@article{TianCaoDallmeyeretal.2017, author = {Tian, Fang and Cao, Xianyong and Dallmeyer, Anne and Zhao, Yan and Ni, Jian and Herzschuh, Ulrike}, title = {Pollen-climate relationships in time (9 ka, 6 ka, 0 ka) and space (upland vs. lowland) in eastern continental Asia}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {156}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2016.11.027}, pages = {1 -- 11}, year = {2017}, abstract = {Temporal and spatial stability of the vegetation climate relationship is a basic ecological assumption for pollen-based quantitative inferences of past climate change and for predicting future vegetation. We explore this assumption for the Holocene in eastern continental Asia (China, Mongolia). Boosted regression trees (BRT) between fossil pollen taxa percentages (Abies, Artemisia, Betula, Chenopodiaceae, Cyperaceae, Ephedra, Picea, Pinus, Poaceae and Quercus) and climate model outputs of mean annual precipitation (P-ann) and mean temperature of the warmest month (Mt(wa)) for 9 and 6 ka (ka = thousand years before present) were set up and results compared to those obtained from relating modern pollen to modern climate. Overall, our results reveal only slight temporal differences in the pollen climate relationships. Our analyses suggest that the importance of P-ann compared with Mt(wa) for taxa distribution is higher today than it was at 6 ka and 9 ka. In particular, the relevance of P-ann for Picea and Pinus increases and has become the main determinant. This change in the climate tree pollen relationship parallels a widespread tree pollen decrease in north-central China and the eastern Tibetan Plateau. We assume that this is at least partly related to vegetation climate disequilibrium originating from human impact. Increased atmospheric CO2 concentration may have permitted the expansion of moisture-loving herb taxa (Cyperaceae and Poaceae) during the late Holocene into arid/semi-arid areas. We furthermore find that the pollen climate relationship between north-central China and the eastern Tibetan Plateau is generally similar, but that regional differences are larger than temporal differences. In summary, vegetation climate relationships in China are generally stable in space and time, and pollen-based climate reconstructions can be applied to the Holocene. Regional differences imply the calibration-set should be restricted spatially.}, language = {en} } @article{CaoTianTelfordetal.2017, author = {Cao, Xianyong and Tian, Fang and Telford, Richard J. and Ni, Jian and Xu, Qinghai and Chen, Fahu and Liu, Xingqi and Stebich, Martina and Zhao, Yan and Herzschuh, Ulrike}, title = {Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {178}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2017.10.030}, pages = {37 -- 53}, year = {2017}, abstract = {Pollen-based quantitative reconstructions of past climate variables is a standard palaeoclimatic approach. Despite knowing that the spatial extent of the calibration-set affects the reconstruction result, guidance is lacking as to how to determine a suitable spatial extent of the pollen-climate calibration-set. In this study, past mean annual precipitation (P-ann) during the Holocene (since 11.5 cal ka BP) is reconstructed repeatedly for pollen records from Qinghai Lake (36.7 degrees N, 100.5 degrees E; north-east Tibetan Plateau), Gonghai Lake (38.9 degrees N, 112.2 degrees E; north China) and Sihailongwan Lake (42.3 degrees N, 126.6 degrees E; north-east China) using calibration-sets of varying spatial extents extracted from the modern pollen dataset of China and Mongolia (2559 sampling sites and 168 pollen taxa in total). Results indicate that the spatial extent of the calibration-set has a strong impact on model performance, analogue quality and reconstruction diagnostics (absolute value, range, trend, optimum). Generally, these effects are stronger with the modern analogue technique (MAT) than with weighted averaging partial least squares (WA-PLS). With respect to fossil spectra from northern China, the spatial extent of calibration-sets should be restricted to radii between ca. 1000 and 1500 km because small-scale calibration-sets (<800 km radius) will likely fail to include enough spatial variation in the modern pollen assemblages to reflect the temporal range shifts during the Holocene, while too broad a scale calibration-set (>1500 km radius) will include taxa with very different pollen-climate relationships. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @misc{CaoHerzschuhNietal.2014, author = {Cao, Xianyong and Herzschuh, Ulrike and Ni, Jian and Zhao, Yan and B{\"o}hmer, Thomas}, title = {Spatial and temporal distributions of major tree taxa in eastern continental Asia during the last 22,000 years}, series = {The Holocene}, volume = {25}, journal = {The Holocene}, number = {1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404176}, pages = {13}, year = {2014}, abstract = {This study investigates the spatial and temporal distributions of 14 key arboreal taxa and their driving forces during the last 22,000 calendar years before ad 1950 (kyr BP) using a taxonomically harmonized and temporally standardized fossil pollen dataset with a 500-year resolution from the eastern part of continental Asia. Logistic regression was used to estimate pollen abundance thresholds for vegetation occurrence (presence or dominance), based on modern pollen data and present ranges of 14 taxa in China. Our investigation reveals marked changes in spatial and temporal distributions of the major arboreal taxa. The thermophilous (Castanea, Castanopsis, Cyclobalanopsis, Fagus, Pterocarya) and eurythermal (Juglans, Quercus, Tilia, Ulmus) broadleaved tree taxa were restricted to the current tropical or subtropical areas of China during the Last Glacial Maximum (LGM) and spread northward since c. 14.5 kyr BP. Betula and conifer taxa (Abies, Picea, Pinus), in contrast, retained a wider distribution during the LGM and showed no distinct expansion direction during the Late Glacial. Since the late mid-Holocene, the abundance but not the spatial extent of most trees decreased. The changes in spatial and temporal distributions for the 14 taxa are a reflection of climate changes, in particular monsoonal moisture, and, in the late Holocene, human impact. The post-LGM expansion patterns in eastern continental China seem to be different from those reported for Europe and North America, for example, the westward spread for eurythermal broadleaved taxa.}, language = {en} } @article{CaoHerzschuhNietal.2015, author = {Cao, Xianyong and Herzschuh, Ulrike and Ni, Jian and Zhao, Yan and B{\"o}hmer, Thomas}, title = {Spatial and temporal distributions of major tree taxa in eastern continental Asia during the last 22,000 years}, series = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, volume = {25}, journal = {The Holocene : an interdisciplinary journal focusing on recent environmental change}, number = {1}, publisher = {Sage Publ.}, address = {London}, issn = {0959-6836}, doi = {10.1177/0959683614556385}, pages = {79 -- 91}, year = {2015}, abstract = {This study investigates the spatial and temporal distributions of 14 key arboreal taxa and their driving forces during the last 22,000 calendar years before ad 1950 (kyr BP) using a taxonomically harmonized and temporally standardized fossil pollen dataset with a 500-year resolution from the eastern part of continental Asia. Logistic regression was used to estimate pollen abundance thresholds for vegetation occurrence (presence or dominance), based on modern pollen data and present ranges of 14 taxa in China. Our investigation reveals marked changes in spatial and temporal distributions of the major arboreal taxa. The thermophilous (Castanea, Castanopsis, Cyclobalanopsis, Fagus, Pterocarya) and eurythermal (Juglans, Quercus, Tilia, Ulmus) broadleaved tree taxa were restricted to the current tropical or subtropical areas of China during the Last Glacial Maximum (LGM) and spread northward since c. 14.5kyr BP. Betula and conifer taxa (Abies, Picea, Pinus), in contrast, retained a wider distribution during the LGM and showed no distinct expansion direction during the Late Glacial. Since the late mid-Holocene, the abundance but not the spatial extent of most trees decreased. The changes in spatial and temporal distributions for the 14 taxa are a reflection of climate changes, in particular monsoonal moisture, and, in the late Holocene, human impact. The post-LGM expansion patterns in eastern continental China seem to be different from those reported for Europe and North America, for example, the westward spread for eurythermal broadleaved taxa.}, language = {en} } @article{NiCaoJeltschetal.2014, author = {Ni, Jian and Cao, Xianyong and Jeltsch, Florian and Herzschuh, Ulrike}, title = {Biome distribution over the last 22,000 yr in China}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {409}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2014.04.023}, pages = {33 -- 47}, year = {2014}, abstract = {Patterns of past vegetation changes over time and space can help facilitate better understanding of the interactions among climate, ecosystem, and human impact. Biome changes in China over the last 22,000 yr (calibrated radiocarbon date, a BP) were numerically reconstructed by using a standard approach of pollen-plant functional type-biome assignment (biomization). The biomization procedure involves pollen data from 2434 surface sites and 228 fossil sites with a high quality of pollen count and C-14 dating, 51 natural and three anthropogenic plant functional types (PFTs), as well as 19 natural and one anthropogenic biome. Surface pollen-based reconstruction of modern natural biome patterns is in good agreement (74.4\%) with actual vegetation distribution in China. However, modem large-scale anthropogenic biome reconstruction has not been successful based on the current setup of three anthropogenic PFTs (plantation, secondary, and disturbed PFT) because of the limitation of non-species level pollen identification and the difficulty in the clear assignment of disturbed PFTs. The non-anthropogenic biome distributions of 44 time slices at 500-year intervals show large-scale discrepant and changed vegetation patterns from the last glacial maximum (LGM) to the Holocene throughout China. From 22 ka BP to 19 ka BP, temperate grassland, xerophytic shrubland, and desert dominated northern China, whereas cold or cool forests flourished in central China. Warm-temperate evergreen forests were restricted to far southern China, and tropical forests were absent During 18.5 ka BP to 12 ka BP, cold, cool, and dry biomes extended to some parts of northern, westem, and eastern China. Warm-temperate evergreen and mixed forests gradually expanded to occupy the whole of southern China. A slight northward shift of forest biomes occurred from 15 ka BP to 12 lea BP. During 11.5 ka BP to 9 ka BP, temperate grassland and shrubland gradually stretched to northern and western China. Cold and cool forests widely expanded into northern and central China, as well as in the northern margin of South China along with temperate deciduous forest. Since the early mid-Holocene (approximately 8.5 ka BP to 5.5 ka BP), all forest biomes shifted northward at the expense of herbaceous and shrubby biomes. Simultaneously, cold and cool forest biomes occupied the marginal areas of the Tibetan Plateau and the high mountains in western China. During the middle to late Holocene, from 5 ka to the present, temperate grassland and xerophytic shrubland expanded to the south and east, whereas temperate deciduous forests slightly shifted southward. After 3 lea BP, forest biomes were absent in western China and on the Tibetan plateau surface. Dramatic biome shifts from the LGM to the Holocene were observed in the forest-grassland ecotone and transitional zones between temperate and subtropical climates, between subtropical and tropical regions, and in the mountainous margins of the eastern Tibetan Plateau. Evidence showed more human disturbances during the late Holocene. More pollen records and historical documents are therefore further needed to understand fully the human disturbance-induced large-scale forest changes. In addition, more classifications of anthropogenic biome or land cover, more distinct assignment of pollen taxa to anthropogenic PFTs, and more effective numerical and/or mechanistic techniques in building large-scale human disturbances are required. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{HerzschuhNiBirksetal.2011, author = {Herzschuh, Ulrike and Ni, Jian and Birks, H. John B. and B{\"o}hner, J{\"u}rgen}, title = {Driving forces of mid-Holocene vegetation shifts on the upper Tibetan Plateau, with emphasis on changes in atmospheric CO2 concentrations}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {30}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, number = {15-16}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2011.03.007}, pages = {1907 -- 1917}, year = {2011}, abstract = {Numerous pollen records across the upper Tibetan Plateau indicate that in the early part of the mid-Holocene, Kobresia-rich high-alpine meadows invaded areas formerly dominated by alpine steppe vegetation rich in Artemisia. We examine climate, land-use, and CO2 concentration changes as potential drivers for this marked vegetation change. The climatic implications of these vegetational shifts are explored by applying a newly developed pollen-based moisture-balance transfer-function to fossil pollen spectra from Koucha Lake on the north-eastern Tibetan Plateau (34.0 degrees N; 97.2 degrees E; 4540 m a.s.l.) and Xuguo Lake on the central Tibetan Plateau (31.97 degrees N; 90.3 degrees E; 4595 m a.s.l.), both located in the meadow-steppe transition zone. Reconstructed moisture-balances were markedly reduced (by similar to 150-180 mm) during the early mid-Holocene compared to the late-Holocene. These findings contradict most other records from the Indian monsoonal realm and also most non-pollen records from the Tibetan Plateau that indicate a rather wet early- and mid-Holocene. The extent and timing of anthropogenic land-use involving grazing by large herbivores on the upper Tibetan Plateau and its possible impacts on high-alpine vegetation are still mostly unknown due to the lack of relevant archaeological evidence. Arguments against a mainly anthropogenic origin of Kobresia high-alpine meadows are the discovery of the widespread expansion of obviously 'natural' Kobresia meadows on the south-eastern Tibetan Plateau during the Lateglacial period indicating the natural origin of this vegetation type and the lack of any concurrence between modern human-driven vegetation shifts and the mid-Holocene compositional changes. Vegetation types are known to respond to atmospheric CO2 concentration changes, at least on glacial-interglacial scales. This assumption is confirmed by our sensitivity study where we model Tibetan vegetation at different CO2 concentrations of 375 (present-day), 260 (early Holocene), and 650 ppm (future scenario) using the BIOME4 global vegetation model. Previous experimental studies confirm that vegetation growing on dry and high sites is particularly sensitive to CO2 changes. Here we propose that the replacement of drought-resistant alpine steppes (that are well adapted to low CO2 concentrations) by mesic Kobresia meadows can, at least, be partly interpreted as a response to the increase of CO2 concentration since 7000 years ago due to fertilization and water-saving effects. Our hypothesis is corroborated by former CO2 fertilization experiments performed on various dry grasslands and by the strong recent expansion of high-alpine meadows documented by remote sensing studies in response to recent CO2 increases.}, language = {en} }