; (iii) the first settlements in central India coincided with the onset of the first PD and agricultural populations flourished between the two PD, highlighting the significance of natural climate variability and PD as major environmental factors affecting human settlements.}, language = {en} } @article{LauterbachWittPlessenetal.2014, author = {Lauterbach, Stefan and Witt, Roman and Plessen, Birgit and Dulski, Peter and Prasad, Sushma and Mingram, Jens and Gleixner, Gerd and Hettler-Riedel, Sabine and Stebich, Martina and Schnetger, Bernhard and Schwalb, Antje and Schwarz, Anja}, title = {Climatic imprint of the mid-latitude Westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years}, series = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, volume = {24}, journal = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, number = {8}, publisher = {Sage Publ.}, address = {London}, issn = {0959-6836}, doi = {10.1177/0959683614534741}, pages = {970 -- 984}, year = {2014}, abstract = {In general, a moderate drying trend is observed in mid-latitude arid Central Asia since the Mid-Holocene, attributed to the progressively weakening influence of the mid-latitude Westerlies on regional climate. However, as the spatio-temporal pattern of this development and the underlying climatic mechanisms are yet not fully understood, new high-resolution paleoclimate records from this region are needed. Within this study, a sediment core from Lake Son Kol (Central Kyrgyzstan) was investigated using sedimentological, (bio) geochemical, isotopic, and palynological analyses, aiming at reconstructing regional climate development during the last 6000 years. Biogeochemical data, mainly reflecting summer moisture conditions, indicate predominantly wet conditions until 4950 cal. yr BP, succeeded by a pronounced dry interval between 4950 and 3900 cal. yr BP. In the following, a return to wet conditions and a subsequent moderate drying trend until present times are observed. This is consistent with other regional paleoclimate records and likely reflects the gradual Late Holocene diminishment of the amount of summer moisture provided by the mid-latitude Westerlies. However, climate impact of the Westerlies was apparently not only restricted to the summer season but also significant during winter as indicated by recurrent episodes of enhanced allochthonous input through snowmelt, occurring before 6000 cal. yr BP and at 5100-4350, 3450-2850, and 1900-1500 cal. yr BP. The distinct similar to 1500year periodicity of these episodes of increased winter precipitation in Central Kyrgyzstan resembles similar cyclicities observed in paleoclimate records around the North Atlantic, likely indicating a hemispheric-scale climatic teleconnection and an impact of North Atlantic Oscillation (NAO) variability in Central Asia.}, language = {en} } @article{MenzelGayeMishraetal.2014, author = {Menzel, Philip and Gaye, Birgit and Mishra, Praveen Kumar and Anoop, Ambili and Basavaiah, Nathani and Marwan, Norbert and Plessen, Birgit and Prasad, Sushma and Riedel, Nils and Stebich, Martina and Wiesner, Martin G.}, title = {Linking Holocene drying trends from Lonar Lake in monsoonal central India to North Atlantic cooling events}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {410}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2014.05.044}, pages = {164 -- 178}, year = {2014}, abstract = {We present the results of biogeochemical and mineralogical analyses on a sediment core that covers the Holocene sedimentation history of the climatically sensitive, closed, saline, and alkaline Lonar Lake in the core monsoon zone in central India. We compare our results of C/N ratios, stable carbon and nitrogen isotopes, grain-size, as well as amino acid derived degradation proxies with climatically sensitive proxies of other records from South Asia and the North Atlantic region. The comparison reveals some more or less contemporaneous climate shifts. At Lonar Lake, a general long term climate transition from wet conditions during the early Holocene to drier conditions during the late Holocene, delineating the insolation curve, can be reconstructed. In addition to the previously identified periods of prolonged drought during 4.6-3.9 and 2.0-0.6 cal ka that have been attributed to temperature changes in the Indo Pacific Warm Pool, several additional phases of shorter term climate alteration superimposed upon the general climate trend can be identified. These correlate with cold phases in the North Atlantic region. The most pronounced climate deteriorations indicated by our data occurred during 62-5.2,4.6-3.9, and 2.0-0.6 cal ka BP. The strong dry phase between 4.6 and 3.9 cal ka BP at Lonar Lake corroborates the hypothesis that severe climate deterioration contributed to the decline of the Indus Civilisation about 3.9 ka BP. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{HuangOberhaenslivonSuchodoletzetal.2014, author = {Huang, Xiangtong and Oberhaensli, Hedi and von Suchodoletz, Hans and Prasad, Sushma and Sorrel, Philippe and Plessen, Birgit and Mathis, Marie and Usubaliev, Raskul}, title = {Hydrological changes in western Central Asia (Kyrgyzstan) during the Holocene as inferred from a palaeolimnological study in lake Son Kul}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {103}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2014.09.012}, pages = {134 -- 152}, year = {2014}, abstract = {The hydrology of western Central Asia is highly sensitive to climatic perturbations. In order to understand its long-term variability and to infer linkages between precipitation and atmospheric and oceanic systems, we conducted a thorough sedimentary and geochemical study on a composite core retrieved in lake Son Kul (central Kyrgyzstan). A multi-proxy approach was conducted on lake sediments based on grain size analyses, magnetic susceptibility, total organic carbon (TOC), total nitrogen (TN) and carbon and oxygen isotope analyses on bulk and biogenic materials (ostracoda and molluscs shells) at a resolution equivalent to ca 40 years, aiming to characterise the sequence of palaeolimnological changes in Son Kul. As indicated by delta O-18 record of bulk carbonates, mainly consisting of aragonite, the Holocene hydrological balance was negative during most of time, suggesting an excess of evaporation (E) over precipitation (P). Limnological conditions fluctuated rapidly before 5000 cal yr BP indicating significant changes in regional hydrology and climate. In particular, the long-term negative hydrological balance was impeded by several short stages with marked increase of precipitation, lasting several decades to a few centuries (e.g., 8300-8200, 6900-6700, 6300-6100, 5500-5400, 5300-5200 and 3100 -3000 cal yr BP). Precipitation changes as inferred from 8180 data are also documented by increased minerogenic detritus and higher TOC. We propose that the seasonal pattern of precipitation varied transiently in western Central Asia during the Holocene, although evaporation changes may also account for the rapid changes observed in delta O-18 data. When the annual water balance was less critical (P <= E), the excess of water might be ascribed to increased precipitation during cold seasons mainly because winter precipitation has more negative delta O-18 than its summer equivalent. Conversely, when the annual water balance is negative (P E), the moisture was mainly delivered during the warm season, as between 5000 and 2000 cal yr BP. Our results thus imply that moisture sources could have changed as well during the Holocene. Moisture was delivered as today mainly during summer from the extended Caspian-Aral Basin and eastern Mediterranean, although Arctic and even North Atlantic seas might be important moisture sources when seasonal precipitation was dominated by winter precipitation. We hypothesise that warming Arctic and North Atlantic seas were important for the North Hemisphere circulation during the cold season. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} }