@misc{RohrmannHeermanceKappetal.2015, author = {Rohrmann, Alexander and Heermance, Richard and Kapp, Paul and Cai, Fulong}, title = {Wind as the primary driver of erosion in the Qaidam Basin, China (vol 374, pg 1, 2013)}, series = {Earth \& planetary science letters}, volume = {432}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2015.10.011}, pages = {501 -- 501}, year = {2015}, language = {en} } @misc{ReimoldSchulzHoffmannetal.2016, author = {Reimold, W. U. and Schulz, Toni and Hoffmann, M. and Wannek, Dshamilja and Hauser, N. and van Acken, David and Luguet, A.}, title = {VREDEFORT GRANOPHYRE GENESIS: CLUES FROM RE-OS ISOTOPE DATA}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {51}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1086-9379}, pages = {A533 -- A533}, year = {2016}, language = {en} } @misc{KneisAbonBronstertetal.2016, author = {Kneis, David and Abon, Catherine Cristobal and Bronstert, Axel and Heistermann, Maik}, title = {Verification of short-term runoff forecasts for a small Philippine basin (Marikina)}, series = {Hydrological sciences journal = Journal des sciences hydrologiques}, volume = {62}, journal = {Hydrological sciences journal = Journal des sciences hydrologiques}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0262-6667}, doi = {10.1080/02626667.2016.1183773}, pages = {205 -- 216}, year = {2016}, abstract = {Storm runoff from the Marikina River Basin frequently causes flood events in the Philippine capital region Metro Manila. This paper presents and evaluates a system to predict short-term runoff from the upper part of that basin (380km(2)). It was designed as a possible component of an operational warning system yet to be installed. For the purpose of forecast verification, hindcasts of streamflow were generated for a period of 15 months with a time-continuous, conceptual hydrological model. The latter was fed with real-time observations of rainfall. Both ground observations and weather radar data were tested as rainfall forcings. The radar-based precipitation estimates clearly outperformed the raingauge-based estimates in the hydrological verification. Nevertheless, the quality of the deterministic short-term runoff forecasts was found to be limited. For the radar-based predictions, the reduction of variance for lead times of 1, 2 and 3hours was 0.61, 0.62 and 0.54, respectively, with reference to a no-forecast scenario, i.e. persistence. The probability of detection for major increases in streamflow was typically less than 0.5. Given the significance of flood events in the Marikina Basin, more effort needs to be put into the reduction of forecast errors and the quantification of remaining uncertainties.}, language = {en} } @misc{SmithBookhagen2018, author = {Smith, Taylor and Bookhagen, Bodo}, title = {Using passive microwave data to understand spatio-temporal trends and dynamics in snow-water storage in High Mountain Asia}, series = {active and passive microwave remote sensing for environmental monitoring II}, volume = {10788}, journal = {active and passive microwave remote sensing for environmental monitoring II}, publisher = {SPIE-INT Soc Optical Engineering}, address = {Bellingham}, isbn = {978-1-5106-2160-2}, issn = {0277-786X}, doi = {10.1117/12.2323827}, pages = {8}, year = {2018}, abstract = {High Mountain Asia provides water for more than a billion downstream users. Many catchments receive the majority of their yearly water budget in the form of snow - the vast majority of which is not monitored by sparse weather networks. We leverage passive microwave data from the SSMI series of satellites (SSMI, SSMI/S, 1987-2016), reprocessed to 3.125 km resolution, to examine trends in the volume and spatial distribution of snow-water equivalent (SWE) in the Indus Basin. We find that the majority of the Indus has seen an increase in snow-water storage. There exists a strong elevation-trend relationship, where high-elevation zones have more positive SWE trends. Negative trends are confined to the Himalayan foreland and deeply-incised valleys which run into the Upper Indus. This implies a temperature-dependent cutoff below which precipitation increases are not translated into increased SWE. Earlier snowmelt or a higher percentage of liquid precipitation could both explain this cutoff.(1) Earlier work 2 found a negative snow-water storage trend for the entire Indus catchment over the time period 1987-2009 (-4 x 10(-3) mm/yr). In this study based on an additional seven years of data, the average trend reverses to 1.4 x 10(-3). This implies that the decade since the mid-2000s was likely wetter, and positively impacted long-term SWE trends. This conclusion is supported by an analysis of snowmelt onset and end dates which found that while long-term trends are negative, more recent (since 2005) trends are positive (moving later in the year).(3)}, language = {en} } @misc{GudipudiRybskiLuedekeetal.2019, author = {Gudipudi, Venkata Ramana and Rybski, Diego and L{\"u}deke, Matthias K. B. and Kropp, J{\"u}rgen}, title = {Urban emission scaling - Research insights and a way forward}, series = {Environment and Planning B: Urban Analytics and City Science}, volume = {46}, journal = {Environment and Planning B: Urban Analytics and City Science}, number = {9}, publisher = {Sage Publ.}, address = {London}, issn = {2399-8083}, doi = {10.1177/2399808319825867}, pages = {1678 -- 1683}, year = {2019}, language = {en} } @misc{LopezTarazonByrnevanderPerk2017, author = {Lopez-Tarazon, Jos{\´e} Andr{\´e}s and Byrne, Patrick and van der Perk, Marcel}, title = {Transfer of Sediments and Contaminants in Catchments and Rivers Preface}, series = {Journal of soils and sediments : protection, risk assessment and remediation}, volume = {17}, journal = {Journal of soils and sediments : protection, risk assessment and remediation}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-0108}, doi = {10.1007/s11368-017-1810-5}, pages = {2577 -- 2581}, year = {2017}, language = {en} } @misc{GeissmanJolivetRusmoreetal.2019, author = {Geissman, John and Jolivet, Laurent and Rusmore, Margi and Niemi, Nathan and Schildgen, Taylor F.}, title = {Thank you to our 2018 peer reviewers}, series = {Tectonics}, volume = {38}, journal = {Tectonics}, number = {4}, publisher = {Hoboken}, address = {Wiley}, issn = {0278-7407}, doi = {10.1029/2019TC005595}, pages = {1159 -- 1163}, year = {2019}, abstract = {An essential, respected, and critical aspect of the modern practice of science and scientific publishing is peer review. The process of peer review facilitates best practices in scientific conduct and communication, ensuring that manuscripts published are as accurate, valuable, and clearly communicated. The over 216 papers published in Tectonics in 2018 benefit from the time, effort, and expertise of our reviewers who have provided thoughtfully considered advice on each manuscript. This role is critical to advancing our understanding of the evolution of the continents and their margins, as these reviews lead to even clearer and higher-quality papers. In 2018, the over 443 papers submitted to Tectonics were the beneficiaries of more than 1,010 reviews provided by 668 members of the tectonics community and related disciplines. To everyone who has volunteered their time and intellect to peer reviewing, thank you for helping Tectonics and all other AGU Publications provide the best science possible.}, language = {en} } @misc{GeissmanJolivetNiemietal.2018, author = {Geissman, John and Jolivet, Laurent and Niemi, Nathan and Schildgen, Taylor F.}, title = {Thank you to our 2017 Peer Reviewers}, series = {Tectonics}, volume = {37}, journal = {Tectonics}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2018TC005194}, pages = {2272 -- 2277}, year = {2018}, abstract = {An essential, respected, and critical aspect of the modern practice of science and scientific publishing is peer review. The process of peer review facilitates best practices in scientific conduct and communication, ensuring that manuscripts published as accurate, valuable, and clearly communicated. The over 152 papers published in Tectonics in 2017 benefit from the time, effort, and expertise of our reviewers who have provided thoughtfully considered advice on each manuscript. This role is critical to advancing our understanding of the evolution of the continents and their margins, as these reviews lead to even clearer and higher-quality papers. In 2017, the over 423 papers submitted to Tectonics were the beneficiaries of more than 786 reviews provided by 562 members of the tectonics community and related disciplines. To everyone who has volunteered their time and intellect to peer reviewing, thank you for helping Tectonics and all other AGU Publications provide the best science possible.}, language = {en} } @misc{Motagh2007, author = {Motagh, Mahdi}, title = {Tectonic and non-tectonic deformation monitoringg using satellite radar interferometry}, address = {Potsdam}, pages = {XI, 88 S. : graph. Darst.}, year = {2007}, language = {en} } @misc{WalzGretRegameyLavorel2016, author = {Walz, Ariane and Gret-Regamey, Adrienne and Lavorel, Sandra}, title = {Social valuation of ecosystem services in mountain regions}, series = {Regional environmental change}, volume = {16}, journal = {Regional environmental change}, publisher = {Springer}, address = {Heidelberg}, issn = {1436-3798}, doi = {10.1007/s10113-016-1028-x}, pages = {1985 -- 1987}, year = {2016}, language = {en} } @misc{GarcinAcostaMelnicketal.2017, author = {Garcin, Yannick and Acosta, Veronica Torres and Melnick, Daniel and Guillemoteau, Julien and Willenbring, Jane and Strecker, Manfred}, title = {Short-lived increase in erosion during the African Humid Period: Evidence from the northern Kenya Rift (vol 759, pg 58, 2017)}, series = {Earth \& planetary science letters}, volume = {474}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2017.07.027}, pages = {528 -- 528}, year = {2017}, language = {en} } @misc{NakatenKempka2019, author = {Nakaten, Natalie Christine and Kempka, Thomas}, title = {Retraction: Techno-Economic Comparison of Onshore and Offshore Underground Coal Gasification End-Product Competitiveness. (Retraction of Vol 10, art no 1643, 2017)}, series = {Energies : open-access journal of related scientific research, technology development and studies in policy and management}, volume = {12}, journal = {Energies : open-access journal of related scientific research, technology development and studies in policy and management}, number = {17}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en12173253}, pages = {1}, year = {2019}, language = {en} } @misc{Braun2020, author = {Braun, Jean}, title = {Response to comment by Japsen et al. on "A review of numerical modeling studies of passive margin escarpments leading to a new analytical expression for the rate of escarpment migration velocity"}, series = {Gondwana research : international geoscience journal ; official journal of the International Association for Gondwana Research}, volume = {65}, journal = {Gondwana research : international geoscience journal ; official journal of the International Association for Gondwana Research}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1342-937X}, doi = {10.1016/j.gr.2018.10.003}, pages = {174 -- 176}, year = {2020}, language = {en} } @misc{FoersterVogelsangJungingeretal.2016, author = {Foerster, Verena and Vogelsang, Ralf and Junginger, Annett and Asrat, Asfawossen and Lamb, Henry F. and Sch{\"a}bitz, Frank and Trauth, Martin H.}, title = {Reply to the comment on "Environmental change and human occupation of southern Ethiopia and northern Kenya during the last 20,000 years. Quaternary Science Reviews 129: 333-340"}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {141}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2016.04.003}, pages = {130 -- 133}, year = {2016}, language = {en} } @misc{BraunAldeiasArcheretal.2019, author = {Braun, David R. and Aldeias, Vera and Archer, Will and Arrowsmith, J. Ramon and Baraki, Niguss and Campisano, Christopher J. and Deino, Alan L. and DiMaggio, Erin N. and Dupont-Nivet, Guillaume and Engda, Blade and Feary, David A. and Garello, Dominique I. and Kerfelew, Zenash and McPherron, Shannon P. and Patterson, David B. and Reeves, Jonathan S. and Thompson, Jessica C. and Reed, Kaye E.}, title = {Reply to Sahle and Gossa: Technology and geochronology at the earliest known Oldowan site at Ledi-Geraru, Ethiopia}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {116}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {41}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1911952116}, pages = {20261 -- 20262}, year = {2019}, language = {en} } @misc{WangHerzschuhLiuetal.2017, author = {Wang, Yongbo and Herzschuh, Ulrike and Liu, Xingqi and Korup, Oliver and Diekmann, Bernhard}, title = {Reply to Chong Xu's comment on: Wang, Yongbo; Herzschuh, Ulrike; Liu, Xingqi; Korup, Oliver; Diekmann, Bernhard: A high-resolution sedimentary archive from landslide-dammed Lake Mengda, north-eastern Tibetan Plateau. - Journal of Paleolimnology. - 51 (2014), S. 303 - 312}, series = {Journal of paleolimnolog}, volume = {57}, journal = {Journal of paleolimnolog}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-016-9937-8}, pages = {163 -- 164}, year = {2017}, language = {en} } @misc{DahmBeckerBischoffetal.2013, author = {Dahm, Torsten and Becker, Dirk and Bischoff, Monika and Cesca, Simone and Dost, B. and Fritschen, R. and Hainzl, Sebastian and Klose, C. D. and Kuhn, D. and Lasocki, S. and Meier, Thomas and Ohrnberger, Matthias and Rivalta, Eleonora and Wegler, Ulrich and Husen, Stephan}, title = {Recommendation for the discrimination of human-related and natural seismicity}, series = {Journal of seismology}, volume = {17}, journal = {Journal of seismology}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {1383-4649}, doi = {10.1007/s10950-012-9295-6}, pages = {197 -- 202}, year = {2013}, abstract = {Various techniques are utilized by the seismological community, extractive industries, energy and geoengineering companies to identify earthquake nucleation processes in close proximity to engineering operation points. These operations may comprise fluid extraction or injections, artificial water reservoir impoundments, open pit and deep mining, deep geothermal power generations or carbon sequestration. In this letter to the editor, we outline several lines of investigation that we suggest to follow to address the discrimination problem between natural seismicity and seismic events induced or triggered by geoengineering activities. These suggestions have been developed by a group of experts during several meetings and workshops, and we feel that their publication as a summary report is helpful for the geoscientific community. Specific investigation procedures and discrimination approaches, on which our recommendations are based, are also published in this Special Issue (SI) of Journal of Seismology.}, language = {en} } @misc{MeereMulchroneMcCarthyetal.2016, author = {Meere, Patrick A. and Mulchrone, Kieran F. and McCarthy, David J. and Timmerman, Martin Jan and Dewey, John F.}, title = {Prelithification and synlithification tectonic foliation development in a clastic sedimentary sequence}, series = {Geology}, volume = {44}, journal = {Geology}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G38103Y.1}, pages = {E397 -- E397}, year = {2016}, language = {en} } @misc{BubeckAertsdeMoeletal.2016, author = {Bubeck, Philip and Aerts, Jeroen C. J. H. and de Moel, Hans and Kreibich, Heidi}, title = {Preface: Flood-risk analysis and integrated management}, series = {Natural hazards and earth system sciences}, volume = {16}, journal = {Natural hazards and earth system sciences}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1561-8633}, doi = {10.5194/nhess-16-1005-2016}, pages = {1005 -- 1010}, year = {2016}, language = {en} } @misc{LuehrWichtGilderetal.2018, author = {L{\"u}hr, Hermann and Wicht, Johannes and Gilder, Stuart A. and Holschneider, Matthias}, title = {Preface}, series = {Magnetic Fields in the Solar System: Planets, Moons and Solar Wind Interactions}, volume = {448}, journal = {Magnetic Fields in the Solar System: Planets, Moons and Solar Wind Interactions}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-3-319-64292-5}, issn = {0067-0057}, pages = {V -- VI}, year = {2018}, language = {en} } @misc{WetzelKempkaKuehn2017, author = {Wetzel, Maria and Kempka, Thomas and K{\"u}hn, Michael}, title = {Predicting macroscopic elastic rock properties requires detailed information on microstructure}, series = {Energy procedia}, volume = {125}, journal = {Energy procedia}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1876-6102}, doi = {10.1016/j.egypro.2017.08.195}, pages = {561 -- 570}, year = {2017}, abstract = {Predicting variations in macroscopic mechanical rock behaviour due to microstructural changes, driven by mineral precipitation and dissolution is necessary to couple chemo-mechanical processes in geological subsurface simulations. We apply 3D numerical homogenization models to estimate Young's moduli for five synthetic microstructures, and successfully validate our results for comparable geometries with the analytical Mori-Tanaka approach. Further, we demonstrate that considering specific rock microstructures is of paramount importance, since calculated elastic properties may deviate by up to 230 \% for the same mineral composition. Moreover, agreement between simulated and experimentally determined Young's moduli is significantly improved, when detailed spatial information are employed.}, language = {en} } @misc{HoehnelReimoldMohrWestheideetal.2016, author = {Hoehnel, Desiree and Reimold, W. U. and Mohr-Westheide, Tanja and Hofmann, Axel and Altenberger, Uwe}, title = {PETROGRAPHY OF ARCHEAN SPHERULE LAYERS FROM THE CT3 DRILL CORE, BARBERTON GREENSTONE BELT, SOUTH AFRICA}, series = {Scientific reports}, volume = {51}, journal = {Scientific reports}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1086-9379}, pages = {A333 -- A333}, year = {2016}, language = {en} } @misc{Sprinz2018, author = {Sprinz, Detlef F.}, title = {Our Conclusions}, series = {Global Climate Policy: Actors, Concepts, and Enduring Challenges}, journal = {Global Climate Policy: Actors, Concepts, and Enduring Challenges}, editor = {Luterbacher, Urs and Sprinz, Detlef F.}, publisher = {MIT Press}, address = {Cambridge}, isbn = {978-0-262-53534-2}, pages = {323 -- 335}, year = {2018}, language = {en} } @misc{VoropaevKorochantsevPetukhovetal.2016, author = {Voropaev, S. and Korochantsev, A. and Petukhov, D. and Kocherov, A. and Kaeter, David and Ziemann, Martin Andreas and Boettger, Ute}, title = {Ordinary chondrites of Chelyabinsk meteorite and comparison with asteroid 25143 (Itokawa)}, series = {PLoS one}, volume = {51}, journal = {PLoS one}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1086-9379}, pages = {A644 -- A644}, year = {2016}, language = {en} } @misc{RounsevellMetzgerWalz2019, author = {Rounsevell, Mark D. A. and Metzger, Marc J. and Walz, Ariane}, title = {Operationalising ecosystem services in Europe}, series = {Regional environmental change}, volume = {19}, journal = {Regional environmental change}, number = {8}, publisher = {Springer}, address = {Heidelberg}, issn = {1436-3798}, doi = {10.1007/s10113-019-01560-1}, pages = {2143 -- 2149}, year = {2019}, language = {en} } @misc{GarcinDeschampsMenotetal.2018, author = {Garcin, Yannick and Deschamps, Pierre and Menot, Guillemette and de Saulieu, Geoffroy and Schefuss, Enno and Sebag, David and Dupont, Lydie M. and Oslisly, Richard and Brademann, Brian and Mbusnum, Kevin G. and Onana, Jean-Michel and Ako, Andrew A. and Epp, Laura Saskia and Tjallingii, Rik and Strecker, Manfred and Brauer, Achim and Sachse, Dirk}, title = {No evidence for climate variability during the late Holocene rainforest crisis in Western Central Africa REPLY}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {115}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {29}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1808481115}, pages = {E6674 -- E6675}, year = {2018}, language = {en} } @misc{RheinwaltBookhagen2018, author = {Rheinwalt, Aljoscha and Bookhagen, Bodo}, title = {Network-based flow accumulation for point clouds}, series = {Remote Sensing for Agriculture, Ecosystems, and Hydrology XX}, volume = {10783}, journal = {Remote Sensing for Agriculture, Ecosystems, and Hydrology XX}, publisher = {SPIE-INT Society of Photo-Optical Instrumentation Engineers}, address = {Bellingham}, isbn = {978-1-5106-2150-3}, issn = {0277-786X}, doi = {10.1117/12.2318424}, pages = {12}, year = {2018}, abstract = {Point clouds provide high-resolution topographic data which is often classified into bare-earth, vegetation, and building points and then filtered and aggregated to gridded Digital Elevation Models (DEMs) or Digital Terrain Models (DTMs). Based on these equally-spaced grids flow-accumulation algorithms are applied to describe the hydrologic and geomorphologic mass transport on the surface. In this contribution, we propose a stochastic point-cloud filtering that, together with a spatial bootstrap sampling, allows for a flow accumulation directly on point clouds using Facet-Flow Networks (FFN). Additionally, this provides a framework for the quantification of uncertainties in point-cloud derived metrics such as Specific Catchment Area (SCA) even though the flow accumulation itself is deterministic.}, language = {en} } @misc{KuehnSchoene2017, author = {K{\"u}hn, Michael and Sch{\"o}ne, Tim}, title = {Multivariate regression model from water level and production rate time series for the geothermal reservoir Waiwera (New Zealand)}, series = {Energy procedia}, volume = {125}, journal = {Energy procedia}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1876-6102}, doi = {10.1016/j.egypro.2017.08.196}, pages = {571 -- 579}, year = {2017}, abstract = {Water management tools are necessary to guarantee the preservation of natural resources while ensuring optimum utilization. Linear regression models are a simple and quick solution for creating prognostic capabilities. Multivariate models show higher precision than univariate models. In the case of Waiwera, implementation of individual production rates is more accurate than applying just the total production rate. A maximum of approximately 1,075 m3/day can be pumped to ensure a water level of at least 0.5 m a.s.l. in the monitoring well. The model should be renewed annually to implement new data and current water level trends to keep the quality.}, language = {en} } @misc{WagnerOswaldFrick2018, author = {Wagner, Kathrin and Oswald, Sascha and Frick, Annett}, title = {Multitemporal soil moisture monitoring by use of optical remote sensing data in a dike relocation area}, series = {Remote Sensing for Agriculture, Ecosystems, and Hydrology XX}, volume = {10783}, journal = {Remote Sensing for Agriculture, Ecosystems, and Hydrology XX}, publisher = {SPIE-INT Soc Optical Engineering}, address = {Bellingham}, isbn = {978-1-5106-2150-3}, issn = {0277-786X}, doi = {10.1117/12.2325319}, pages = {5}, year = {2018}, abstract = {The nature restoration project 'Lenzener Elbtalaue', realised from 2002 to 2011 at the river Elbe, included the first large scale dike relocation in Germany (420 ha). Its aim was to initiate the development of endangered natural wetland habitats and processes, accompanied by greater biodiversity in the former grassland dominated area. The monitoring of spatial and temporal variations of soil moisture in this dike relocation area is therefore particularly important for estimating the restoration success. The topsoil moisture monitoring from 1990 to 2017 is based on the Soil Moisture Index (SMI)1 derived with the triangle method2 by use of optical remotely sensed data: land surface temperature and Normalized Differnce Vegetation Index are calculated from Landsat 4/5/7/8 data and atmospheric corrected by use of MODIS data. Spatial and temporal soil moisture variations in the restored area of the dike relocation are compared to the agricultural and pasture area behind the new dike. Ground truth data in the dike relocation area was obtained from field measurements in October 2017 with a FDR device. Additionally, data from a TERENO soil moisture sensor network (SoilNet) and mobile cosmic ray neutron sensing (CRNS) rover measurements are compared to the results of the triangle method for a region in the Harz Mountains (Germany). The SMI time series illustrates, that the dike relocation area has become significantly wetter between 1990 and 2017, due to restructuring measurements. Whereas the SMI of the dike hinterland reflects constant and drier conditions. An influence of climate is unlikely. However, validation of the dimensionless index with ground truth measurements is very difficult, mostly due to large differences in scale.}, language = {en} } @misc{Mangili2006, author = {Mangili, Clara}, title = {Microfacies and isotope analyses of the varved Pi{\`a}nico lake sediment profile for high-resolution reconstruction of interglacial climate dynamics}, address = {Potsdam}, pages = {VI, 91 Bl. : graph. Darst.}, year = {2006}, language = {en} } @misc{HoehnelTagleHofmannetal.2016, author = {Hoehnel, Desir{\´e}e and Tagle, Roald and Hofmann, Axel and Reimold, W. U. and Mohr-Westheide, Tanja and Fritz, Joerg and Altenberger, Uwe}, title = {MICRO-XRF ANALYSIS OF ARCHEAN SPHERULE LAYERS AND HOST ROCKS FROM THE CT3 DRILL CORE, BARBERTON GREENSTONE BELT, SOUTH AFRICA}, series = {Monthly notices of the Royal Astronomical Society}, volume = {51}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1086-9379}, pages = {A334 -- A334}, year = {2016}, language = {en} } @misc{BobosGoncalvesLimaetal.2019, author = {Bobos, Iuliu and Goncalves, Ana and Lima, Luis and Noronha, Fernando and Sudo, Masafumi}, title = {Micas Ar-40/Ar-39 dating of hydrothermal events related with the post-orogenic W (+/- Sn), (Cu, Mo) mineralization from Borralha, Northern Portugal}, series = {Life with Ore Deposits on Earth - 15th SGA Biennial Meeting 2019,}, journal = {Life with Ore Deposits on Earth - 15th SGA Biennial Meeting 2019,}, number = {1}, publisher = {SGA Soc Geology Applied mineral depositis}, address = {Geneva}, pages = {353 -- 356}, year = {2019}, abstract = {Secondary mica minerals collected from the Santa Helena (W- (Cu) mineralization) and Venise (W-Mo mineralization) endogenic breccia structures were Ar-40/Ar-39 dated. The muscovite Ar-40/Ar-39 data yielded 286.8 +/- 1.2 (+/- 1 sigma) Ma (samples 6Ha and 11Ha) which reflect the age of secondary muscovite formation probably from magmatic biotite or feldspar alteration. Sericite Ar-40/Ar-39 data yielded 280.9 +/- 1.2 (+/- 1 sigma) Ma to 279.0 +/- 1.1 (+/- 1 sigma) Ma (samples 6Hb and 11Hb) reflecting the age of greisen alteration (T similar to 300 degrees C) where the W- disseminated mineralization occurs. The muscovite 40Ar/39Ar data of 277.3 +/- 1.3 (+/- 1 sigma) Ma and 281.3 +/- 1.2 (+/- 1 sigma) Ma (samples 5 and 6) also reflect the age of muscovite (selvage) crystallized adjacent to molybdenite veins within the Venise breccia. Geochronological data obtained confirmed that the W mineralization at Santa Helena breccia is older than Mo-mineralization at Venise breccia. Also, the timing of hydrothermal circulation and the cooling history for the W-stage deposition was no longer than 7 Ma and 4 Ma for Mo-deposition.}, language = {en} } @misc{ThiedeEhlers2013, author = {Thiede, Rasmus Christoph and Ehlers, Todd}, title = {Large spatial and temporal variations in Himalayan denudation (vol 371, pg 278, 2013)}, series = {Earth \& planetary science letters}, volume = {374}, journal = {Earth \& planetary science letters}, number = {13}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2013.07.004}, pages = {256 -- 257}, year = {2013}, language = {en} } @misc{DuyduBasaranAydinetal.2017, author = {Duydu, Yalcin and Basaran, Nursen and Aydin, Sevtap and Ustundag, Aylin and Goktas, Hatica Gul and Yalcin, Can {\"O}zg{\"u}r and Bacanli, Merve and Sarigol, Zehra and Aydos, Kaan and Atabekoglu, Cem Somer and Schwerdtle, Tanja and Golka, Klaus and Ickstadt, Katja and Bolt, Hermann M.}, title = {Investigation of boron mediated reproductive and developmental effects in highly boron exposed population}, series = {Toxicology letters}, volume = {280}, journal = {Toxicology letters}, publisher = {Elsevier}, address = {Clare}, issn = {0378-4274}, doi = {10.1016/j.toxlet.2017.07.259}, pages = {S94 -- S94}, year = {2017}, language = {en} } @misc{KuehnLiNakatenetal.2017, author = {K{\"u}hn, Michael and Li, Qi and Nakaten, Natalie Christine and Kempka, Thomas}, title = {Integrated subsurface gas storage of CO2 and CH4 offers capacity and state-of-the-art technology for energy storage in China}, series = {Energy procedia}, volume = {125}, journal = {Energy procedia}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1876-6102}, doi = {10.1016/j.egypro.2017.08.039}, pages = {14 -- 18}, year = {2017}, abstract = {Integration and development of the energy supply in China and worldwide is a challenge for the years to come. The innovative idea presented here is based on an extension of the "power-to-gas-to-power" technology by establishing a closed carbon cycle. It is an implementation of a low-carbon energy system based on carbon dioxide capture and storage (CCS) to store and reuse wind and solar energy. The Chenjiacun storage project in China compares well with the German case study for the towns Potsdam and Brandenburg/Havel in the Federal State of Brandenburg based on the Ketzin pilot site for CCS.}, language = {en} } @misc{LehmannCoumouFrieler2015, author = {Lehmann, Jascha and Coumou, Dim and Frieler, Katja}, title = {Increased record-breaking precipitation events under global warming (vol 132, pg 501, 2015)}, series = {Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change}, volume = {132}, journal = {Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change}, number = {4}, publisher = {Springer}, address = {Dordrecht}, issn = {0165-0009}, doi = {10.1007/s10584-015-1466-3}, pages = {517 -- 518}, year = {2015}, language = {en} } @misc{GarcinDeschampsMenotetal.2018, author = {Garcin, Yannick and Deschamps, Pierre and Menot, Guillemette and de Saulieu, Geoffroy and Schefuss, Enno and Sebag, David and Dupont, Lydie M. and Oslisly, Richard and Brademann, Brian and Mbusnum, Kevin G. and Onana, Jean-Michel and Ako, Andrew A. and Epp, Laura Saskia and Tjallingii, Rik and Strecker, Manfred and Brauer, Achim and Sachse, Dirk}, title = {Human activity is the most probable trigger of the late Holocene rainforest crisis in Western Central Africa Reply}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {115}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {21}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1805582115}, pages = {E4735 -- E4736}, year = {2018}, language = {en} } @misc{HugenschmidtGiannopoulosTronicke2019, author = {Hugenschmidt, Johannes and Giannopoulos, Antonios and Tronicke, Jens}, title = {Foreword}, series = {Near surface geophysics}, volume = {17}, journal = {Near surface geophysics}, number = {3}, publisher = {Wiley}, address = {Oxford}, issn = {1569-4445}, doi = {10.1002/nsg.12050}, pages = {199 -- 200}, year = {2019}, language = {en} } @misc{LuterbacherSprinz2018, author = {Luterbacher, Urs and Sprinz, Detlef F.}, title = {Foreword}, series = {Global climate policy: actors, concepts, and enduring challenges}, journal = {Global climate policy: actors, concepts, and enduring challenges}, editor = {Luterbacher, Urs and Sprinz, Detlef F.}, publisher = {MIT Press}, address = {Cambridge}, isbn = {978-0-262-53534-2}, pages = {IX -- XI}, year = {2018}, language = {en} } @misc{Brune2018, author = {Brune, Sascha}, title = {Forces within continental and oceanic rifts}, series = {Geology}, volume = {46}, journal = {Geology}, number = {2}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/focus022018.1}, pages = {191 -- 192}, year = {2018}, language = {en} } @misc{SommerAugustinKleber2016, author = {Sommer, Michael and Augustin, J{\"u}rgen and Kleber, M.}, title = {Feedbacks of soil erosion on SOC patterns and carbon dynamics in agricultural landscapes-The CarboZALF experiment}, series = {Journal of real-time image processing}, volume = {156}, journal = {Journal of real-time image processing}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-1987}, doi = {10.1016/j.still.2015.09.015}, pages = {182 -- 184}, year = {2016}, language = {en} } @misc{BousquetDeCapitaniArcay2006, author = {Bousquet, Romain and De Capitani, Christian and Arcay, Diane}, title = {Feedback of the metamorphic changes on the subducting processes}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {70}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, number = {18}, publisher = {Elsevier}, address = {Oxford}, issn = {0016-7037}, doi = {10.1016/j.gca.2006.06.228}, pages = {A62 -- A62}, year = {2006}, language = {en} } @misc{RadosavljevicLantuitPollardetal.2016, author = {Radosavljevic, Boris and Lantuit, Hugues and Pollard, Wayne and Overduin, Pier Paul and Couture, Nicole and Sachs, Torsten and Helm, Veit and Fritz, Michael}, title = {Erosion and Flooding - Threats to Coastal Infrastructure in the Arctic: A Case Study from Herschel Island, Yukon Territory, Canada (vol 39, pg 900, 2016)}, series = {Estuaries and coasts : journal of the Estuarine Research Federation}, volume = {39}, journal = {Estuaries and coasts : journal of the Estuarine Research Federation}, publisher = {Springer}, address = {New York}, issn = {1559-2723}, doi = {10.1007/s12237-016-0115-z}, pages = {1294 -- 1295}, year = {2016}, language = {en} } @misc{MischkeZhangFan2015, author = {Mischke, Steffen and Zhang, Chengjun and Fan, Rong}, title = {Early to mid-Holocene lake high-stand sediments at Lake Donggi Cona, northeastern Tibetan Plateau, China -}, series = {Quaternary research : an interdisciplinary journal}, volume = {83}, journal = {Quaternary research : an interdisciplinary journal}, number = {1}, publisher = {Elsevier}, address = {San Diego}, issn = {0033-5894}, doi = {10.1016/j.yqres.2014.06.005}, pages = {256 -- 258}, year = {2015}, language = {en} } @misc{MirusEbelMohretal.2017, author = {Mirus, Benjamin B. and Ebel, Brian A. and Mohr, Christian Heinrich and Zegre, Nicolas}, title = {Disturbance Hydrology: Preparing for an Increasingly Disturbed Future}, series = {Water resources research}, volume = {53}, journal = {Water resources research}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1002/2017WR021084}, pages = {10007 -- 10016}, year = {2017}, abstract = {This special issue is the result of several fruitful conference sessions on disturbance hydrology, which started at the 2013 AGU Fall Meeting in San Francisco and have continued every year since. The stimulating presentations and discussions surrounding those sessions have focused on understanding both the disruption of hydrologic functioning following discrete disturbances, as well as the subsequent recovery or change within the affected watershed system. Whereas some hydrologic disturbances are directly linked to anthropogenic activities, such as resource extraction, the contributions to this special issue focus primarily on those with indirect or less pronounced human involvement, such as bark-beetle infestation, wildfire, and other natural hazards. However, human activities are enhancing the severity and frequency of these seemingly natural disturbances, thereby contributing to acute hydrologic problems and hazards. Major research challenges for our increasingly disturbed planet include the lack of continuous pre and postdisturbance monitoring, hydrologic impacts that vary spatially and temporally based on environmental and hydroclimatic conditions, and the preponderance of overlapping or compounding disturbance sequences. In addition, a conceptual framework for characterizing commonalities and differences among hydrologic disturbances is still in its infancy. In this introduction to the special issue, we advance the fusion of concepts and terminology from ecology and hydrology to begin filling this gap. We briefly explore some preliminary approaches for comparing different disturbances and their hydrologic impacts, which provides a starting point for further dialogue and research progress.}, language = {en} } @misc{KuehnKempkadeLuciaetal.2017, author = {K{\"u}hn, Michael and Kempka, Thomas and de Lucia, Marco and Scheck-Wenderoth, Magdalena}, title = {Dissolved CO2 storage in geological formations with low pressure, low risk and large capacities}, series = {Energy procedia}, volume = {114}, journal = {Energy procedia}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1876-6102}, doi = {10.1016/j.egypro.2017.03.1607}, pages = {4722 -- 4727}, year = {2017}, abstract = {Geological CO2 storage is a mitigation technology to reduce CO2 emissions from fossil fuel combustion. However, major concerns are the pressure increase and saltwater displacement in the mainly targeted deep groundwater aquifers due to injection of supercritical CO2. The suggested solution is storage of CO2 exclusively in the dissolved state. In our exemplary regional case study of the North East German Basin based on a highly resolved temperature and pressure distribution model and a newly developed reactive transport coupling, we have quantified that 4.7 Gt of CO2 can be stored in solution compared to 1.5 Gt in the supercritical state.}, language = {en} } @misc{ShpritsZhelavskayaGreenetal.2018, author = {Shprits, Yuri Y. and Zhelavskaya, Irina and Green, Janet C. and Pulkkinen, Antti A. and Horne, Richard B. and Pitchford, David and Glover, Alexi}, title = {Discussions on Stakeholder Requirements for Space Weather-Related Models}, series = {Space Weather: The International Journal of Research and Applications}, volume = {16}, journal = {Space Weather: The International Journal of Research and Applications}, number = {4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1542-7390}, doi = {10.1002/2018SW001864}, pages = {341 -- 342}, year = {2018}, abstract = {Participants of the 2017 European Space Weather Week in Ostend, Belgium, discussed the stakeholder requirements for space weather-related models. It was emphasized that stakeholders show an increased interest in space weather-related models. Participants of the meeting discussed particular prediction indicators that can provide first-order estimates of the impact of space weather on engineering systems.}, language = {en} } @misc{WawrzenitzKrohe2016, author = {Wawrzenitz, Nicole and Krohe, Alexander}, title = {Deformed monazite yields high-temperature tectonic ages}, series = {Geology}, volume = {44}, journal = {Geology}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G37394C.1}, pages = {E377 -- E377}, year = {2016}, language = {en} } @misc{AyzelIzhitskiy2018, author = {Ayzel, Georgy and Izhitskiy, Alexander}, title = {Coupling physically based and data-driven models for assessing freshwater inflow into the Small Aral Sea}, series = {Innovative Water Resources Management in a Changing Environment - Understanding and Balancing Interactions between Humankind and Nature}, volume = {379}, journal = {Innovative Water Resources Management in a Changing Environment - Understanding and Balancing Interactions between Humankind and Nature}, editor = {Xu, Z Peng}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2199-899X}, doi = {10.5194/piahs-379-151-2018}, pages = {151 -- 158}, year = {2018}, abstract = {The Aral Sea desiccation and related changes in hydroclimatic conditions on a regional level is a hot topic for past decades. The key problem of scientific research projects devoted to an investigation of modern Aral Sea basin hydrological regime is its discontinuous nature - the only limited amount of papers takes into account the complex runoff formation system entirely. Addressing this challenge we have developed a continuous prediction system for assessing freshwater inflow into the Small Aral Sea based on coupling stack of hydrological and data-driven models. Results show a good prediction skill and approve the possibility to develop a valuable water assessment tool which utilizes the power of classical physically based and modern machine learning models both for territories with complex water management system and strong water-related data scarcity. The source code and data of the proposed system is available on a Github page (https://github.com/SMASHIproject/IWRM2018).}, language = {en} } @misc{JaraSanchezReyesSocquetetal.2018, author = {Jara, Jorge and S{\´a}nchez-Reyes, Hugo and Socquet, Anne and Cotton, Fabrice and Virieux, Jean and Maksymowicz, Andrei and D{\´i}az-Mojica, John and Walpersdorf, Andrea and Ruiz, Javier and Cotte, Nathalie and Norabuena, Edmundo}, title = {Corrigendum to: Kinematic study of Iquique 2014 Mw 8.1 earthquake: Understanding the segmentation of the seismogenic zone. - (Earth and planetary science letters. - 503 (2018) S. 131 - 143)}, series = {Earth and planetary science letters}, volume = {506}, journal = {Earth and planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2018.11.026}, pages = {347 -- 347}, year = {2018}, abstract = {We study the rupture processes of Iquique earthquake 8.1 (2014/04/01) and its largest aftershock 7.7 (2014/04/03) that ruptured the North Chile subduction zone. High-rate Global Positioning System (GPS) recordings and strong motion data are used to reconstruct the evolution of the slip amplitude, rise time and rupture time of both earthquakes. A two-step inversion scheme is assumed, by first building prior models for both earthquakes from the inversion of the estimated static displacements and then, kinematic inversions in the frequency domain are carried out taken into account this prior information. The preferred model for the mainshock exhibits a seismic moment of 1.73 × 1021 Nm ( 8.1) and maximum slip of ∼9 m, while the aftershock model has a seismic moment of 3.88 × 1020 ( 7.7) and a maximum slip of ∼3 m. For both earthquakes, the final slip distributions show two asperities (a shallow one and a deep one) separated by an area with significant slip deficit. This suggests a segmentation along-dip which might be related to a change of the dipping angle of the subducting slab inferred from gravimetric data. Along-strike, the areas where the seismic ruptures stopped seem to be well correlated with geological features observed from geophysical information (high-resolution bathymetry, gravimetry and coupling maps) that are representative of the long-term segmentation of the subduction margin. Considering the spatially limited portions that were broken by these two earthquakes, our results support the idea that the seismic gap is not filled yet.}, language = {en} }