@phdthesis{Šustr2020, author = {Šustr, David}, title = {Molecular diffusion in polyelectrolyte multilayers}, doi = {10.25932/publishup-48903}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-489038}, school = {Universit{\"a}t Potsdam}, pages = {106}, year = {2020}, abstract = {Research on novel and advanced biomaterials is an indispensable step towards their applications in desirable fields such as tissue engineering, regenerative medicine, cell culture, or biotechnology. The work presented here focuses on such a promising material: polyelectrolyte multilayer (PEM) composed of hyaluronic acid (HA) and poly(L-lysine) (PLL). This gel-like polymer surface coating is able to accumulate (bio-)molecules such as proteins or drugs and release them in a controlled manner. It serves as a mimic of the extracellular matrix (ECM) in composition and intrinsic properties. These qualities make the HA/PLL multilayers a promising candidate for multiple bio-applications such as those mentioned above. The work presented aims at the development of a straightforward approach for assessment of multi-fractional diffusion in multilayers (first part) and at control of local molecular transport into or from the multilayers by laser light trigger (second part). The mechanism of the loading and release is governed by the interaction of bioactives with the multilayer constituents and by the diffusion phenomenon overall. The diffusion of a molecule in HA/PLL multilayers shows multiple fractions of different diffusion rate. Approaches, that are able to assess the mobility of molecules in such a complex system, are limited. This shortcoming motivated the design of a novel evaluation tool presented here. The tool employs a simulation-based approach for evaluation of the data acquired by fluorescence recovery after photobleaching (FRAP) method. In this approach, possible fluorescence recovery scenarios are primarily simulated and afterwards compared with the data acquired while optimizing parameters of a model until a sufficient match is achieved. Fluorescent latex particles of different sizes and fluorescein in an aqueous medium are utilized as test samples validating the analysis results. The diffusion of protein cytochrome c in HA/PLL multilayers is evaluated as well. This tool significantly broadens the possibilities of analysis of spatiotemporal FRAP data, which originate from multi-fractional diffusion, while striving to be widely applicable. This tool has the potential to elucidate the mechanisms of molecular transport and empower rational engineering of the drug release systems. The second part of the work focuses on the fabrication of such a spatiotemporarily-controlled drug release system employing the HA/PLL multilayer. This release system comprises different layers of various functionalities that together form a sandwich structure. The bottom layer, which serves as a reservoir, is formed by HA/PLL PEM deposited on a planar glass substrate. On top of the PEM, a layer of so-called hybrids is deposited. The hybrids consist of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) -based hydrogel microparticles with surface-attached gold nanorods. The layer of hybrids is intended to serve as a gate that controls the local molecular transport through the PEM-solution-interface. The possibility of stimulating the molecular transport by near-infrared (NIR) laser irradiation is being explored. From several tested approaches for the deposition of hybrids onto the PEM surface, the drying-based approach was identified as optimal. Experiments, that examine the functionality of the fabricated sandwich at elevated temperature, document the reversible volume phase transition of the PEM-attached hybrids while sustaining the sandwich stability. Further, the gold nanorods were shown to effectively absorb light radiation in the tissue- and cell-friendly NIR spectral region while transducing the energy of light into heat. The rapid and reversible shrinkage of the PEM-attached hybrids was thereby achieved. Finally, dextran was employed as a model transport molecule. It loads into the PEM reservoir in a few seconds with the partition constant of 2.4, while it spontaneously releases in a slower, sustained manner. The local laser irradiation of the sandwich, which contains the fluorescein isothiocyanate tagged dextran, leads to a gradual reduction of fluorescence intensity in the irradiated region. The release system fabricated employs renowned photoresponsivity of the hybrids in an innovative setting. The results of the research are a step towards a spatially-controlled on-demand drug release system that paves the way to spatiotemporally controlled drug release. The approaches developed in this work have the potential to elucidate the molecular dynamics in ECM and to foster engineering of multilayers with properties tuned to mimic the ECM. The work aims at spatiotemporal control over the diffusion of bioactives and their presentation to the cells.}, language = {en} } @phdthesis{Zorn2020, author = {Zorn, Edgar Ulrich}, title = {Monitoring lava dome growth and deformation with photogrammetric methods and modelling}, doi = {10.25932/publishup-48360}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-483600}, school = {Universit{\"a}t Potsdam}, pages = {IX, 167}, year = {2020}, abstract = {Lava domes are severely hazardous, mound-shaped extrusions of highly viscous lava and commonly erupt at many active stratovolcanoes around the world. Due to gradual growth and flank oversteepening, such lava domes regularly experience partial or full collapses, resulting in destructive and far-reaching pyroclastic density currents. They are also associated with cyclic explosive activity as the complex interplay of cooling, degassing, and solidification of dome lavas regularly causes gas pressurizations on the dome or the underlying volcano conduit. Lava dome extrusions can last from days to decades, further highlighting the need for accurate and reliable monitoring data. This thesis aims to improve our understanding of lava dome processes and to contribute to the monitoring and prediction of hazards posed by these domes. The recent rise and sophistication of photogrammetric techniques allows for the extraction of observational data in unprecedented detail and creates ideal tools for accomplishing this purpose. Here, I study natural lava dome extrusions as well as laboratory-based analogue models of lava dome extrusions and employ photogrammetric monitoring by Structure-from-Motion (SfM) and Particle-Image-Velocimetry (PIV) techniques. I primarily use aerial photography data obtained by helicopter, airplanes, Unoccupied Aircraft Systems (UAS) or ground-based timelapse cameras. Firstly, by combining a long time-series of overflight data at Volc{\´a}n de Colima, M{\´e}xico, with seismic and satellite radar data, I construct a detailed timeline of lava dome and crater evolution. Using numerical model, the impact of the extrusion on dome morphology and loading stress is further evaluated and an impact on the growth direction is identified, bearing important implications for the location of collapse hazards. Secondly, sequential overflight surveys at the Santiaguito lava dome, Guatemala, reveal surface motion data in high detail. I quantify the growth of the lava dome and the movement of a lava flow, showing complex motions that occur on different timescales and I provide insight into rock properties relevant for hazard assessment inferred purely by photogrammetric processing of remote sensing data. Lastly, I recreate artificial lava dome and spine growth using analogue modelling under controlled conditions, providing new insights into lava extrusion processes and structures as well as the conditions in which they form. These findings demonstrate the capabilities of photogrammetric data analyses to successfully monitor lava dome growth and evolution while highlighting the advantages of complementary modelling methods to explain the observed phenomena. The results presented herein further bear important new insights and implications for the hazards posed by lava domes.}, language = {en} } @phdthesis{Zhelavskaya2020, author = {Zhelavskaya, Irina}, title = {Modeling of the Plasmasphere Dynamics}, doi = {10.25932/publishup-48243}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-482433}, school = {Universit{\"a}t Potsdam}, pages = {xlii, 256}, year = {2020}, abstract = {The plasmasphere is a dynamic region of cold, dense plasma surrounding the Earth. Its shape and size are highly susceptible to variations in solar and geomagnetic conditions. Having an accurate model of plasma density in the plasmasphere is important for GNSS navigation and for predicting hazardous effects of radiation in space on spacecraft. The distribution of cold plasma and its dynamic dependence on solar wind and geomagnetic conditions remain, however, poorly quantified. Existing empirical models of plasma density tend to be oversimplified as they are based on statistical averages over static parameters. Understanding the global dynamics of the plasmasphere using observations from space remains a challenge, as existing density measurements are sparse and limited to locations where satellites can provide in-situ observations. In this dissertation, we demonstrate how such sparse electron density measurements can be used to reconstruct the global electron density distribution in the plasmasphere and capture its dynamic dependence on solar wind and geomagnetic conditions. First, we develop an automated algorithm to determine the electron density from in-situ measurements of the electric field on the Van Allen Probes spacecraft. In particular, we design a neural network to infer the upper hybrid resonance frequency from the dynamic spectrograms obtained with the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite, which is then used to calculate the electron number density. The developed Neural-network-based Upper hybrid Resonance Determination (NURD) algorithm is applied to more than four years of EMFISIS measurements to produce the publicly available electron density data set. We utilize the obtained electron density data set to develop a new global model of plasma density by employing a neural network-based modeling approach. In addition to the location, the model takes the time history of geomagnetic indices and location as inputs, and produces electron density in the equatorial plane as an output. It is extensively validated using in-situ density measurements from the Van Allen Probes mission, and also by comparing the predicted global evolution of the plasmasphere with the global IMAGE EUV images of He+ distribution. The model successfully reproduces erosion of the plasmasphere on the night side as well as plume formation and evolution, and agrees well with data. The performance of neural networks strongly depends on the availability of training data, which is limited during intervals of high geomagnetic activity. In order to provide reliable density predictions during such intervals, we can employ physics-based modeling. We develop a new approach for optimally combining the neural network- and physics-based models of the plasmasphere by means of data assimilation. The developed approach utilizes advantages of both neural network- and physics-based modeling and produces reliable global plasma density reconstructions for quiet, disturbed, and extreme geomagnetic conditions. Finally, we extend the developed machine learning-based tools and apply them to another important problem in the field of space weather, the prediction of the geomagnetic index Kp. The Kp index is one of the most widely used indicators for space weather alerts and serves as input to various models, such as for the thermosphere, the radiation belts and the plasmasphere. It is therefore crucial to predict the Kp index accurately. Previous work in this area has mostly employed artificial neural networks to nowcast and make short-term predictions of Kp, basing their inferences on the recent history of Kp and solar wind measurements at L1. We analyze how the performance of neural networks compares to other machine learning algorithms for nowcasting and forecasting Kp for up to 12 hours ahead. Additionally, we investigate several machine learning and information theory methods for selecting the optimal inputs to a predictive model of Kp. The developed tools for feature selection can also be applied to other problems in space physics in order to reduce the input dimensionality and identify the most important drivers. Research outlined in this dissertation clearly demonstrates that machine learning tools can be used to develop empirical models from sparse data and also can be used to understand the underlying physical processes. Combining machine learning, physics-based modeling and data assimilation allows us to develop novel methods benefiting from these different approaches.}, language = {en} } @phdthesis{Zhang2020, author = {Zhang, Jianrui}, title = {Completely water-based emulsions as compartmentalized systems via pickering stabilization}, doi = {10.25932/publishup-47654}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-476542}, school = {Universit{\"a}t Potsdam}, pages = {II, 119}, year = {2020}, abstract = {Completely water-based systems are of interest for the development of novel material for various reasons: On one hand, they provide benign environment for biological systems and on the other hand they facilitate effective molecular transport in a membrane-free environment. In order to investigate the general potential of aqueous two-phase systems (ATPSs) for biomaterials and compartmentalized systems, various solid particles were applied to stabilize all-aqueous emulsion droplets. The target ATPS to be investigated should be prepared via mixing of two aqueous solutions of water-soluble polymers, which turn biphasic when exceeding a critical polymer concentration. Hydrophilic polymers with a wide range of molar mass such as dextran/poly(ethylene glycol) (PEG) can therefore be applied. Solid particles adsorbed at the interfaces can be exceptionally efficient stabilizers forming so-called Pickering emulsions, and nanoparticles can bridge the correlation length of polymer solutions and are thereby the best option for water-in-water emulsions. The first approach towards the investigation of ATPS was conducted with all aqueous dextran-PEG emulsions in the presence of poly(dopamine) particles (PDP) in Chapter 4. The water-in-water emulsions were formed with a PEG/dextran system via utilizing PDP as stabilizers. Studies of the formed emulsions were performed via laser scanning confocal microscope (CLSM), optical microscope (OM), cryo-scanning electron microscope (SEM) and tensiometry. The stable emulsions (at least 16 weeks) were demulsified easily via dilution or surfactant addition. Furthermore, the solid PDP at the water-water interface were crosslinked in order to inhibit demulsification of the Pickering emulsion. Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to visualize the morphology of PDP before and after crosslinking. PDP stabilized water-in-water emulsions were utilized in the following Chapter 5 to form supramolecular compartmentalized hydrogels. Here, hydrogels were prepared in pre-formed water-in-water emulsions and gelled via α-cyclodextrin-PEG (α-CD-PEG) inclusion complex formation. Studies of the formed complexes were performed via X-ray powder diffraction (XRD) and the mechanical properties of the hydrogels were measured with oscillatory shear rheology. In order to verify the compartmentalized state and its triggered decomposition, hydrogels and emulsions were assessed via OM, SEM and CLSM. The last chapter broadens the investigations from the previous two systems by utilizing various carbon nitrides (CN) as different stabilizers in ATPS. CN introduces another way to trigger demulsification, namely irradiation with visible light. Therefore, emulsification and demulsification with various triggers were probed. The investigated all aqueous multi-phase systems will act as model for future fabrication of biocompatible materials, cell micropatterning as well as separation of compartmentalized systems.}, language = {en} } @phdthesis{Zeckra2020, author = {Zeckra, Martin}, title = {Seismological and seismotectonic analysis of the northwestern Argentine Central Andean foreland}, doi = {10.25932/publishup-47324}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473240}, school = {Universit{\"a}t Potsdam}, pages = {vii, 120}, year = {2020}, abstract = {After a severe M W 5.7 earthquake on October 17, 2015 in El Galp{\´o}n in the province of Salta NW Argentina, I installed a local seismological network around the estimated epicenter. The network covered an area characterized by inherited Cretaceous normal faults and neotectonic faults with unknown recurrence intervals, some of which may have been reactivated normal faults. The 13 three-component seismic stations recorded data continuously for 15 months. The 2015 earthquake took place in the Santa B{\´a}rbara System of the Andean foreland, at about 17km depth. This region is the easternmost morphostructural region of the central Andes. As a part of the broken foreland, it is bounded to the north by the Subandes fold-and-thrust belt and the Sierras Pampeanas to the south; to the east lies the Chaco-Paran{\´a} basin. A multi-stage morphotectonic evolution with thick-skinned basement uplift and coeval thin-skinned deformation in the intermontane basins is suggested for the study area. The release of stresses associated with the foreland deformation can result in strong earthquakes, as the study area is known for recurrent and historical, destructive earthquakes. The available continuous record reaches back in time, when the strongest event in 1692 (magnitude 7 or intensity IX) destroyed the city of Esteco. Destructive earthquakes and surface deformation are thus a hallmark of this part of the Andean foreland. With state-of-the-art Python packages (e.g. pyrocko, ObsPy), a semi-automatic approach is followed to analyze the collected continuous data of the seismological network. The resulting 1435 hypocenter locations consist of three different groups: 1.) local crustal earthquakes (nearly half of the events belong to this group), 2.) interplate activity, of regional distance in the slab of the Nazca-plate, and 3.) very deep earthquakes at about 600km depth. My major interest focused on the first event class. Those crustal events are partly aftershock events of the El Galp{\´o}n earthquake and a second earthquake, in the south of the same fault. Further events can be considered as background seismicity of other faults within the study area. Strikingly, the seismogenic zone encompass the whole crust and propagates brittle deformation down, close to the Moho. From the collected seismological data, a local seismic velocity model is estimated, using VELEST. After the execution of various stability tests, the robust minimum 1D-velocity model implies guiding values for the composition of the local, subsurface structure of the crust. Afterwards, performing a hypocenter relocation enables the assignment of individual earthquakes to aftershock clusters or extended seismotectonic structures. This allows the mapping of previously unknown seismogenic faults. Finally, focal mechanisms are modeled for events with acurately located hypocenters, using the newly derived local velocity model. A compressive regime is attested by the majority of focal mechanisms, while the strike direction of the individual seismogenic structures is in agreement with the overall north - south orientation of the Central Andes, its mountain front, and individual mountain ranges in the southern Santa-B{\´a}rbara-System.}, language = {en} } @phdthesis{Youakim2020, author = {Youakim, Kris}, title = {Galactic archaeology with metal-poor stars from the Pristine survey}, doi = {10.25932/publishup-47431}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474314}, school = {Universit{\"a}t Potsdam}, pages = {iv, 151}, year = {2020}, abstract = {The Milky Way is a spiral galaxy consisting of a disc of gas, dust and stars embedded in a halo of dark matter. Within this dark matter halo there is also a diffuse population of stars called the stellar halo, that has been accreting stars for billions of years from smaller galaxies that get pulled in and disrupted by the large gravitational potential of the Milky Way. As they are disrupted, these galaxies leave behind long streams of stars that can take billions of years to mix with the rest of the stars in the halo. Furthermore, the amount of heavy elements (metallicity) of the stars in these galaxies reflects the rate of chemical enrichment that occurred in them, since the Universe has been slowly enriched in heavy elements (e.g. iron) through successive generations of stars which produce them in their cores and supernovae explosions. Therefore, stars that contain small amounts of heavy elements (metal-poor stars) either formed at early times before the Universe was significantly enriched, or in isolated environments. The aim of this thesis is to develop a better understanding of the substructure content and chemistry of the Galactic stellar halo, in order to gain further insight into the formation and evolution of the Milky Way. The Pristine survey uses a narrow-band filter which specifically targets the Ca II H \& K spectral absorption lines to provide photometric metallicities for a large number of stars down to the extremely metal-poor (EMP) regime, making it a very powerful data set for Galactic archaeology studies. In Chapter 2, we quantify the efficiency of the survey using a preliminary spectroscopic follow-up sample of ~ 200 stars. We also use this sample to establish a set of selection criteria to improve the success rate of selecting EMP candidates for follow-up spectroscopy. In Chapter 3, we extend this work and present the full catalogue of ~ 1000 stars from a three year long medium resolution spectroscopic follow-up effort conducted as part of the Pristine survey. From this sample, we compute success rates of 56\% and 23\% for recovering stars with [Fe/H] < -2.5 and [Fe/H] < -3.0, respectively. This demonstrates a high efficiency for finding EMP stars as compared to previous searches with success rates of 3-4\%. In Chapter 4, we select a sample of ~ 80000 halo stars using colour and magnitude cuts to select a main sequence turnoff population in the distance range 6 < dʘ < 20 kpc. We then use the spectroscopic follow-up sample presented in Chapter 3 to statistically rescale the Pristine photometric metallicities of this sample, and present the resulting corrected metallicity distribution function (MDF) of the halo. The slope at the metal-poor end is significantly shallower than previous spectroscopic efforts have shown, suggesting that there may be more metal-poor stars with [Fe/H] < -2.5 in the halo than previously thought. This sample also shows evidence that the MDF of the halo may not be bimodal as was proposed by previous works, and that the lack of globular clusters in the Milky Way may be the result of a physical truncation of the MDF rather than just statistical under-sampling. Chapter 5 showcases the unexpected capability of the Pristine filter for separating blue horizontal branch (BHB) stars from Blue Straggler (BS) stars. We demonstrate a purity of 93\% and completeness of 91\% for identifying BHB stars, a substantial improvement over previous works. We then use this highly pure and complete sample of BHB stars to trace the halo density profile out to d > 100 kpc, and the Sagittarius stream substructure out to ~ 130 kpc. In Chapter 6 we use the photometric metallicities from the Pristine survey to perform a clustering analysis of the halo as a function of metallicity. Separating the Pristine sample into four metallicity bins of [Fe/H] < -2, -2 < [Fe/H] < -1.5, -1.5 < [Fe/H] < -1 and -0.9 < [Fe/H] < -0.8, we compute the two-point correlation function to measure the amount of clustering on scales of < 5 deg. For a smooth comparison sample we make a mock Pristine data set generated using the Galaxia code based on the Besan{\c{c}}on model of the Galaxy. We find enhanced clustering on small scales (< 0.5 deg) for some regions of the Galaxy for the most metal-poor bin ([Fe/H] < -2), while in others we see large scale signals that correspond to known substructures in those directions. This confirms that the substructure content of the halo is highly anisotropic and diverse in different Galactic environments. We discuss the difficulties of removing systematic clustering signals from the data and the limitations of disentangling weak clustering signals from real substructures and residual systematic structure in the data. Taken together, the work presented in this thesis approaches the problem of better understanding the halo of our Galaxy from multiple angles. Firstly, presenting a sizeable sample of EMP stars and improving the selection efficiency of EMP stars for the Pristine survey, paving the way for the further discovery of metal-poor stars to be used as probes to early chemical evolution. Secondly, improving the selection of BHB distance tracers to map out the halo to large distances, and finally, using the large samples of metal-poor stars to derive the MDF of the inner halo and analyse the substructure content at different metallicities. The results of this thesis therefore expand our understanding of the physical and chemical properties of the Milky Way stellar halo, and provide insight into the processes involved in its formation and evolution.}, language = {en} } @phdthesis{Yang2020, author = {Yang, Xiaoqiang}, title = {Spatial and temporal analyses of catchment and in-stream nitrate dynamics}, doi = {10.25932/publishup-47702}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-477029}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 146}, year = {2020}, abstract = {Water quality in river systems is of growing concern due to rising anthropogenic pressures and climate change. Mitigation efforts have been placed under the guidelines of different governance conventions during last decades (e.g., the Water Framework Directive in Europe). Despite significant improvement through relatively straightforward measures, the environmental status has likely reached a plateau. A higher spatiotemporal accuracy of catchment nitrate modeling is, therefore, needed to identify critical source areas of diffuse nutrient pollution (especially for nitrate) and to further guide implementation of spatially differentiated, cost-effective mitigation measures. On the other hand, the emerging high-frequency sensor monitoring upgrades the monitoring resolution to the time scales of biogeochemical processes and enables more flexible monitoring deployments under varying conditions. The newly available information offers new prospects in understanding nitrate spatiotemporal dynamics. Formulating such advanced process understanding into catchment models is critical for model further development and environmental status evaluation. This dissertation is targeting on a comprehensive analysis of catchment and in-stream nitrate dynamics and is aiming to derive new insights into their spatial and temporal variabilities through the new fully distributed model development and the new high-frequency data. Firstly, a new fully distributed, process-based catchment nitrate model (the mHM-Nitrate model) is developed based on the mesoscale Hydrological Model (mHM) platform. Nitrate process descriptions are adopted from the Hydrological Predictions for the Environment (HYPE), with considerable improved implementations. With the multiscale grid-based discretization, mHM-Nitrate balances the spatial representation and the modeling complexity. The model has been thoughtfully evaluated in the Selke catchment (456 km2), central Germany, which is characterized by heterogeneous physiographic conditions. Results show that the model captures well the long-term discharge and nitrate dynamics at three nested gauging stations. Using daily nitrate-N observations, the model is also validated in capturing short-term fluctuations due to changes in runoff partitioning and spatial contribution during flooding events. By comparing the model simulations with the values reported in the literature, the model is capable of providing detailed and reliable spatial information of nitrate concentrations and fluxes. Therefore, the model can be taken as a promising tool for environmental scientists in advancing environmental modeling research, as well as for stakeholders in supporting their decision-making, especially for spatially differentiated mitigation measures. Secondly, a parsimonious approach of regionalizing the in-stream autotrophic nitrate uptake is proposed using high-frequency data and further integrated into the new mHM-Nitrate model. The new regionalization approach considers the potential uptake rate (as a general parameter) and effects of above-canopy light and riparian shading (represented by global radiation and leaf area index data, respectively). Multi-parameter sensors have been continuously deployed in a forest upstream reach and an agricultural downstream reach of the Selke River. Using the continuous high-frequency data in both streams, daily autotrophic uptake rates (2011-2015) are calculated and used to validate the regionalization approach. The performance and spatial transferability of the approach is validated in terms of well-capturing the distinct seasonal patterns and value ranges in both forest and agricultural streams. Integrating the approach into the mHM-Nitrate model allows spatiotemporal variability of in-stream nitrate transport and uptake to be investigated throughout the river network. Thirdly, to further assess the spatial variability of catchment nitrate dynamics, for the first time the fully distributed parameterization is investigated through sensitivity analysis. Sensitivity results show that parameters of soil denitrification, in-stream denitrification and in-stream uptake processes are the most sensitive parameters throughout the Selke catchment, while they all show high spatial variability, where hot-spots of parameter sensitivity can be explicitly identified. The Spearman rank correlation is further analyzed between sensitivity indices and multiple catchment factors. The correlation identifies that the controlling factors vary spatially, reflecting heterogeneous catchment responses in the Selke catchment. These insights are, therefore, informative in informing future parameter regionalization schemes for catchment water quality models. In addition, the spatial distributions of parameter sensitivity are also influenced by the gauging information that is being used for sensitivity evaluation. Therefore, an appropriate monitoring scheme is highly recommended to truly reflect the catchment responses.}, language = {en} } @phdthesis{Wolff2020, author = {Wolff, Christian Michael}, title = {Identification and reduction of losses in perovskite solar cells}, doi = {10.25932/publishup-47930}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-479301}, school = {Universit{\"a}t Potsdam}, pages = {x, 158}, year = {2020}, abstract = {Perovskite solar cells have become one of the most studied systems in the quest for new, cheap and efficient solar cell materials. Within a decade device efficiencies have risen to >25\% in single-junction and >29\% in tandem devices on top of silicon. This rapid improvement was in many ways fortunate, as e. g. the energy levels of commonly used halide perovskites are compatible with already existing materials from other photovoltaic technologies such as dye-sensitized or organic solar cells. Despite this rapid success, fundamental working principles must be understood to allow concerted further improvements. This thesis focuses on a comprehensive understanding of recombination processes in functioning devices. First the impact the energy level alignment between the perovskite and the electron transport layer based on fullerenes is investigated. This controversial topic is comprehensively addressed and recombination is mitigated through reducing the energy difference between the perovskite conduction band minimum and the LUMO of the fullerene. Additionally, an insulating blocking layer is introduced, which is even more effective in reducing this recombination, without compromising carrier collection and thus efficiency. With the rapid efficiency development (certified efficiencies have broken through the 20\% ceiling) and thousands of researchers working on perovskite-based optoelectronic devices, reliable protocols on how to reach these efficiencies are lacking. Having established robust methods for >20\% devices, while keeping track of possible pitfalls, a detailed description of the fabrication of perovskite solar cells at the highest efficiency level (>20\%) is provided. The fabrication of low-temperature p-i-n structured devices is described, commenting on important factors such as practical experience, processing atmosphere \& temperature, material purity and solution age. Analogous to reliable fabrication methods, a method to identify recombination losses is needed to further improve efficiencies. Thus, absolute photoluminescence is identified as a direct way to quantify the Quasi-Fermi level splitting of the perovskite absorber (1.21eV) and interfacial recombination losses the transport layers impose, reducing the latter to ~1.1eV. Implementing very thin interlayers at both the p- and n-interface (PFN-P2 and LiF, respectively), these losses are suppressed, enabling a VOC of up to 1.17eV. Optimizing the device dimensions and the bandgap, 20\% devices with 1cm2 active area are demonstrated. Another important consideration is the solar cells' stability if subjected to field-relevant stressors during operation. In particular these are heat, light, bias or a combination thereof. Perovskite layers - especially those incorporating organic cations - have been shown to degrade if subjected to these stressors. Keeping in mind that several interlayers have been successfully used to mitigate recombination losses, a family of perfluorinated self-assembled monolayers (X-PFCn, where X denotes I/Br and n = 7-12) are introduced as interlayers at the n-interface. Indeed, they reduce interfacial recombination losses enabling device efficiencies up to 21.3\%. Even more importantly they improve the stability of the devices. The solar cells with IPFC10 are stable over 3000h stored in the ambient and withstand a harsh 250h of MPP at 85◦C without appreciable efficiency losses. To advance further and improve device efficiencies, a sound understanding of the photophysics of a device is imperative. Many experimental observations in recent years have however drawn an inconclusive picture, often suffering from technical of physical impediments, disguising e. g. capacitive discharge as recombination dynamics. To circumvent these obstacles, fully operational, highly efficient perovskites solar cells are investigated by a combination of multiple optical and optoelectronic probes, allowing to draw a conclusive picture of the recombination dynamics in operation. Supported by drift-diffusion simulations, the device recombination dynamics can be fully described by a combination of first-, second- and third-order recombination and JV curves as well as luminescence efficiencies over multiple illumination intensities are well described within the model. On this basis steady state carrier densities, effective recombination constants, densities-of-states and effective masses are calculated, putting the devices at the brink of the radiative regime. Moreover, a comprehensive review of recombination in state-of-the-art devices is given, highlighting the importance of interfaces in nonradiative recombination. Different strategies to assess these are discussed, before emphasizing successful strategies to reduce interfacial recombination and pointing towards the necessary steps to further improve device efficiency and stability. Overall, the main findings represent an advancement in understanding loss mechanisms in highly efficient solar cells. Different reliable optoelectronic techniques are used and interfacial losses are found to be of grave importance for both efficiency and stability. Addressing the interfaces, several interlayers are introduced, which mitigate recombination losses and degradation.}, language = {en} } @phdthesis{Winkelbeiner2020, author = {Winkelbeiner, Nicola Lisa}, title = {Impact of element species on DNA repair processes}, pages = {XV, 182, iii}, year = {2020}, language = {en} } @phdthesis{Wenk2020, author = {Wenk, Sebastian}, title = {Engineering formatotrophic growth in Escherichia coli}, school = {Universit{\"a}t Potsdam}, pages = {V, 107}, year = {2020}, abstract = {To meet the demands of a growing world population while reducing carbon dioxide (CO2) emissions, it is necessary to capture CO2 and convert it into value-added compounds. In recent years, metabolic engineering of microbes has gained strong momentum as a strategy for the production of valuable chemicals. As common microbial feedstocks like glucose directly compete with human consumption, the one carbon (C1) compound formate was suggested as an alternative feedstock. Formate can be easily produced by various means including electrochemical reduction of CO2 and could serve as a feedstock for microbial production, hence presenting a novel entry point for CO2 to the biosphere and a storage option for excess electricity. Compared to the gaseous molecule CO2, formate is a highly soluble compound that can be easily handled and stored. It can serve as a carbon and energy source for natural formatotrophs, but these microbes are difficult to cultivate and engineer. In this work, I present the results of several projects that aim to establish efficient formatotrophic growth of E. coli - which cannot naturally grow on formate - via synthetic formate assimilation pathways. In the first study, I establish a workflow for growth-coupled metabolic engineering of E. coli. I demonstrate this approach by presenting an engineering scheme for the PFL-threonine cycle, a synthetic pathway for anaerobic formate assimilation in E. coli. The described methods are intended to create a standardized toolbox for engineers that aim to establish novel metabolic routes in E. coli and related organisms. The second chapter presents a study on the catalytic efficiency of C1-oxidizing enzymes in vivo. As formatotrophic growth requires generation of both energy and biomass from formate, the engineered E. coli strains need to be equipped with a highly efficient formate dehydrogenase, which provides reduction equivalents and ATP for formate assimilation. I engineered a strain that cannot generate reducing power and energy for cellular growth, when fed on acetate. Under this condition, the strain depends on the introduction of an enzymatic system for NADH regeneration, which could further produce ATP via oxidative phosphorylation. I show that the strain presents a valuable testing platform for C1-oxidizing enzymes by testing different NAD-dependent formate and methanol dehydrogenases in the energy auxotroph strain. Using this platform, several candidate enzymes with high in vivo activity, were identified and characterized as potential energy-generating systems for synthetic formatotrophic or methylotrophic growth in E. coli.   In the third chapter, I present the establishment of the serine threonine cycle (STC) - a synthetic formate assimilation pathway - in E. coli. In this pathway, formate is assimilated via formate tetrahydrofolate ligase (FtfL) from Methylobacterium extorquens (M. extorquens). The carbon from formate is attached to glycine to produce serine, which is converted into pyruvate entering central metabolism. Via the natural threonine synthesis and cleavage route, glycine is regenerated and acetyl-CoA is produced as the pathway product. I engineered several selection strains that depend on different STC modules for growth and determined key enzymes that enable high flux through threonine synthesis and cleavage. I could show that expression of an auxiliary formate dehydrogenase was required to achieve growth via threonine synthesis and cleavage on pyruvate. By overexpressing most of the pathway enzymes from the genome, and applying adaptive laboratory evolution, growth on glycine and formate was achieved, indicating the activity of the complete cycle. The fourth chapter shows the establishment of the reductive glycine pathway (rGP) - a short, linear formate assimilation route - in E. coli. As in the STC, formate is assimilated via M. extorquens FtfL. The C1 from formate is condensed with CO2 via the reverse reaction of the glycine cleavage system to produce glycine. Another carbon from formate is attached to glycine to form serine, which is assimilated into central metabolism via pyruvate. The engineered E. coli strain, expressing most of the pathway genes from the genome, can grow via the rGP with formate or methanol as a sole carbon and energy source.}, language = {en} } @phdthesis{Wen2020, author = {Wen, Xi}, title = {Distribution patterns and environmental drivers of methane-cycling microorganisms in natural environments and restored wetlands}, doi = {10.25932/publishup-47177}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471770}, school = {Universit{\"a}t Potsdam}, pages = {VIII, iii, 152}, year = {2020}, abstract = {Methane is an important greenhouse gas contributing to global climate change. Natural environments and restored wetlands contribute a large proportion to the global methane budget. Methanogenic archaea (methanogens) and methane oxidizing bacteria (methanotrophs), the biogenic producers and consumers of methane, play key roles in the methane cycle in those environments. A large number of studies revealed the distribution, diversity and composition of these microorganisms in individual habitats. However, uncertainties exist in predicting the response and feedback of methane-cycling microorganisms to future climate changes and related environmental changes due to the limited spatial scales considered so far, and due to a poor recognition of the biogeography of these important microorganisms combining global and local scales. With the aim of improving our understanding about whether and how methane-cycling microbial communities will be affected by a series of dynamic environmental factors in response to climate change, this PhD thesis investigates the biogeographic patterns of methane-cycling communities, and the driving factors which define these patterns at different spatial scales. At the global scale, a meta-analysis was performed by implementing 94 globally distributed public datasets together with environmental data from various natural environments including soils, lake sediments, estuaries, marine sediments, hydrothermal sediments and mud volcanos. In combination with a global biogeographic map of methanogenic archaea from multiple natural environments, this thesis revealed that biogeographic patterns of methanogens exist. The terrestrial habitats showed higher alpha diversities than marine environments. Methanoculleus and Methanosaeta (Methanothrix) are the most frequently detected taxa in marine habitats, while Methanoregula prevails in terrestrial habitats. Estuary ecosystems, the transition zones between marine and terrestrial/limnic ecosystems, have the highest methanogenic richness but comparably low methane emission rates. At the local scale, this study compared two rewetted fens with known high methane emissions in northeastern Germany, a coastal brackish fen (H{\"u}telmoor) and a freshwater riparian fen (Polder Zarnekow). Consistent with different geochemical conditions and land-use history, the two rewetted fens exhibit dissimilar methanogenic and, especially, methanotrophic community compositions. The methanotrophic community was generally under-represented among the prokaryotic communities and both fens show similarly low ratios of methanotrophic to methanogenic abundances. Since few studies have characterized methane-cycling microorganisms in rewetted fens, this study provides first evidence that the rapid and well re-established methanogenic community in combination with the low and incomplete re-establishment of the methanotrophic community after rewetting contributes to elevated sustained methane fluxes following rewetting. Finally, this thesis demonstrates that dispersal limitation only slightly regulates the biogeographic distribution patterns of methanogenic microorganisms in natural environments and restored wetlands. Instead, their existence, adaption and establishment are more associated with the selective pressures under different environmental conditions. Salinity, pH and temperature are identified as the most important factors in shaping microbial community structure at different spatial scales (global versus terrestrial environments). Predicted changes in climate, such as increasing temperature, changes in precipitation patterns and increasing frequency of flooding events, are likely to induce a series of environmental alterations, which will either directly or indirectly affect the driving environmental forces of methanogenic communities, leading to changes in their community composition and thus potentially also in methane emission patterns in the future.}, language = {en} } @phdthesis{Weisshuhn2020, author = {Weißhuhn, Peter}, title = {Assessing biotope vulnerability to landscape changes}, doi = {10.25932/publishup-44277}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442777}, school = {Universit{\"a}t Potsdam}, pages = {v, 134}, year = {2020}, abstract = {Largescale patterns of global land use change are very frequently accompanied by natural habitat loss. To assess the consequences of habitat loss for the remaining natural and semi-natural biotopes, inclusion of cumulative effects at the landscape level is required. The interdisciplinary concept of vulnerability constitutes an appropriate assessment framework at the landscape level, though with few examples of its application for ecological assessments. A comprehensive biotope vulnerability analysis allows identification of areas most affected by landscape change and at the same time with the lowest chances of regeneration. To this end, a series of ecological indicators were reviewed and developed. They measured spatial attributes of individual biotopes as well as some ecological and conservation characteristics of the respective resident species community. The final vulnerability index combined seven largely independent indicators, which covered exposure, sensitivity and adaptive capacity of biotopes to landscape changes. Results for biotope vulnerability were provided at the regional level. This seems to be an appropriate extent with relevance for spatial planning and designing the distribution of nature reserves. Using the vulnerability scores calculated for the German federal state of Brandenburg, hot spots and clusters within and across the distinguished types of biotopes were analysed. Biotope types with high dependence on water availability, as well as biotopes of the open landscape containing woody plants (e.g., orchard meadows) are particularly vulnerable to landscape changes. In contrast, the majority of forest biotopes appear to be less vulnerable. Despite the appeal of such generalised statements for some biotope types, the distribution of values suggests that conservation measures for the majority of biotopes should be designed specifically for individual sites. Taken together, size, shape and spatial context of individual biotopes often had a dominant influence on the vulnerability score. The implementation of biotope vulnerability analysis at the regional level indicated that large biotope datasets can be evaluated with high level of detail using geoinformatics. Drawing on previous work in landscape spatial analysis, the reproducible approach relies on transparent calculations of quantitative and qualitative indicators. At the same time, it provides a synoptic overview and information on the individual biotopes. It is expected to be most useful for nature conservation in combination with an understanding of population, species, and community attributes known for specific sites. The biotope vulnerability analysis facilitates a foresighted assessment of different land uses, aiding in identifying options to slow habitat loss to sustainable levels. It can also be incorporated into planning of restoration measures, guiding efforts to remedy ecological damage. Restoration of any specific site could yield synergies with the conservation objectives of other sites, through enhancing the habitat network or buffering against future landscape change. Biotope vulnerability analysis could be developed in line with other important ecological concepts, such as resilience and adaptability, further extending the broad thematic scope of the vulnerability concept. Vulnerability can increasingly serve as a common framework for the interdisciplinary research necessary to solve major societal challenges.}, language = {en} } @phdthesis{Wang2020, author = {Wang, Xia}, title = {Reef ecosystem recovery following the Middle Permian (Capitanian) mass extinction}, doi = {10.25932/publishup-48750}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-487502}, school = {Universit{\"a}t Potsdam}, pages = {XI, 144}, year = {2020}, abstract = {To find out the future of nowadays reef ecosystem turnover under the environmental stresses such as global warming and ocean acidification, analogue studies from the geologic past are needed. As a critical time of reef ecosystem innovation, the Permian-Triassic transition witnessed the most severe demise of Phanerozoic reef builders, and the establishment of modern style symbiotic relationships within the reef-building organisms. Being the initial stage of this transition, the Middle Permian (Capitanian) mass extinction coursed a reef eclipse in the early Late Permian, which lead to a gap of understanding in the post-extinction Wuchiapingian reef ecosystem, shortly before the radiation of Changhsingian reefs. Here, this thesis presents detailed biostratigraphic, sedimentological, and palaeoecological studies of the Wuchiapingian reef recovery following the Middle Permian (Capitanian) mass extinction, on the only recorded Wuchiapingian reef setting, outcropping in South China at the Tieqiao section. Conodont biostratigraphic zonations were revised from the Early Permian Artinskian to the Late Permian Wuchiapingian in the Tieqiao section. Twenty main and seven subordinate conodont zones are determined at Tieqiao section including two conodont zone below and above the Tieqiao reef complex. The age of Tieqiao reef was constrained as early to middle Wuchiapingian. After constraining the reef age, detailed two-dimensional outcrop mapping combined with lithofacies study were carried out on the Wuchiapingian Tieqiao Section to investigate the reef growth pattern stratigraphically as well as the lateral changes of reef geometry on the outcrop scale. Semi-quantitative studies of the reef-building organisms were used to find out their evolution pattern within the reef recovery. Six reef growth cycles were determined within six transgressive-regressive cycles in the Tieqiao section. The reefs developed within the upper part of each regressive phase and were dominated by different biotas. The timing of initial reef recovery after the Middle Permian (Capitanian) mass extinction was updated to the Clarkina leveni conodont zone, which is earlier than previous understanding. Metazoans such as sponges were not the major components of the Wuchiapingian reefs until the 5th and 6th cycles. So, the recovery of metazoan reef ecosystem after the Middle Permian (Capitanian) mass extinction was obviously delayed. In addition, although the importance of metazoan reef builders such as sponges did increase following the recovery process, encrusting organisms such as Archaeolithoporella and Tubiphytes, combined with microbial carbonate precipitation, still played significant roles to the reef building process and reef recovery after the mass extinction. Based on the results from outcrop mapping and sedimentological studies, quantitative composition analysis of the Tieqiao reef complex were applied on selected thin sections to further investigate the functioning of reef building components and the reef evolution after the Middle Permian (Capitanian) mass extinction. Data sets of skeletal grains and whole rock components were analyzed. The results show eleven biocommunity clusters/eight rock composition clusters dominated by different skeletal grains/rock components. Sponges, Archaeolithoporella and Tubiphytes were the most ecologically important components within the Wuchiapingian Tieqiao reef, while the clotted micrites and syndepositional cements are the additional important rock components for reef cores. The sponges were important within the whole reef recovery. Tubiphytes were broadly distributed in different environments and played a key-role in the initial reef communities. Archaeolithoporella concentrated in the shallower part of reef cycles (i.e., the upper part of reef core) and was functionally significant for the enlargement of reef volume. In general, the reef recovery after the Middle Permian (Capitanian) mass extinction has some similarities with the reef recovery following the end-Permian mass extinction. It shows a delayed recovery of metazoan reefs and a stepwise recovery pattern that was controlled by both ecological and environmental factors. The importance of encrusting organisms and microbial carbonates are also similar to most of the other post-extinction reef ecosystems. These findings can be instructive to extend our understanding of the reef ecosystem evolution under environmental perturbation or stresses.}, language = {en} } @phdthesis{Wang2020, author = {Wang, Weishi}, title = {Influence of river reconstruction at a bank filtration site}, doi = {10.25932/publishup-49023}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-490234}, school = {Universit{\"a}t Potsdam}, pages = {IIV, 120}, year = {2020}, abstract = {Bank filtration is an effective water treatment technique and is widely adopted in Europe along major rivers. It is the process where surface water penetrates the riverbed, flows through the aquifer, and then is extracted by near-bank production wells. By flowing in the subsurface flow passage, the water quality can be improved by a series of beneficial processes. Long-term riverbank filtration also produces colmation layers on the riverbed. The colmation layer may act as a bioactive zone that is governed by biochemical and physical processes owing to its enrichment of microbes and organic matter. Low permeability may strongly limit the surface water infiltration and further lead to a decreasing recoverable ratio of production wells.The removal of the colmation layer is therefore a trade-off between the treatment capacity and treatment efficiency. The goal of this Ph.D. thesis is to focus on the temporal and spatial change of the water quality and quantity along the flow path of a hydrogeological heterogeneous riverbank filtration site adjacent to an artificial-reconstructed (bottom excavation and bank reconstruction) canal in Potsdam, Germany. To quantify the change of the infiltration rate, travel time distribution, and the thermal field brought by the canal reconstruction, a three-dimensional flow and heat transport model was created. This model has two scenarios, 1) 'with' canal reconstruction, and 2) 'without' canal reconstruction. Overall, the model calibration results of both water heads and temperatures matched those observed in the field study. In comparison to the model without reconstruction, the reconstruction model led to more water being infiltrated into the aquifer on that section, on average 521 m3/d, which corresponded to around 9\% of the total pumping rate. Subsurface travel-time distribution substantially shifted towards shorter travel times. Flow paths with travel times <200 days increased by ~10\% and those with <300 days by 15\%. Furthermore, the thermal distribution in the aquifer showed that the seasonal variation in the scenario with reconstruction reaches deeper and laterally propagates further. By scatter plotting of δ18O versus δ 2H, the infiltrated river water could be differentiated from water flowing in the deep aquifer, which may contain remnant landside groundwater from further north. In contrast, the increase of river water contribution due to decolmation could be shown by piper plot. Geological heterogeneity caused a substantial spatial difference in redox zonation among different flow paths, both horizontally and vertically. Using the Wilcoxon rank test, the reconstruction changed the redox potential differently in observation wells. However, taking the small absolute concentration level, the change is also relatively minor. The treatment efficiency for both organic matter and inorganic matter is consistent after the reconstruction, except for ammonium. The inconsistent results for ammonium could be explained by changes in the Cation Exchange Capacity (CEC) in the newly paved riverbed. Because the bed is new, it was not yet capable of keeping the newly produced ammonium by sorption and further led to the breakthrough of the ammonium plume. By estimation, the peak of the ammonium plume would reach the most distant observation well before February 2024, while the peaking concentration could be further dampened by sorption and diluted by the afterward low ammonium flow. The consistent DOC and SUVA level suggests that there was no clear preference for the organic matter removal along the flow path.}, language = {en} } @phdthesis{Wang2020, author = {Wang, Jingwen}, title = {Electret properties of polypropylene with surface chemical modification and crystalline reconstruction}, doi = {10.25932/publishup-47027}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-470271}, school = {Universit{\"a}t Potsdam}, pages = {vi, 121}, year = {2020}, abstract = {As one of the most-produced commodity polymers, polypropylene draws considerable scientific and commercial interest as an electret material. In the present thesis, the influence of the surface chemical modification and crystalline reconstruction on the electret properties of the polypropylene thin films will be discussed. The chemical treatment with orthophosphoric acid can significantly improve the surface charge stability of the polypropylene electrets by introducing phosphorus- and oxygen-containing structures onto the modified surface. The thermally stimulated discharge measurement and charge profiling by means of piezoelectrically generated pressure steps are used to investigate the electret behaviour. It is concluded that deep traps of limited number density are created during the treatment with inorganic chemicals. Hence, the improvement dramatically decreases when the surface-charge density is substantially higher than ±1.2×10^(-3) C·m^(-2). The newly formed traps also show a higher trapping energy for negative charges. The energetic distributions of the traps in the non-treated and chemically treated samples offer an insight regarding the surface and foreign-chemical dominance on the charge storage and transport in the polypropylene electrets. Additionally, different electret properties are observed on the polypropylene films with the spherulitic and transcrystalline structures. It indicates the dependence of the charge storage and transport on the crystallite and molecular orientations in the crystalline phase. In general, a more diverse crystalline growth in the spherulitic samples can result in a more complex energetic trap distribution, in comparison to that in a transcrystalline polypropylene. The double-layer transcrystalline polypropylene film with a crystalline interface in the middle can be obtained by crystallising the film in contact with rough moulding surfaces on both sides. A layer of heterocharges appears on each side of the interface in the double-layer transcrystalline polypropylene electrets after the thermal poling. However, there is no charge captured within the transcrystalline layers. The phenomenon reveals the importance of the crystalline interface in terms of creating traps with the higher activation energy in polypropylene. The present studies highlight the fact that even slight variations in the polypropylene film may lead to dramatic differences in its electret properties.}, language = {en} } @phdthesis{VenturaBort2020, author = {Ventura-Bort, Carlos}, title = {Temporo-spatial dynamics of the impact of emotional contexts on visual processing and memory}, doi = {10.25932/publishup-55023}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550236}, school = {Universit{\"a}t Potsdam}, pages = {208}, year = {2020}, abstract = {It has frequently been observed that single emotional events are not only more efficiently processed, but also better remembered, and form longer-lasting memory traces than neutral material. However, when emotional information is perceived as a part of a complex event, such as in the context of or in relation to other events and/or source details, the modulatory effects of emotion are less clear. The present work aims to investigate how emotional, contextual source information modulates the initial encoding and subsequent long-term retrieval of associated neutral material (item memory) and contextual source details (contextual source memory). To do so, a two-task experiment was used, consisting of an incidental encoding task in which neutral objects were displayed over different contextual background scenes which varied in emotional content (unpleasant, pleasant, and neutral), and a delayed retrieval task (1 week), in which previously-encoded objects and new ones were presented. In a series of studies, behavioral indices (Studies 2, 3, and 5), event-related potentials (ERPs; Studies 1-4), and functional magnetic resonance imaging (Study 5) were used to investigate whether emotional contexts can rapidly tune the visual processing of associated neutral information (Study 1) and modulate long-term item memory (Study 2), how different recognition memory processes (familiarity vs. recollection) contribute to these emotion effects on item and contextual source memory (Study 3), whether the emotional effects of item memory can also be observed during spontaneous retrieval (Sstudy 4), and which brain regions underpin the modulatory effects of emotional contexts on item and contextual source memory (Study 5). In Study 1, it was observed that emotional contexts by means of emotional associative learning, can rapidly alter the processing of associated neutral information. Neutral items associated with emotional contexts (i.e. emotional associates) compared to neutral ones, showed enhanced perceptual and more elaborate processing after one single pairing, as indexed by larger amplitudes in the P100 and LPP components, respectively. Study 2 showed that emotional contexts produce longer-lasting memory effects, as evidenced by better item memory performance and larger ERP Old/New differences for emotional associates. In Study 3, a mnemonic differentiation was observed between item and contextual source memory which was modulated by emotion. Item memory was driven by familiarity, independently of emotional contexts during encoding, whereas contextual source memory was driven by recollection, and better for emotional material. As in Study 2, enhancing effects of emotional contexts for item memory were observed in ERPs associated with recollection processes. Likewise, for contextual source memory, a pronounced recollection-related ERP enhancement was observed for exclusively emotional contexts. Study 4 showed that the long-term recollection enhancement of emotional contexts on item memory can be observed even when retrieval is not explicitly attempted, as measured with ERPs, suggesting that the emotion enhancing effects on memory are not related to the task embedded during recognition, but to the motivational relevance of the triggering event. In Study 5, it was observed that enhancing effects of emotional contexts on item and contextual source memory involve stronger engagement of the brain's regions which are associated with memory recollection, including areas of the medial temporal lobe, posterior parietal cortex, and prefrontal cortex. Taken together, these findings suggest that emotional contexts rapidly modulate the initial processing of associated neutral information and the subsequent, long-term item and contextual source memories. The enhanced memory effects of emotional contexts are strongly supported by recollection rather than familiarity processes, and are shown to be triggered when retrieval is both explicitly and spontaneously attempted. These results provide new insights into the modulatory role of emotional information on the visual processing and the long-term recognition memory of complex events. The present findings are integrated into the current theoretical models and future ventures are discussed.}, language = {en} } @phdthesis{Tuebbicke2020, author = {T{\"u}bbicke, Stefan}, title = {Essays on start-up subsidies for the unemployed and methods for causal inference}, doi = {10.25932/publishup-47793}, school = {Universit{\"a}t Potsdam}, pages = {191}, year = {2020}, abstract = {This thesis offers new insights on the effects of Start-Up Subsidies (SUS) for unemployed individuals as a special kind of active labor market program (ALMP) that aims to re-integrate individuals into the labor market via the route of self-employment. Moreover, this thesis contributes to the literature on methods for causal inference when the treatment variable is continuous rather than binary. For example, this is the case when individuals differ in their degree of exposure to a common treatment. The analysis of the effects of SUS focuses on the main current German program called "Gr{\"u}ndungszuschuss" (New Start-Up Subsidy, NSUS) after its reform in 2011. Average Effects on participants' labor market outcomes - as measured by employment and earnings - as well as subjective well-being are estimated mainly based on propensity score matching (PSM) techniques. PSM aims to achieve balance in terms of observed characteristics by matching participants with at least one comparable non-participant in terms of their probability to receive the treatment. This estimation strategy is valid as long as all relevant characteristics that explain selection patterns into treatment are observed and included in the estimation of the propensity score. To make our analysis as credible as possible, we control for a large vector of characteristics as observed through the combination of rich administrative data from the Federal Employment Agency as well as through survey data. Chapters two to four of this thesis puts special emphasis on aspects regarding (the evaluation of) SUS programs that have received no or only limited attention thus far. The first aspect relates to the interplay of institutional details of the program and its effectiveness. So far, relatively little is known about the importance of SUS program features such as the duration of support. Second, there is no experimental benchmark evaluation of SUS available and thus, the reliability of non-experimental estimation techniques such as PSM is of crucial importance as estimates are biased when relevant confounders are omitted from the analysis. Third, there may be potentially detrimental effects of transitioning into (relatively risky) self-employment on subjective well-being among subsidized founders out of unemployment. These were to remain undetected if the analysis would focus exclusively on labor market outcomes of participants. The results indicate positive long-term effects of SUS participation on employment and earnings among participants. These effects are substantially larger than what estimated before the reform, indicating room for improvement in program design via changes in institutional details. Moreover, non-experimental estimates of treatment effects are remarkably robust to hidden confounding. Regarding subjective well-being, this thesis finds a positive long-run impact on job satisfaction and a detrimental effect on satisfaction with social security. The latter appears to be driven by adverse effects on social insurance contributions. In chapter five, a novel automated covariate balancing technique for the estimation of causal effects in the context of continuous treatments is derived and assessed regarding its performance compared to other (automated) balancing techniques. Although binary research designs that only differentiate between participants and non-participants of some treatment remain the most-common case in empirical practice, many applications can be adapted to include continuous treatments as well. Often, this will allow for more meaningful estimates of causal effects in order to further improve the design of programs. In the context of SUS, one may further investigate the effects of the size of monetary support or its duration on participants' labor market outcomes. Both Monte-Carlo investigations and analysis of two well-known datasets suggests superior performance of the proposed Entropy Balancing for continuous treatments (EBCT) compared to other existing estimation strategies.}, language = {en} } @phdthesis{Tunn2020, author = {Tunn, Isabell}, title = {From single molecules to bulk materials: tuning the viscoelastic properties of coiled coil cross-linked hydrogels}, doi = {10.25932/publishup-47595}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-475955}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 140}, year = {2020}, abstract = {The development of bioinspired self-assembling materials, such as hydrogels, with promising applications in cell culture, tissue engineering and drug delivery is a current focus in material science. Biogenic or bioinspired proteins and peptides are frequently used as versatile building blocks for extracellular matrix (ECM) mimicking hydrogels. However, precisely controlling and reversibly tuning the properties of these building blocks and the resulting hydrogels remains challenging. Precise control over the viscoelastic properties and self-healing abilities of hydrogels are key factors for developing intelligent materials to investigate cell matrix interactions. Thus, there is a need to develop building blocks that are self-healing, tunable and self-reporting. This thesis aims at the development of α-helical peptide building blocks, called coiled coils (CCs), which integrate these desired properties. Self-healing is a direct result of the fast self-assembly of these building blocks when used as material cross-links. Tunability is realized by means of reversible histidine (His)-metal coordination bonds. Lastly, implementing a fluorescent readout, which indicates the CC assembly state, self-reporting hydrogels are obtained. Coiled coils are abundant protein folding motifs in Nature, which often have mechanical function, such as in myosin or fibrin. Coiled coils are superhelices made up of two or more α-helices wound around each other. The assembly of CCs is based on their repetitive sequence of seven amino acids, so-called heptads (abcdefg). Hydrophobic amino acids in the a and d position of each heptad form the core of the CC, while charged amino acids in the e and g position form ionic interactions. The solvent-exposed positions b, c and f are excellent targets for modifications since they are more variable. His-metal coordination bonds are strong, yet reversible interactions formed between the amino acid histidine and transition metal ions (e.g. Ni2+, Cu2+ or Zn2+). His-metal coordination bonds essentially contribute to the mechanical stability of various high-performance proteinaceous materials, such as spider fangs, Nereis worm jaws and mussel byssal threads. Therefore, I bioengineered reversible His-metal coordination sites into a well-characterized heterodimeric CC that served as tunable material cross-link. Specifically, I took two distinct approaches facilitating either intramolecular (Chapter 4.2) and/or intermolecular (Chapter 4.3) His-metal coordination. Previous research suggested that force-induced CC unfolding in shear geometry starts from the points of force application. In order to tune the stability of a heterodimeric CC in shear geometry, I inserted His in the b and f position at the termini of force application (Chapter 4.2). The spacing of His is such that intra-CC His-metal coordination bonds can form to bridge one helical turn within the same helix, but also inter-CC coordination bonds are not generally excluded. Starting with Ni2+ ions, Raman spectroscopy showed that the CC maintained its helical structure and the His residues were able to coordinate Ni2+. Circular dichroism (CD) spectroscopy revealed that the melting temperature of the CC increased by 4 °C in the presence of Ni2+. Using atomic force microscope (AFM)-based single molecule force spectroscopy, the energy landscape parameters of the CC were characterized in the absence and the presence of Ni2+. His-Ni2+ coordination increased the rupture force by ~10 pN, accompanied by a decrease of the dissociation rate constant. To test if this stabilizing effect can be transferred from the single molecule level to the bulk viscoelastic material properties, the CC building block was used as a non-covalent cross-link for star-shaped poly(ethylene glycol) (star-PEG) hydrogels. Shear rheology revealed a 3-fold higher relaxation time in His-Ni2+ coordinating hydrogels compared to the hydrogel without metal ions. This stabilizing effect was fully reversible when using an excess of the metal chelator ethylenediaminetetraacetate (EDTA). The hydrogel properties were further investigated using different metal ions, i.e. Cu2+, Co2+ and Zn2+. Overall, these results suggest that Ni2+, Cu2+ and Co2+ primarily form intra-CC coordination bonds while Zn2+ also participates in inter-CC coordination bonds. This may be a direct result of its different coordination geometry. Intermolecular His-metal coordination bonds in the terminal regions of the protein building blocks of mussel byssal threads are primarily formed by Zn2+ and were found to be intimately linked to higher-order assembly and self-healing of the thread. In the above example, the contribution of intra-CC and inter-CC His-Zn2+ cannot be disentangled. In Chapter 4.3, I redesigned the CC to prohibit the formation of intra-CC His-Zn2+ coordination bonds, focusing only on inter-CC interactions. Specifically, I inserted His in the solvent-exposed f positions of the CC to focus on the effect of metal-induced higher-order assembly of CC cross-links. Raman and CD spectroscopy revealed that this CC building block forms α-helical Zn2+ cross-linked aggregates. Using this CC as a cross-link for star-PEG hydrogels, I showed that the material properties can be switched from viscoelastic in the absence of Zn2+ to elastic-like in the presence of Zn2+. Moreover, the relaxation time of the hydrogel was tunable over three orders of magnitude when using different Zn2+:His ratios. This tunability is attributed to a progressive transformation of single CC cross-links into His-Zn2+ cross-linked aggregates, with inter-CC His-Zn2+ coordination bonds serving as an additional, cross-linking mode. Rheological characterization of the hydrogels with inter-CC His-Zn2+ coordination raised the question whether the His-Zn2+ coordination bonds between CCs or also the CCs themselves rupture when shear strain is applied. In general, the amount of CC cross-links initially formed in the hydrogel as well as the amount of CC cross-links breaking under force remains to be elucidated. In order to more deeply probe these questions and monitor the state of the CC cross-links when force is applied, a fluorescent reporter system based on F{\"o}rster resonance energy transfer (FRET) was introduced into the CC (Chapter 4.4). For this purpose, the donor-acceptor pair carboxyfluorescein and tetramethylrhodamine was used. The resulting self-reporting CC showed a FRET efficiency of 77 \% in solution. Using this fluorescently labeled CC as a self-reporting, reversible cross-link in an otherwise covalently cross-linked star-PEG hydrogel enabled the detection of the FRET efficiency change under compression force. This proof-of-principle result sets the stage for implementing the fluorescently labeled CCs as molecular force sensors in non-covalently cross-linked hydrogels. In summary, this thesis highlights that rationally designed CCs are excellent reversibly tunable, self-healing and self-reporting hydrogel cross-links with high application potential in bioengineering and biomedicine. For the first time, I demonstrated that His-metal coordination-based stabilization can be transferred from the single CC level to the bulk material with clear viscoelastic consequences. Insertion of His in specific sequence positions was used to implement a second non-covalent cross-linking mode via intermolecular His-metal coordination. This His-metal binding induced aggregation of the CCs enabled for reversibly tuning the hydrogel properties from viscoelastic to elastic-like. As a proof-of-principle to establish self-reporting CCs as material cross-links, I labeled a CC with a FRET pair. The fluorescently labelled CC acts as a molecular force sensor and first preliminary results suggest that the CC enables the detection of hydrogel cross-link failure under compression force. In the future, fluorescently labeled CC force sensors will likely not only be used as intelligent cross-links to study the failure of hydrogels but also to investigate cell-matrix interactions in 3D down to the single molecule level.}, language = {en} } @phdthesis{Thapa2020, author = {Thapa, Samudrajit}, title = {Deciphering anomalous diffusion in complex systems using Bayesian inference and large deviation theory}, pages = {xx, 186}, year = {2020}, abstract = {The development of methods such as super-resolution microscopy (Nobel prize in Chemistry, 2014) and multi-scale computer modelling (Nobel prize in Chemistry, 2013) have provided scientists with powerful tools to study microscopic systems. Sub-micron particles or even fluorescently labelled single molecules can now be tracked for long times in a variety of systems such as living cells, biological membranes, colloidal solutions etc. at spatial and temporal resolutions previously inaccessible. Parallel to such single-particle tracking experiments, super-computing techniques enable simulations of large atomistic or coarse-grained systems such as biologically relevant membranes or proteins from picoseconds to seconds, generating large volume of data. These have led to an unprecedented rise in the number of reported cases of anomalous diffusion wherein the characteristic features of Brownian motion—namely linear growth of the mean squared displacement with time and the Gaussian form of the probability density function (PDF) to find a particle at a given position at some fixed time—are routinely violated. This presents a big challenge in identifying the underlying stochastic process and also estimating the corresponding parameters of the process to completely describe the observed behaviour. Finding the correct physical mechanism which leads to the observed dynamics is of paramount importance, for example, to understand the first-arrival time of transcription factors which govern gene regulation, or the survival probability of a pathogen in a biological cell post drug administration. Statistical Physics provides useful methods that can be applied to extract such vital information. This cumulative dissertation, based on five publications, focuses on the development, implementation and application of such tools with special emphasis on Bayesian inference and large deviation theory. Together with the implementation of Bayesian model comparison and parameter estimation methods for models of diffusion, complementary tools are developed based on different observables and large deviation theory to classify stochastic processes and gather pivotal information. Bayesian analysis of the data of micron-sized particles traced in mucin hydrogels at different pH conditions unveiled several interesting features and we gained insights into, for example, how in going from basic to acidic pH, the hydrogel becomes more heterogeneous and phase separation can set in, leading to observed non-ergodicity (non-equivalence of time and ensemble averages) and non-Gaussian PDF. With large deviation theory based analysis we could detect, for instance, non-Gaussianity in seeming Brownian diffusion of beads in aqueous solution, anisotropic motion of the beads in mucin at neutral pH conditions, and short-time correlations in climate data. Thus through the application of the developed methods to biological and meteorological datasets crucial information is garnered about the underlying stochastic processes and significant insights are obtained in understanding the physical nature of these systems.}, language = {en} } @phdthesis{Temmen2020, author = {Temmen, Jens}, title = {The Territorialities of U.S. Imperialism(s)}, series = {American Studies ; 308}, journal = {American Studies ; 308}, publisher = {Winter}, address = {Heidelberg}, isbn = {978-3-8253-4713-0}, school = {Universit{\"a}t Potsdam}, pages = {x, 259}, year = {2020}, abstract = {'The Territorialities of U.S. Imperialisms' sets into relation U.S. imperial and Indigenous conceptions of territoriality as articulated in U.S. legal texts and Indigenous life writing in the 19th century. It analyzes the ways in which U.S. legal texts as "legal fictions" narratively press to affirm the United States' territorial sovereignty and coherence in spite of its reliance on a variety of imperial practices that flexibly disconnect and (re)connect U.S. sovereignty, jurisdiction and territory. At the same time, the book acknowledges Indigenous life writing as legal texts in their own right and with full juridical force, which aim to highlight the heterogeneity of U.S. national territory both from their individual perspectives and in conversation with these legal fictions. Through this, the book's analysis contributes to a more nuanced understanding of the coloniality of U.S. legal fictions, while highlighting territoriality as a key concept in the fashioning of the narrative of U.S. imperialism.}, language = {en} } @phdthesis{Taeumel2020, author = {Taeumel, Marcel}, title = {Data-driven tool construction in exploratory programming environments}, doi = {10.25932/publishup-44428}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-444289}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 299}, year = {2020}, abstract = {This work presents a new design for programming environments that promote the exploration of domain-specific software artifacts and the construction of graphical tools for such program comprehension tasks. In complex software projects, tool building is essential because domain- or task-specific tools can support decision making by representing concerns concisely with low cognitive effort. In contrast, generic tools can only support anticipated scenarios, which usually align with programming language concepts or well-known project domains. However, the creation and modification of interactive tools is expensive because the glue that connects data to graphics is hard to find, change, and test. Even if valuable data is available in a common format and even if promising visualizations could be populated, programmers have to invest many resources to make changes in the programming environment. Consequently, only ideas of predictably high value will be implemented. In the non-graphical, command-line world, the situation looks different and inspiring: programmers can easily build their own tools as shell scripts by configuring and combining filter programs to process data. We propose a new perspective on graphical tools and provide a concept to build and modify such tools with a focus on high quality, low effort, and continuous adaptability. That is, (1) we propose an object-oriented, data-driven, declarative scripting language that reduces the amount of and governs the effects of glue code for view-model specifications, and (2) we propose a scalable UI-design language that promotes short feedback loops in an interactive, graphical environment such as Morphic known from Self or Squeak/Smalltalk systems. We implemented our concept as a tool building environment, which we call VIVIDE, on top of Squeak/Smalltalk and Morphic. We replaced existing code browsing and debugging tools to iterate within our solution more quickly. In several case studies with undergraduate and graduate students, we observed that VIVIDE can be applied to many domains such as live language development, source-code versioning, modular code browsing, and multi-language debugging. Then, we designed a controlled experiment to measure the effect on the time to build tools. Several pilot runs showed that training is crucial and, presumably, takes days or weeks, which implies a need for further research. As a result, programmers as users can directly work with tangible representations of their software artifacts in the VIVIDE environment. Tool builders can write domain-specific scripts to populate views to approach comprehension tasks from different angles. Our novel perspective on graphical tools can inspire the creation of new trade-offs in modularity for both data providers and view designers.}, language = {en} } @phdthesis{Stone2020, author = {Stone, Kate}, title = {Predicting long-distance lexical content in German verb-particle constructions}, doi = {10.25932/publishup-47679}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-476798}, school = {Universit{\"a}t Potsdam}, year = {2020}, abstract = {A large body of research now supports the presence of both syntactic and lexical predictions in sentence processing. Lexical predictions, in particular, are considered to indicate a deep level of predictive processing that extends past the structural features of a necessary word (e.g. noun), right down to the phonological features of the lexical identity of a specific word (e.g. /kite/; DeLong et al., 2005). However, evidence for lexical predictions typically focuses on predictions in very local environments, such as the adjacent word or words (DeLong et al., 2005; Van Berkum et al., 2005; Wicha et al., 2004). Predictions in such local environments may be indistinguishable from lexical priming, which is transient and uncontrolled, and as such may prime lexical items that are not compatible with the context (e.g. Kukona et al., 2014). Predictive processing has been argued to be a controlled process, with top-down information guiding preactivation of plausible upcoming lexical items (Kuperberg \& Jaeger, 2016). One way to distinguish lexical priming from prediction is to demonstrate that preactivated lexical content can be maintained over longer distances. In this dissertation, separable German particle verbs are used to demonstrate that preactivation of lexical items can be maintained over multi-word distances. A self-paced reading time and an eye tracking experiment provide some support for the idea that particle preactivation triggered by a verb and its context can be observed by holding the sentence context constant and manipulating the predictabilty of the particle. Although evidence of an effect of particle predictability was only seen in eye tracking, this is consistent with previous evidence suggesting that predictive processing facilitates only some eye tracking measures to which the self-paced reading modality may not be sensitive (Staub, 2015; Rayner1998). Interestingly, manipulating the distance between the verb and the particle did not affect reading times, suggesting that the surprisal-predicted faster reading times at long distance may only occur when the additional distance is created by information that adds information about the lexical identity of a distant element (Levy, 2008; Grodner \& Gibson, 2005). Furthermore, the results provide support for models proposing that temporal decay is not major influence on word processing (Lewandowsky et al., 2009; Vasishth et al., 2019). In the third and fourth experiments, event-related potentials were used as a method for detecting specific lexical predictions. In the initial ERP experiment, we found some support for the presence of lexical predictions when the sentence context constrained the number of plausible particles to a single particle. This was suggested by a frontal post-N400 positivity (PNP) that was elicited when a lexical prediction had been violated, but not to violations when more than one particle had been plausible. The results of this study were highly consistent with previous research suggesting that the PNP might be a much sought-after ERP marker of prediction failure (DeLong et al., 2011; DeLong et al., 2014; Van Petten \& Luka, 2012; Thornhill \& Van Petten, 2012; Kuperberg et al., 2019). However, a second experiment in a larger sample experiment failed to replicate the effect, but did suggest the relationship of the PNP to predictive processing may not yet be fully understood. Evidence for long-distance lexical predictions was inconclusive. The conclusion drawn from the four experiments is that preactivation of the lexical entries of plausible upcoming particles did occur and was maintained over long distances. The facilitatory effect of this preactivation at the particle site therefore did not appear to be the result of transient lexical priming. However, the question of whether this preactivation can also lead to lexical predictions of a specific particle remains unanswered. Of particular interest to future research on predictive processing is further characterisation of the PNP. Implications for models of sentence processing may be the inclusion of long-distance lexical predictions, or the possibility that preactivation of lexical material can facilitate reading times and ERP amplitude without commitment to a specific lexical item.}, language = {en} } @phdthesis{Stete2020, author = {Stete, Felix}, title = {Gold at the nanoscale}, doi = {10.25932/publishup-49605}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-496055}, school = {Universit{\"a}t Potsdam}, pages = {X, 186}, year = {2020}, abstract = {In this cumulative dissertation, I want to present my contributions to the field of plasmonic nanoparticle science. Plasmonic nanoparticles are characterised by resonances of the free electron gas around the spectral range of visible light. In recent years, they have evolved as promising components for light based nanocircuits, light harvesting, nanosensors, cancer therapies, and many more. This work exhibits the articles I authored or co-authored in my time as PhD student at the University of Potsdam. The main focus lies on the coupling between localised plasmons and excitons in organic dyes. Plasmon-exciton coupling brings light-matter coupling to the nanoscale. This size reduction is accompanied by strong enhancements of the light field which can, among others, be utilised to enhance the spectroscopic footprint of molecules down to single molecule detection, improve the efficiency of solar cells, or establish lasing on the nanoscale. When the coupling exceeds all decay channels, the system enters the strong coupling regime. In this case, hybrid light-matter modes emerge utilisable as optical switches, in quantum networks, or as thresholdless lasers. The present work investigates plasmon-exciton coupling in gold-dye core-shell geometries and contains both fundamental insights and technical novelties. It presents a technique which reveals the anticrossing in coupled systems without manipulating the particles themselves. The method is used to investigate the relation between coupling strength and particle size. Additionally, the work demonstrates that pure extinction measurements can be insufficient when trying to assess the coupling regime. Moreover, the fundamental quantum electrodynamic effect of vacuum induced saturation is introduced. This effect causes the vacuum fluctuations to diminish the polarisability of molecules and has not yet been considered in the plasmonic context. The work additionally discusses the reaction of gold nanoparticles to optical heating. Such knowledge is of great importance for all potential optical applications utilising plasmonic nanoparticles since optical excitation always generates heat. This heat can induce a change in the optical properties, but also mechanical changes up to melting can occur. Here, the change of spectra in coupled plasmon-exciton particles is discussed and explained with a precise model. Moreover, the work discusses the behaviour of gold nanotriangles exposed to optical heating. In a pump-probe measurement, X-ray probe pulses directly monitored the particles' breathing modes. In another experiment, the triangles were exposed to cw laser radiation with varying intensities and illumination areas. X-ray diffraction directly measured the particles' temperature. Particle melting was investigated with surface enhanced Raman spectroscopy and SEM imaging demonstrating that larger illumination areas can cause melting at lower intensities. An elaborate methodological and theoretical introduction precedes the articles. This way, also readers without specialist's knowledge get a concise and detailed overview of the theory and methods used in the articles. I introduce localised plasmons in metal nanoparticles of different shapes. For this work, the plasmons were mostly coupled to excitons in J-aggregates. Therefore, I discuss these aggregates of organic dyes with sharp and intense resonances and establish an understanding of the coupling between the two systems. For ab initio simulations of the coupled systems, models for the systems' permittivites are presented, too. Moreover, the route to the sample fabrication - the dye coating of gold nanoparticles, their subsequent deposition on substrates, and the covering with polyelectrolytes - is presented together with the measurement methods that were used for the articles.}, language = {en} } @phdthesis{Staubitz2020, author = {Staubitz, Thomas}, title = {Gradable team assignments in large scale learning environments}, doi = {10.25932/publishup-47183}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471830}, school = {Universit{\"a}t Potsdam}, pages = {122}, year = {2020}, abstract = {Lifelong learning plays an increasingly important role in many societies. Technology is changing faster than ever and what has been important to learn today, may be obsolete tomorrow. The role of informal programs is becoming increasingly important. Particularly, Massive Open Online Courses have become popular among learners and instructors. In 2008, a group of Canadian education enthusiasts started the first Massive Open Online Courses or MOOCs to prove their cognitive theory of Connectivism. Around 2012, a variety of American start-ups redefined the concept of MOOCs. Instead of following the connectivist doctrine they returned to a more traditional approach. They focussed on video lecturing and combined this with a course forum that allowed the participants to discuss with each other and the teaching team. While this new version of the concept was enormously successful in terms of massiveness—hundreds of thousands of participants from all over the world joined the first of these courses—many educators criticized the re-lapse to the cognitivist model. In the early days, the evolving platforms often did not have more features than a video player, simple multiple-choice quizzes, and the course forum. It soon became a major interest of research to allow the scaling of more modern approaches of learning and teaching for the massiveness of these courses. Hands-on exercises, alternative forms of assessment, collaboration, and teamwork are some of the topics on the agenda. The insights provided by cognitive and pedagogical theories, however, do not necessarily always run in sync with the needs and the preferences of the majority of participants. While the former promote action-learning, hands-on-learning, competence-based-learning, project-based-learning, team-based-learning as the holy grail, many of the latter often rather prefer a more laid-back style of learning, sometimes referred to as edutainment. Obviously, given the large numbers of participants in these courses, there is not just one type of learners. Participants are not a homogeneous mass but a potpourri of individuals with a wildly heterogeneous mix of backgrounds, previous knowledge, familial and professional circumstances, countries of origin, gender, age, and so on. For the majority of participants, a full-time job and/or a family often just does not leave enough room for more time intensive tasks, such as practical exercises or teamwork. Others, however, particularly enjoy these hands-on or collaborative aspects of MOOCs. Furthermore, many subjects particularly require these possibilities and simply cannot be taught or learned in courses that lack collaborative or hands-on features. In this context, the thesis discusses how team assignments have been implemented on the HPI MOOC platform. During the recent years, several experiments have been conducted and a great amount of experience has been gained by employing team assignments in courses in areas, such as Object-Oriented Programming, Design Thinking, and Business Innovation on various instances of this platform: openHPI, openSAP, and mooc.house}, language = {en} } @phdthesis{Sposini2020, author = {Sposini, Vittoria}, title = {The random diffusivity approach for diffusion in heterogeneous systems}, doi = {10.25932/publishup-48780}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-487808}, school = {Universit{\"a}t Potsdam}, year = {2020}, abstract = {The two hallmark features of Brownian motion are the linear growth < x2(t)> = 2Ddt of the mean squared displacement (MSD) with diffusion coefficient D in d spatial dimensions, and the Gaussian distribution of displacements. With the increasing complexity of the studied systems deviations from these two central properties have been unveiled over the years. Recently, a large variety of systems have been reported in which the MSD exhibits the linear growth in time of Brownian (Fickian) transport, however, the distribution of displacements is pronouncedly non-Gaussian (Brownian yet non-Gaussian, BNG). A similar behaviour is also observed for viscoelastic-type motion where an anomalous trend of the MSD, i.e., ~ ta, is combined with a priori unexpected non-Gaussian distributions (anomalous yet non-Gaussian, ANG). This kind of behaviour observed in BNG and ANG diffusions has been related to the presence of heterogeneities in the systems and a common approach has been established to address it, that is, the random diffusivity approach. This dissertation explores extensively the field of random diffusivity models. Starting from a chronological description of all the main approaches used as an attempt of describing BNG and ANG diffusion, different mathematical methodologies are defined for the resolution and study of these models. The processes that are reported in this work can be classified in three subcategories, i) randomly-scaled Gaussian processes, ii) superstatistical models and iii) diffusing diffusivity models, all belonging to the more general class of random diffusivity models. Eventually, the study focuses more on BNG diffusion, which is by now well-established and relatively well-understood. Nevertheless, many examples are discussed for the description of ANG diffusion, in order to highlight the possible scenarios which are known so far for the study of this class of processes. The second part of the dissertation deals with the statistical analysis of random diffusivity processes. A general description based on the concept of moment-generating function is initially provided to obtain standard statistical properties of the models. Then, the discussion moves to the study of the power spectral analysis and the first passage statistics for some particular random diffusivity models. A comparison between the results coming from the random diffusivity approach and the ones for standard Brownian motion is discussed. In this way, a deeper physical understanding of the systems described by random diffusivity models is also outlined. To conclude, a discussion based on the possible origins of the heterogeneity is sketched, with the main goal of inferring which kind of systems can actually be described by the random diffusivity approach.}, language = {en} } @phdthesis{Siemiatkowska2020, author = {Siemiatkowska, Beata}, title = {Redox signalling in plants}, doi = {10.25932/publishup-48911}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-489119}, school = {Universit{\"a}t Potsdam}, pages = {127}, year = {2020}, abstract = {Once proteins are synthesized, they can additionally be modified by post-translational modifications (PTMs). Proteins containing reactive cysteine thiols, stabilized in their deprotonated form due to their local environment as thiolates (RS-), serve as redox sensors by undergoing a multitude of oxidative PTMs (Ox-PTMs). Ox-PTMs such as S-nitrosylation or formation of inter- or intra-disulfide bridges induce functional changes in these proteins. Proteins containing cysteines, whose thiol oxidation state regulates their functions, belong to the so-called redoxome. Such Ox-PTMs are controlled by site-specific cellular events that play a crucial role in protein regulation, affecting enzyme catalytic sites, ligand binding affinity, protein-protein interactions or protein stability. Reversible protein thiol oxidation is an essential regulatory mechanism of photosynthesis, metabolism, and gene expression in all photosynthetic organisms. Therefore, studying PTMs will remain crucial for understanding plant adaptation to external stimuli like fluctuating light conditions. Optimizing methods suitable for studying plants Ox-PTMs is of high importance for elucidation of the redoxome in plants. This study focusses on thiol modifications occurring in plant and provides novel insight into in vivo redoxome of Arabidopsis thaliana in response to light vs. dark. This was achieved by utilizing a resin-assisted thiol enrichment approach. Furthermore, confirmation of candidates on the single protein level was carried out by a differential labelling approach. The thiols and disulfides were differentially labelled, and the protein levels were detected using immunoblot analysis. Further analysis was focused on light-reduced proteins. By the enrichment approach many well studied redox-regulated proteins were identified. Amongst those were fructose 1,6-bisphosphatase (FBPase) and sedoheptulose-1,7-bisphosphatase (SBPase) which have previously been described as thioredoxin system targeted enzymes. The redox regulated proteins identified in the current study were compared to several published, independent results showing redox regulated proteins in Arabidopsis leaves, root, mitochondria and specifically S-nitrosylated proteins. These proteins were excluded as potential new candidates but remain as a proof-of-concept to the enrichment experiments to be effective. Additionally, CSP41A and CSP41B proteins, which emerged from this study as potential targets of redox-regulation, were analyzed by Ribo-Seq. The active translatome study of csp41a mutant vs. wild-type showed most of the significant changes at end of the night, similarly as csp41b. Yet, in both mutants only several chloroplast-encoded genes were altered. Further studies of CSP41A and CSP41B proteins are needed to reveal their functions and elucidate the role of redox regulation of these proteins.}, language = {en} } @phdthesis{Sianipar2020, author = {Sianipar, Johannes Harungguan}, title = {Towards scalable and secure virtual laboratory for cybersecurity e-learning}, doi = {10.25932/publishup-50279}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-502793}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 156}, year = {2020}, abstract = {Distance Education or e-Learning platform should be able to provide a virtual laboratory to let the participants have hands-on exercise experiences in practicing their skill remotely. Especially in Cybersecurity e-Learning where the participants need to be able to attack or defend the IT System. To have a hands-on exercise, the virtual laboratory environment must be similar to the real operational environment, where an attack or a victim is represented by a node in a virtual laboratory environment. A node is usually represented by a Virtual Machine (VM). Scalability has become a primary issue in the virtual laboratory for cybersecurity e-Learning because a VM needs a significant and fix allocation of resources. Available resources limit the number of simultaneous users. Scalability can be increased by increasing the efficiency of using available resources and by providing more resources. Increasing scalability means increasing the number of simultaneous users. In this thesis, we propose two approaches to increase the efficiency of using the available resources. The first approach in increasing efficiency is by replacing virtual machines (VMs) with containers whenever it is possible. The second approach is sharing the load with the user-on-premise machine, where the user-on-premise machine represents one of the nodes in a virtual laboratory scenario. We also propose two approaches in providing more resources. One way to provide more resources is by using public cloud services. Another way to provide more resources is by gathering resources from the crowd, which is referred to as Crowdresourcing Virtual Laboratory (CRVL). In CRVL, the crowd can contribute their unused resources in the form of a VM, a bare metal system, an account in a public cloud, a private cloud and an isolated group of VMs, but in this thesis, we focus on a VM. The contributor must give the credential of the VM admin or root user to the CRVL system. We propose an architecture and methods to integrate or dis-integrate VMs from the CRVL system automatically. A Team placement algorithm must also be investigated to optimize the usage of resources and at the same time giving the best service to the user. Because the CRVL system does not manage the contributor host machine, the CRVL system must be able to make sure that the VM integration will not harm their system and that the training material will be stored securely in the contributor sides, so that no one is able to take the training material away without permission. We are investigating ways to handle this kind of threats. We propose three approaches to strengthen the VM from a malicious host admin. To verify the integrity of a VM before integration to the CRVL system, we propose a remote verification method without using any additional hardware such as the Trusted Platform Module chip. As the owner of the host machine, the host admins could have access to the VM's data via Random Access Memory (RAM) by doing live memory dumping, Spectre and Meltdown attacks. To make it harder for the malicious host admin in getting the sensitive data from RAM, we propose a method that continually moves sensitive data in RAM. We also propose a method to monitor the host machine by installing an agent on it. The agent monitors the hypervisor configurations and the host admin activities. To evaluate our approaches, we conduct extensive experiments with different settings. The use case in our approach is Tele-Lab, a Virtual Laboratory platform for Cyber Security e-Learning. We use this platform as a basis for designing and developing our approaches. The results show that our approaches are practical and provides enhanced security.}, language = {en} } @phdthesis{Shaabani2020, author = {Shaabani, Nuhad}, title = {On discovering and incrementally updating inclusion dependencies}, doi = {10.25932/publishup-47186}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471862}, school = {Universit{\"a}t Potsdam}, pages = {119}, year = {2020}, abstract = {In today's world, many applications produce large amounts of data at an enormous rate. Analyzing such datasets for metadata is indispensable for effectively understanding, storing, querying, manipulating, and mining them. Metadata summarizes technical properties of a dataset which rang from basic statistics to complex structures describing data dependencies. One type of dependencies is inclusion dependency (IND), which expresses subset-relationships between attributes of datasets. Therefore, inclusion dependencies are important for many data management applications in terms of data integration, query optimization, schema redesign, or integrity checking. So, the discovery of inclusion dependencies in unknown or legacy datasets is at the core of any data profiling effort. For exhaustively detecting all INDs in large datasets, we developed S-indd++, a new algorithm that eliminates the shortcomings of existing IND-detection algorithms and significantly outperforms them. S-indd++ is based on a novel concept for the attribute clustering for efficiently deriving INDs. Inferring INDs from our attribute clustering eliminates all redundant operations caused by other algorithms. S-indd++ is also based on a novel partitioning strategy that enables discording a large number of candidates in early phases of the discovering process. Moreover, S-indd++ does not require to fit a partition into the main memory--this is a highly appreciable property in the face of ever-growing datasets. S-indd++ reduces up to 50\% of the runtime of the state-of-the-art approach. None of the approach for discovering INDs is appropriate for the application on dynamic datasets; they can not update the INDs after an update of the dataset without reprocessing it entirely. To this end, we developed the first approach for incrementally updating INDs in frequently changing datasets. We achieved that by reducing the problem of incrementally updating INDs to the incrementally updating the attribute clustering from which all INDs are efficiently derivable. We realized the update of the clusters by designing new operations to be applied to the clusters after every data update. The incremental update of INDs reduces the time of the complete rediscovery by up to 99.999\%. All existing algorithms for discovering n-ary INDs are based on the principle of candidate generation--they generate candidates and test their validity in the given data instance. The major disadvantage of this technique is the exponentially growing number of database accesses in terms of SQL queries required for validation. We devised Mind2, the first approach for discovering n-ary INDs without candidate generation. Mind2 is based on a new mathematical framework developed in this thesis for computing the maximum INDs from which all other n-ary INDs are derivable. The experiments showed that Mind2 is significantly more scalable and effective than hypergraph-based algorithms.}, language = {en} } @phdthesis{Senftleben2020, author = {Senftleben, Robin}, title = {Earth's magnetic field over the last 1000 years}, doi = {10.25932/publishup-47315}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473150}, school = {Universit{\"a}t Potsdam}, pages = {xii, 104}, year = {2020}, abstract = {To investigate the reliability and stability of spherical harmonic models based on archeo/-paleomagnetic data, 2000 Geomagnetic models were calculated. All models are based on the same data set but with randomized uncertainties. Comparison of these models to the geomagnetic field model gufm1 showed that large scale magnetic field structures up to spherical harmonic degree 4 are stable throughout all models. Through a ranking of all models by comparing the dipole coefficients to gufm1 more realistic uncertainty estimates were derived than the authors of the data provide. The derived uncertainty estimates were used in further modelling, which combines archeo/-paleomagnetic and historical data. The huge difference in data count, accuracy and coverage of these two very different data sources made it necessary to introduce a time dependent spatial damping, which was constructed to constrain the spatial complexity of the model. Finally 501 models were calculated by considering that each data point is a Gaussian random variable, whose mean is the original value and whose standard deviation is its uncertainty. The final model arhimag1k is calculated by taking the mean of the 501 sets of Gauss coefficients. arhimag1k fits different dependent and independent data sets well. It shows an early reverse flux patch at the core-mantle boundary between 1000 AD and 1200 AD at the location of the South Atlantic Anomaly today. Another interesting feature is a high latitude flux patch over Greenland between 1200 and 1400 AD. The dipole moment shows a constant behaviour between 1600 and 1840 AD. In the second part of the thesis 4 new paleointensities from 4 different flows of the island Fogo, which is part of Cape Verde, are presented. The data is fitted well by arhimag1k with the exception of the value at 1663 of 28.3 microtesla, which is approximately 10 microtesla lower than the model suggest.}, language = {en} } @phdthesis{Seiler2020, author = {Seiler, Michael}, title = {The Non-Keplerian Motion of Propeller Moons in the Saturnian Ring System}, school = {Universit{\"a}t Potsdam}, pages = {127}, year = {2020}, abstract = {One of the tremendous discoveries by the Cassini spacecraft has been the detection of propeller structures in Saturn's A ring. Although the generating moonlet is too small to be resolved by the cameras aboard Cassini, its produced density structure within the rings, caused by its gravity can be well observed. The largest observed propeller is called Bl{\´e}riot and has an azimuthal extent over several thousand kilometers. Thanks to its large size, Bl{\´e}riot could be identified in different images over a time span of over 10 years, allowing the reconstruction of its orbital evolution. It turns out that Bl{\´e}riot deviates considerably from its expected Keplerian orbit in azimuthal direction by several thousand kilometers. This excess motion can be well reconstructed by a superposition of three harmonics, and therefore resembles the typical fingerprint of a resonantly perturbed body. This PhD thesis is directed to the excess motion of Bl{\´e}riot. Resonant perturbations are a known for some of the outer satellites of Saturn. Thus, in the first part of this thesis, we seek for suiting resonance candidates nearby the propeller, which might explain the observed periods and amplitudes. In numeric simulations, we show that indeed resonances by Prometheus, Pandora and Mimas can explain the libration periods in good agreement, but not the amplitudes. The amplitude problem is solved by the introduction of a propeller-moonlet interaction model, where we assume a broken symmetry of the propeller by a small displacement of the moonlet. This results in a librating motion the moonlet around the propeller's symmetry center due to the non-vanishing accelerations. The retardation of the reaction of the propeller structure to the motion of the moonlet causes the propeller to become asymmetric. Hydrodynamic simulations to test our analytical model confirm our predictions. In the second part of this thesis, we consider a stochastic migration of the moonlet, which is an alternative hypothesis to explain the observed excess motion of Bl{\´e}riot. The mean-longitude is a time-integrated quantity and thus introduces a correlation between the independent kicks of a random walk, smoothing the noise and thus makes the residual look similar to the observed one for Bl{\´e}riot. We apply a diagonalization test to decorrelated the observed residuals for the propellers Bl{\´e}riot and Earhart and the ring-moon Daphnis. It turns out that the decorrelated distributions do not strictly follow the expected Gaussian distribution. The decorrelation method fails to distinguish a correlated random walk from a noisy libration and thus we provide an alternative study. Assuming the three-harmonic fit to be a valid representation of the excess motion for Bl{\´e}riot, independently from its origin, we test the likelihood that this excess motion can be created by a random walk. It turns out that a non-correlated and correlated random walk is unlikely to explain the observed excess motion.}, language = {en} } @phdthesis{Seebeck2020, author = {Seebeck, Nicole}, title = {Regulation of the organokines FGF21 and chemerin by diet}, doi = {10.25932/publishup-47114}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471140}, school = {Universit{\"a}t Potsdam}, pages = {i, 132}, year = {2020}, abstract = {The hepatokine FGF21 and the adipokine chemerin have been implicated as metabolic regulators and mediators of inter-tissue crosstalk. While FGF21 is associated with beneficial metabolic effects and is currently being tested as an emerging therapeutic for obesity and diabetes, chemerin is linked to inflammation-mediated insulin resistance. However, dietary regulation of both organokines and their role in tissue interaction needs further investigation. The LEMBAS nutritional intervention study investigated the effects of two diets differing in their protein content in obese human subjects with non-alcoholic fatty liver disease (NAFLD). The study participants consumed hypocaloric diets containing either low (LP: 10 EN\%, n = 10) or high (HP: 30 EN\%, n = 9) dietary protein 3 weeks prior to bariatric surgery. Before and after the intervention the participants were anthropometrically assessed, blood samples were drawn, and hepatic fat content was determined by MRS. During bariatric surgery, paired subcutaneous and visceral adipose tissue biopsies as well as liver biopsies were collected. The aim of this thesis was to investigate circulating levels and tissue-specific regulation of (1) FGF21 and (2) chemerin in the LEMBAS cohort. The results were compared to data obtained in 92 metabolically healthy subjects with normal glucose tolerance and normal liver fat content. (1) Serum FGF21 concentrations were elevated in the obese subjects, and strongly associated with intrahepatic lipids (IHL). In accordance, FGF21 serum concentrations increased with severity of NAFLD as determined histologically in the liver biopsies. Though both diets were successful in reducing IHL, the effect was more pronounced in the HP group. FGF21 serum concentrations and mRNA expression were bi-directionally regulated by dietary protein, independent from metabolic improvements. In accordance, in the healthy study subjects, serum FGF21 concentrations dropped by more than 60\% in response to the HP diet. A short-term HP intervention confirmed the acute downregulation of FGF21 within 24 hours. Lastly, experiments in HepG2 cell cultures and primary murine hepatocytes identified nitrogen metabolites (NH4Cl and glutamine) to dose-dependently suppress FGF21 expression. (2) Circulating chemerin concentrations were considerably elevated in the obese versus lean study participants and differently associated with markers of obesity and NAFLD in the two cohorts. The adipokine decreased in response to the hypocaloric interventions while an unhealthy high-fat diet induced a rise in chemerin serum levels. In the lean subjects, mRNA expression of RARRES2, encoding chemerin, was strongly and positively correlated with expression of several cytokines, including MCP1, TNFα, and IL6, as well as markers of macrophage infiltration in the subcutaneous fat depot. However, RARRES2 was not associated with any cytokine assessed in the obese subjects and the data indicated an involvement of chemerin not only in the onset but also resolution of inflammation. Analyses of the tissue biopsies and experiments in human primary adipocytes point towards a role of chemerin in adipogenesis while discrepancies between the in vivo and in vitro data were detected. Taken together, the results of this thesis demonstrate that circulating FGF21 and chemerin levels are considerably elevated in obesity and responsive to dietary interventions. FGF21 was acutely and bi-directionally regulated by dietary protein in a hepatocyte-autonomous manner. Given that both, a lack in essential amino acids and excessive nitrogen intake, exert metabolic stress, FGF21 may serve as an endocrine signal for dietary protein balance. Lastly, the data revealed that chemerin is derailed in obesity and associated with obesity-related inflammation. However, future studies on chemerin should consider functional and regulatory differences between secreted and tissue-specific isoforms.}, language = {en} } @phdthesis{Schuetze2020, author = {Sch{\"u}tze, Franziska}, title = {Finance for a sustainable economy}, doi = {10.25932/publishup-48441}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-484415}, school = {Universit{\"a}t Potsdam}, pages = {xi, 128}, year = {2020}, abstract = {With his September 2015 speech "Breaking the tragedy of the horizon", the President of the Central Bank of England, Mark Carney, put climate change on the agenda of financial market regulators. Until then, climate change had been framed mainly as a problem of negative externalities leading to long-term economic costs, which resulted in countries trying to keep the short-term costs of climate action to a minimum. Carney argued that climate change, as well as climate policy, can also lead to short-term financial risks, potentially causing strong adjustments in asset prices. Analysing the effect of a sustainability transition on the financial sector challenges traditional economic and financial analysis and requires a much deeper understanding of the interrelations between climate policy and financial markets. This dissertation thus investigates the implications of climate policy for financial markets as well as the role of financial markets in a transition to a sustainable economy. The approach combines insights from macroeconomic and financial risk analysis. Following an introduction and classification in Chapter 1, Chapter 2 shows a macroeconomic analysis that combines ambitious climate targets (negative externality) with technological innovation (positive externality), adaptive expectations and an investment program, resulting in overall positive macroeconomic outcomes. The analysis also reveals the limitations of climate economic models in their representation of financial markets. Therefore, the subsequent part of this dissertation is concerned with the link between climate policies and financial markets. In Chapter 3, an empirical analysis of stock-market responses to the announcement of climate policy targets is performed to investigate impacts of climate policy on financial markets. Results show that 1) international climate negotiations have an effect on asset prices and 2) investors increasingly recognize transition risks in carbon-intensive investments. In Chapter 4, an analysis of equity markets and the interbank market shows that transition risks can potentially affect a large part of the equity market and that financial interconnections can amplify negative shocks. In Chapter 5, an analysis of mortgage loans shows how information on climate policy and the energy performance of buildings can be integrated into risk management and reflected in interest rates. While costs of climate action have been explored at great depth, this dissertation offers two main contributions. First, it highlights the importance of a green investment program to strengthen the macroeconomic benefits of climate action. Second, it shows different approaches on how to integrate transition risks and opportunities into financial market analysis. Anticipating potential losses and gains in the value of financial assets as early as possible can make the financial system more resilient to transition risks and can stimulate investments into the decarbonization of the economy.}, language = {en} } @phdthesis{Schaelicke2020, author = {Sch{\"a}licke, Svenja}, title = {Consumer traits and trait variation under the influence of biochemical food quality}, school = {Universit{\"a}t Potsdam}, pages = {136}, year = {2020}, abstract = {The earth's ecosystems undergo considerable changes characterized by human-induced alterations of environmental factors. In order to develop conservation goals for vulnerable ecosystems, research on ecosystem functioning is required.. Therefore, it is crucial to explore organismal interactions, such as trophic interaction or competition, which are decisive for key processes in ecosystems. These interactions are determined by the performance responses of organisms to environmental changes, which in turn, are shaped by the organism's functional traits. Exploring traits, their variation, and the environmental factors that act on them may provide insights on how ecological interactions affect populations, community structures and dynamics, and thus ecosystem functioning. In aquatic ecosystems, global warming intensifies phytoplankton blooms, which are more frequently dominated by cyanobacteria. As cyanobacteria are poor in polyunsaturated fatty acids (PUFA) and sterols, this compositional change alters the biochemical food quality of phytoplankton for consumer species with potential effects on ecological interactions. Within this thesis, I studied the effects of biochemical food quality on consumer traits and performance responses at the phytoplankton-zooplankton interface using different strains of two closely related generalist rotifer species Brachionus calyciflorus and Brachionus fernandoi and three phytoplankton species that differ in their biochemical food quality, i.e. in their content and composition of PUFA and sterols. In a series of laboratory feeding experiments I found that biochemical food quality affected rotifer's performance, i.e. fecundity, survival, and population growth, across a broad range of food quantities. Biochemical food quality constraints, which are often underestimated as influencing environmental factors, had strong impacts on performance responses. I further explored the potential of biochemical food quality in mediating consumer response variation between species and among strains of one species. Co-limitation by food quantity and biochemical food quality resulted in differences in performance responses, which were more pronounced within than between rotifer species. Furthermore, I demonstrated that the body PUFA compositions of rotifer species and strains were differently affected by the dietary PUFA supply, which indicates inter- and intraspecific differences in physiological traits, such as PUFA retention, allocation, and/or bioconversion capacity, within the genus Brachionus. This indicates that dietary PUFA are involved in shaping traits and performance responses of rotifers. This thesis reveals that biochemical food quality is an environmental factor with strong effects on individual traits and performance responses of consumers. Biochemical food quality constraints can further mediate trait and response variation among species or strains. Consequently, they carry the potential to shape ecological interactions and evolutionary processes with effects on community structures and dynamics. Trait-based approaches, which include food quality research, thus may provide further insights into the linkage between functional diversity and the maintenance of crucial ecosystem functions.}, language = {en} } @phdthesis{Schwarz2020, author = {Schwarz, Michael}, title = {Nodal domains and boundary representation for Dirichlet forms}, school = {Universit{\"a}t Potsdam}, pages = {164}, year = {2020}, language = {en} } @phdthesis{Schuster2020, author = {Schuster, Maja}, title = {High resolution decoding of the tobacco chloroplast translatome and its dynamics during light-intensity acclimation}, doi = {10.25932/publishup-51268}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-512680}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 155}, year = {2020}, abstract = {Chloroplasts are the photosynthetic organelles in plant and algae cells that enable photoautotrophic growth. Due to their prokaryotic origin, modern-day chloroplast genomes harbor 100 to 200 genes. These genes encode for core components of the photosynthetic complexes and the chloroplast gene expression machinery, making most of them essential for the viability of the organism. The regulation of those genes is predominated by translational adjustments. The powerful technique of ribosome profiling was successfully used to generate highly resolved pictures of the translational landscape of Arabidopsis thaliana cytosol, identifying translation of upstream open reading frames and long non-coding transcripts. In addition, differences in plastidial translation and ribosomal pausing sites were addressed with this method. However, a highly resolved picture of the chloroplast translatome is missing. Here, with the use of chloroplast isolation and targeted ribosome affinity purification, I generated highly enriched ribosome profiling datasets of the chloroplasts translatome for Nicotiana tabacum in the dark and light. Chloroplast isolation was found unsuitable for the unbiased analysis of translation in the chloroplast but adequate to identify potential co-translational import. Affinity purification was performed for the small and large ribosomal subunit independently. The enriched datasets mirrored the results obtained from whole-cell ribosome profiling. Enhanced translational activity was detected for psbA in the light. An alternative translation initiation mechanism was not identified by selective enrichment of small ribosomal subunit footprints. In sum, this is the first study that used enrichment strategies to obtain high-depth ribosome profiling datasets of chloroplasts to study ribosome subunit distribution and chloroplast associated translation. Ever-changing light intensities are challenging the photosynthetic capacity of photosynthetic organism. Increased light intensities may lead to over-excitation of photosynthetic reaction centers resulting in damage of the photosystem core subunits. Additional to an expensive repair mechanism for the photosystem II core protein D1, photosynthetic organisms developed various features to reduce or prevent photodamage. In the long-term, photosynthetic complex contents are adjusted for the efficient use of experienced irradiation. However, the contribution of chloroplastic gene expression in the acclimation process remained largely unknown. Here, comparative transcriptome and ribosome profiling was performed for the early time points of high-light acclimation in Nicotiana tabacum chloroplasts in a genome-wide scale. The time- course data revealed stable transcript level and only minor changes in translational activity of specific chloroplast genes during high-light acclimation. Yet, psbA translation was increased by two-fold in the high light from shortly after the shift until the end of the experiment. A stress-inducing shift from low- to high light exhibited increased translation only of psbA. This study indicate that acclimation fails to start in the observed time frame and only short-term responses to reduce photoinhibition were observed.}, language = {en} } @phdthesis{Schuck2020, author = {Schuck, Bernhard}, title = {Geomechanical and petrological characterisation of exposed slip zones, Alpine Fault, New Zealand}, doi = {10.25932/publishup-44612}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446129}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 143}, year = {2020}, abstract = {The Alpine Fault is a large, plate-bounding, strike-slip fault extending along the north-western edge of the Southern Alps, South Island, New Zealand. It regularly accommodates large (MW > 8) earthquakes and has a high statistical probability of failure in the near future, i.e., is late in its seismic cycle. This pending earthquake and associated co-seismic landslides are expected to cause severe infrastructural damage that would affect thousands of people, so it presents a substantial geohazard. The interdisciplinary study presented here aims to characterise the fault zone's 4D (space and time) architecture, because this provides information about its rheological properties that will enable better assessment of the hazard the fault poses. The studies undertaken include field investigations of principal slip zone fault gouges exposed along strike of the fault, and subsequent laboratory analyses of these outcrop and additional borehole samples. These observations have provided new information on (I) characteristic microstructures down to the nanoscale that indicate which deformation mechanisms operated within the rocks, (II) mineralogical information that constrains the fault's geomechanical behaviour and (III) geochemical compositional information that allows the influence of fluid- related alteration processes on material properties to be unraveled. Results show that along-strike variations of fault rock properties such as microstructures and mineralogical composition are minor and / or do not substantially influence fault zone architecture. They furthermore provide evidence that the architecture of the fault zone, particularly its fault core, is more complex than previously considered, and also more complex than expected for this sort of mature fault cutting quartzofeldspathic rocks. In particular our results strongly suggest that the fault has more than one principal slip zone, and that these form an anastomosing network extending into the basement below the cover of Quaternary sediments. The observations detailed in this thesis highlight that two major processes, (I) cataclasis and (II) authigenic mineral formation, are the major controls on the rheology of the Alpine Fault. The velocity-weakening behaviour of its fault gouge is favoured by abundant nanoparticles promoting powder lubrication and grain rolling rather than frictional sliding. Wall-rock fragmentation is accompanied by co-seismic, fluid-assisted dilatancy that is recorded by calcite cementation. This mineralisation, along with authigenic formation of phyllosilicates, quickly alters the petrophysical fault zone properties after each rupture, restoring fault competency. Dense networks of anastomosing and mutually cross-cutting calcite veins and intensively reworked gouge matrix demonstrate that strain repeatedly localised within the narrow fault gouge. Abundantly undeformed euhedral chlorite crystallites and calcite veins cross-cutting both fault gouge and gravels that overlie basement on the fault's footwall provide evidence that the processes of authigenic phyllosilicate growth, fluid-assisted dilatancy and associated fault healing are processes active particularly close to the Earth's surface in this fault zone. Exposed Alpine Fault rocks are subject to intense weathering as direct consequence of abundant orogenic rainfall associated with the fault's location at the base of the Southern Alps. Furthermore, fault rock rheology is substantially affected by shallow-depth conditions such as the juxtaposition of competent hanging wall fault rocks on poorly consolidated footwall sediments. This means microstructural, mineralogical and geochemical properties of the exposed fault rocks may differ substantially from those at deeper levels, and thus are not characteristic of the majority of the fault rocks' history. Examples are (I) frictionally weak smectites found within the fault gouges being artefacts formed at temperature conditions, and imparting petrophysical properties that are not typical for most of fault rocks of the Alpine Fault, (II) grain-scale dissolution resulting from subaerial weathering rather than deformation by pressure-solution processes and (III) fault gouge geometries being more complex than expected for deeper counterparts. The methodological approaches deployed in analyses of this, and other fault zones, and the major results of this study are finally discussed in order to contextualize slip zone investigations of fault zones and landslides. Like faults, landslides are major geohazards, which highlights the importance of characterising their geomechanical properties. Similarities between faults, especially those exposed to subaerial processes, and landslides, include mineralogical composition and geomechanical behaviour. Together, this ensures failure occurs predominantly by cataclastic processes, although aseismic creep promoted by weak phyllosilicates is not uncommon. Consequently, the multidisciplinary approach commonly used to investigate fault zones may contribute to increase the understanding of landslide faulting processes and the assessment of their hazard potential.}, language = {en} } @phdthesis{Schinkoeth2020, author = {Schink{\"o}th, Michaela}, title = {Automatic affective reactions to exercise-related stimuli}, doi = {10.25932/publishup-47111}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471115}, school = {Universit{\"a}t Potsdam}, pages = {II, 117}, year = {2020}, abstract = {Even though the majority of individuals know that exercising is healthy, a high percentage struggle to achieve the recommended amount of exercise. The (social-cognitive) theories that are commonly applied to explain exercise motivation refer to the assumption that people base their decisions mainly on rational reasoning. However, behavior is not only bound to reflection. In recent years, the role of automaticity and affect for exercise motivation has been increasingly discussed. In this dissertation, central assumptions of the affective-reflective theory of physical inactivity and exercise (ART; Brand \& Ekkekakis, 2018), an exercise-specific dual-process theory that emphasizes the role of a momentary automatic affective reaction for exercise-decisions, were examined. The central aim of this dissertation was to investigate exercisers and non-exercisers automatic affective reactions to exercise-related stimuli (i.e., type-1 process). In particular, the two components of the ART's type-1 process, that are, automatic associations with exercise and the automatic affective valuation to exercise, were under study. In the first publication (Schinkoeth \& Antoniewicz, 2017), research on automatic (evaluative) associations with exercise was summarized and evaluated in a systematic review. The results indicated that automatic associations with exercise appeared to be relevant predictors for exercise behavior and other exercise-related variables, providing evidence for a central assumption of the ART's type-1 process. Furthermore, indirect methods seem to be suitable to assess automatic associations. The aim of the second publication (Schinkoeth, Weymar, \& Brand, 2019) was to approach the somato-affective core of the automatic valuation of exercise using analysis of reactivity in vagal HRV while viewing exercise-related pictures. Results revealed that differences in exercise volume could be regressed on HRV reactivity. In light of the ART, these findings were interpreted as evidence of an inter-individual affective reaction elicited at the thought of exercise and triggered by exercise-stimuli. In the third publication (Schinkoeth \& Brand, 2019, subm.), it was sought to disentangle and relate to each other the ART's type-1 process components—automatic associations and the affective valuation of exercise. Automatic associations to exercise were assessed with a recoding-free variant of an implicit association test (IAT). Analysis of HRV reactivity was applied to approach a somatic component of the affective valuation, and facial reactions in a facial expression (FE) task served as indicators of the automatic affective reaction's valence. Exercise behavior was assessed via self-report. The measurement of the affective valuation's valence with the FE task did not work well in this study. HRV reactivity was predicted by the IAT score and did also statistically predict exercise behavior. These results thus confirm and expand upon the results of publication two and provide empirical evidence for the type-1 process, as defined in the ART. This dissertation advances the field of exercise psychology concerning the influence of automaticity and affect on exercise motivation. Moreover, both methodical implications and theoretical extensions for the ART can be derived from the results.}, language = {en} } @phdthesis{Schiborn2020, author = {Schiborn, Catarina}, title = {Extension of the German Diabetes Risk Score with regard to risk communication and cardiovascular outcomes}, school = {Universit{\"a}t Potsdam}, pages = {218}, year = {2020}, language = {en} } @phdthesis{Schettler2020, author = {Schettler, Leon Valentin}, title = {Socializing Development}, series = {Social movement and protest}, journal = {Social movement and protest}, publisher = {transcript}, address = {Bielefeld}, isbn = {978-3-8376-5183-6}, school = {Universit{\"a}t Potsdam}, pages = {274}, year = {2020}, language = {en} } @phdthesis{Saplaoura2020, author = {Saplaoura, Eleftheria}, title = {Escaping the plant cell}, school = {Universit{\"a}t Potsdam}, pages = {156}, year = {2020}, language = {en} } @phdthesis{SantosBruss2020, author = {Santos Bruss, Sara Morais dos}, title = {Feminist solidarities after modulation}, publisher = {punctum books}, address = {Brooklyn, NY}, isbn = {978-1-68571-146-7}, doi = {10.53288/0397.1.00}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 380}, year = {2020}, abstract = {Feminist Solidarities after Modulation produces an intersectional analysis of transnational feminist movements and their contemporary digital frameworks of identity and solidarity. Engaging media theory, critical race theory, and Black feminist theory, as well as contemporary feminist movements, this book argues that digital feminist interventions map themselves onto and make use of the multiplicity and ambiguity of digital spaces to question presentist and fixed notions of the internet as a white space and technologies in general as objective or universal. Understanding these frameworks as colonial constructions of the human, identity is traced to a socio-material condition that emerges with the modernity/colonialism binary. In the colonial moment, race and gender become the reasons for, as well as the effects of, technologies of identification, and thus need to be understood as and through technologies. What Deleuze has called modulation is not a present modality of control, but is placed into a longer genealogy of imperial division, which stands in opposition to feminist, queer, and anti-racist activism that insists on non-modular solidarities across seeming difference. At its heart, Feminist Solidarities after Modulation provides an analysis of contemporary digital feminist solidarities, which not only work at revealing the material histories and affective ""leakages"" of modular governance, but also challenges them to concentrate on forms of political togetherness that exceed a reductive or essentialist understanding of identity, solidarity, and difference.}, language = {en} } @phdthesis{Rolf2020, author = {Rolf, Werner}, title = {Peri-urban farmland included in green infrastructure strategies promotes transformation pathways towards sustainable urban development}, doi = {10.25932/publishup-47700}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-477002}, school = {Universit{\"a}t Potsdam}, pages = {IV, 116}, year = {2020}, abstract = {Urbanization and agricultural land use are two of the main drivers of global changes with effects on ecosystem functions and human wellbeing. Green Infrastructure is a new approach in spatial planning contributing to sustainable urban development, and to address urban challenges, such as biodiversity conservation, climate change adaptation, green economy development, and social cohesion. Because the research focus has been mainly on open green space structures, such as parks, urban forest, green building, street green, but neglected spatial and functional potentials of utilizable agricultural land, this thesis aims at fill this gap. This cumulative thesis addresses how agricultural land in urban and peri-urban landscapes can contribute to the development of urban green infrastructure as a strategy to promote sustainable urban development. Therefore, a number of different research approaches have been applied. First, a quantitative, GIS-based modeling approach looked at spatial potentials, addressing the heterogeneity of peri-urban landscape that defines agricultural potentials and constraints. Second, a participatory approach was applied, involving stakeholder opinions to evaluate multiple urban functions and benefits. Finally, an evidence synthesis was conducted to assess the current state of research on evidence to support future policy making at different levels. The results contribute to the conceptual understanding of urban green infrastructures as a strategic spatial planning approach that incorporates inner-urban utilizable agricultural land and the agriculturally dominated landscape at the outer urban fringe. It highlights the proposition that the linkage of peri-urban farmland with the green infrastructure concept can contribute to a network of multifunctional green spaces to provide multiple benefits to the urban system and to successfully address urban challenges. Four strategies are introduced for spatial planning with the contribution of peri-urban farmland to a strategically planned multifunctional network, namely the connecting, the productive, the integrated, and the adapted way. Finally, this thesis sheds light on the opportunities that arise from the integration of the peri- urban farmland in the green infrastructure concept to support transformation towards a more sustainable urban development. In particular, the inherent core planning principle of multifunctionality endorses the idea of co-benefits that are considered crucial to trigger transformative processes. This work concludes that the linkage of peri-urban farmland with the green infrastructure concept is a promising action field for the development of new pathways for urban transformation towards sustainable urban development. Along with these outcomes, attention is drawn to limitations that remain to be addressed by future research, especially the identification of further mechanisms required to support policy integration at all levels.}, language = {en} } @phdthesis{RodriguezZuluaga2020, author = {Rodriguez Zuluaga, Juan}, title = {Electric and magnetic characteristics of equatorial plasma depletions}, doi = {10.25932/publishup-44587}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445873}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 87}, year = {2020}, abstract = {Near-Earth space represents a significant scientific and technological challenge. Particularly at magnetic low-latitudes, the horizontal magnetic field geometry at the dip equator and its closed field-lines support the existence of a distinct electric current system, abrupt electric field variations and the development of plasma irregularities. Of particular interest are small-scale irregularities associated with equatorial plasma depletions (EPDs). They are responsible for the disruption of trans-ionospheric radio waves used for navigation, communication, and Earth observation. The fast increase of satellite missions makes it imperative to study the near-Earth space, especially the phenomena known to harm space technology or disrupt their signals. EPDs correspond to the large-scale structure (i.e., tens to hundreds of kilometers) of topside F region irregularities commonly known as Spread F. They are observed as depleted-plasma density channels aligned with the ambient magnetic field in the post-sunset low-latitude ionosphere. Although the climatological variability of their occurrence in terms of season, longitude, local time and solar flux is well-known, their day to day variability is not. The sparse observations from ground-based instruments like radars and the few simultaneous measurements of ionospheric parameters by space-based instruments have left gaps in the knowledge of EPDs essential to comprehend their variability. In this dissertation, I profited from the unique observations of the ESA's Swarm constellation mission launched in November 2013 to tackle three issues that revealed novel and significant results on the current knowledge of EPDs. I used Swarm's measurements of the electron density, magnetic, and electric fields to answer, (1.) what is the direction of propagation of the electromagnetic energy associated with EPDs?, (2.) what are the spatial and temporal characteristics of the electric currents (field-aligned and diamagnetic currents) related to EPDs, i.e., seasonal/geographical, and local time dependencies?, and (3.) under what conditions does the balance between magnetic and plasma pressure across EPDs occur? The results indicate that: (1.) The electromagnetic energy associated with EPDs presents a preference for interhemispheric flows; that is, the related Poynting flux directs from one magnetic hemisphere to the other and varies with longitude and season. (2.) The field-aligned currents at the edges of EPDs are interhemispheric. They generally close in the hemisphere with the highest Pedersen conductance. Such hemispherical preference presents a seasonal/longitudinal dependence. The diamagnetic currents increase or decrease the magnetic pressure inside EPDs. These two effects rely on variations of the plasma temperature inside the EPDs that depend on longitude and local time. (3.) EPDs present lower or higher plasma pressure than the ambient. For low-pressure EPDs the plasma pressure gradients are mostly dominated by variations of the plasma density so that variations of the temperature are negligible. High-pressure EPDs suggest significant temperature variations with magnitudes of approximately twice the ambient. Since their occurrence is more frequent in the vicinity of the South Atlantic magnetic anomaly, such high temperatures are suggested to be due to particle precipitation. In a broader context, this dissertation shows how dedicated satellite missions with high-resolution capabilities improve the specification of the low-latitude ionospheric electrodynamics and expand knowledge on EPDs which is valuable for current and future communication, navigation, and Earth-observing missions. The contributions of this investigation represent several 'firsts' in the study of EPDs: (1.) The first observational evidence of interhemispheric electromagnetic energy flux and field-aligned currents. (2.) The first spatial and temporal characterization of EPDs based on their associated field-aligned and diamagnetic currents. (3.) The first evidence of high plasma pressure in regions of depleted plasma density in the ionosphere. These findings provide new insights that promise to advance our current knowledge of not only EPDs but the low-latitude post-sunset ionosphere environment.}, language = {en} } @phdthesis{Risch2020, author = {Risch, Julian}, title = {Reader comment analysis on online news platforms}, doi = {10.25932/publishup-48922}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-489222}, school = {Universit{\"a}t Potsdam}, pages = {xi, 135}, year = {2020}, abstract = {Comment sections of online news platforms are an essential space to express opinions and discuss political topics. However, the misuse by spammers, haters, and trolls raises doubts about whether the benefits justify the costs of the time-consuming content moderation. As a consequence, many platforms limited or even shut down comment sections completely. In this thesis, we present deep learning approaches for comment classification, recommendation, and prediction to foster respectful and engaging online discussions. The main focus is on two kinds of comments: toxic comments, which make readers leave a discussion, and engaging comments, which make readers join a discussion. First, we discourage and remove toxic comments, e.g., insults or threats. To this end, we present a semi-automatic comment moderation process, which is based on fine-grained text classification models and supports moderators. Our experiments demonstrate that data augmentation, transfer learning, and ensemble learning allow training robust classifiers even on small datasets. To establish trust in the machine-learned models, we reveal which input features are decisive for their output with attribution-based explanation methods. Second, we encourage and highlight engaging comments, e.g., serious questions or factual statements. We automatically identify the most engaging comments, so that readers need not scroll through thousands of comments to find them. The model training process builds on upvotes and replies as a measure of reader engagement. We also identify comments that address the article authors or are otherwise relevant to them to support interactions between journalists and their readership. Taking into account the readers' interests, we further provide personalized recommendations of discussions that align with their favored topics or involve frequent co-commenters. Our models outperform multiple baselines and recent related work in experiments on comment datasets from different platforms.}, language = {en} } @phdthesis{Reschke2020, author = {Reschke, Maria}, title = {Signal content of temperature proxy records}, school = {Universit{\"a}t Potsdam}, pages = {127}, year = {2020}, language = {en} } @phdthesis{Reinhardt2020, author = {Reinhardt, Maria}, title = {Hybrid filters and multi-scale models}, doi = {10.25932/publishup-47435}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474356}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 102}, year = {2020}, abstract = {This thesis is concerned with Data Assimilation, the process of combining model predictions with observations. So called filters are of special interest. One is inter- ested in computing the probability distribution of the state of a physical process in the future, given (possibly) imperfect measurements. This is done using Bayes' rule. The first part focuses on hybrid filters, that bridge between the two main groups of filters: ensemble Kalman filters (EnKF) and particle filters. The first are a group of very stable and computationally cheap algorithms, but they request certain strong assumptions. Particle filters on the other hand are more generally applicable, but computationally expensive and as such not always suitable for high dimensional systems. Therefore it exists a need to combine both groups to benefit from the advantages of each. This can be achieved by splitting the likelihood function, when assimilating a new observation and treating one part of it with an EnKF and the other part with a particle filter. The second part of this thesis deals with the application of Data Assimilation to multi-scale models and the problems that arise from that. One of the main areas of application for Data Assimilation techniques is predicting the development of oceans and the atmosphere. These processes involve several scales and often balance rela- tions between the state variables. The use of Data Assimilation procedures most often violates relations of that kind, which leads to unrealistic and non-physical pre- dictions of the future development of the process eventually. This work discusses the inclusion of a post-processing step after each assimilation step, in which a minimi- sation problem is solved, which penalises the imbalance. This method is tested on four different models, two Hamiltonian systems and two spatially extended models, which adds even more difficulties.}, language = {en} } @phdthesis{RamezaniZiarani2020, author = {Ramezani Ziarani, Maryam}, title = {Characterization of atmospheric processes related to hydro-meteorological extreme events over the south-central Andes}, doi = {10.25932/publishup-47175}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471755}, school = {Universit{\"a}t Potsdam}, pages = {i, 88}, year = {2020}, abstract = {The significant environmental and socioeconomic consequences of hydrometeorological extreme events, such as extreme rainfall, are constituted as a most important motivation for analyzing these events in the south-central Andes of NW Argentina. The steep topographic and climatic gradients and their interactions frequently lead to the formation of deep convective storms and consequently trigger extreme rainfall generation. In this dissertation, I focus on identifying the dominant climatic variables and atmospheric conditions and their spatiotemporal variability leading to deep convection and extreme rainfall in the south-central Andes. This dissertation first examines the significant contribution of temperature on atmospheric humidity (dew-point temperature, Td) and on convection (convective available potential energy, CAPE) for deep convective storms and hence, extreme rainfall along the topographic and climatic gradients. It was found that both climatic variables play an important role in extreme rainfall generation. However, their contributions differ depending on topographic and climatic sub-regions, as well as rainfall percentiles. Second, this dissertation explores if (near real-time) the measurements conducted by the Global Navigation Satellite System (GNSS) on integrated water vapor (IWV) provide reliable data for explaining atmospheric humidity. I argue that GNSS-IWV, in conjunction with other atmospheric stability parameters such as CAPE, is able to decipher the extreme rainfall in the eastern central Andes. In my work, I rely on a multivariable regression analysis described by a theoretical relationship and fitting function analysis. Third, this dissertation identifies the local impact of convection on extreme rainfall in the eastern Andes. Relying on a Principal Component Analysis (PCA) it was found that during the existence of moist and warm air, extreme rainfall is observed more often during local night hours. The analysis includes the mechanisms for this observation. Exploring the atmospheric conditions and climatic variables leading to extreme rainfall is one of the main findings of this dissertation. The conditions and variables are a prerequisite for understanding the dynamics of extreme rainfall and predicting these events in the eastern Andes.}, language = {en} } @phdthesis{Radtke2020, author = {Radtke, Ina}, title = {Organizing immigration}, school = {Universit{\"a}t Potsdam}, pages = {174}, year = {2020}, abstract = {Immigration constitutes a dynamic policy field with - often quite unpredictable - dynamics. This is based on immigration constituting a 'wicked problem' meaning that it is characterized by uncertainty, ambiguity and complexity. Due to the dynamics in the policy field, expectations towards public administrations often change. Following neo-institutionalist theory, public administrations depend on meeting the expectations in the organizational field in order to maintain legitimacy as the basis for, e.g., resources and compliance of stakeholders. With the dynamics in the policy field, expectations might change and public administrations consequently need to adapt in order to maintain or repair the then threatened legitimacy. If their organizational legitimacy is threatened by a perception of structures and processes being inadequate for changed expectations, an 'institutional crisis' unfolds. However, we know little about ministerial bureaucracies' structural reactions to such crucial momentums and how this effects the quest for coordination within policy-making. Overall, the dissertation thus links to both policy analysis and public administration research and consists of five publications. It asks: How do structures in ministerial bureaucracies change in the context of institutional crises? And what effect do these changes have on ministerial coordination? The dissertation hereby focusses on the above described dynamic policy field of immigration in Germany in the period from 2005 to 2017 and pursues three objectives: 1) to identify the context and impulse for changes in the structures of ministerial bureaucracies, 2) to describe respective changes with regard to their organizational structures, and 3) to identify their effect on coordination. It hereby compares and contrasts institutional crises by incremental change and shock as well as changes and effects at federal and L{\"a}nder level which allows a comprehensive answer to both of the research questions. Theoretically, the dissertation follows neo-institutionalist theory with a particular focus on changes in organizational structures, coordination and crisis management. Methodologically, it follows a comparative design. Each article (except for the literature review), focusses on ministerial bureaucracies at one governmental level (federal or L{\"a}nder) and on an institutional crisis induced by either an incremental process or a shock. Thus, responses and effects can be compared and contrasted across impulses for institutional crises and governmental levels. Overall, the dissertation follows a mixed methods approach with a majority of qualitative single and small-n case studies based on document analysis and semi-structured interviews. Additionally, two articles use quantitative methods as they best suited the respective research question. The rather explorative nature of these two articles however fits to the overall interpretivist approach of the dissertation. Overall, the dissertation's core argument is: Within the investigation period, varying dynamics and thus impulses for institutional crises took place in the German policy field of immigration. Respectively, expectations by stakeholders on how the politico-administrative system should address the policy problem changed. Ministerial administrations at both the federal and L{\"a}nder level adapted to these expectations in order to maintain, or regain respectively, organizational legitimacy. The administration hereby referred to well-known recipes of structural changes. Institutional crises do not constitute fields of experimentation. The new structures had an immediate effect on ministerial coordination, with respect to both the horizontal and vertical dimension. Yet, they did not mean a comprehensive change of the system in place. The dissertation thus challenges the idea of the toppling effect of crises and rather shows that adaptability and persistence of public administrations constitute two sides of the same coin.}, language = {en} } @phdthesis{Purinton2020, author = {Purinton, Benjamin}, title = {Remote sensing applications to earth surface processes in the Eastern Central Andes}, doi = {10.25932/publishup-44592}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445926}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 134}, year = {2020}, abstract = {Geomorphology seeks to characterize the forms, rates, and magnitudes of sediment and water transport that sculpt landscapes. This is generally referred to as earth surface processes, which incorporates the influence of biologic (e.g., vegetation), climatic (e.g., rainfall), and tectonic (e.g., mountain uplift) factors in dictating the transport of water and eroded material. In mountains, high relief and steep slopes combine with strong gradients in rainfall and vegetation to create dynamic expressions of earth surface processes. This same rugged topography presents challenges in data collection and process measurement, where traditional techniques involving detailed observations or physical sampling are difficult to apply at the scale of entire catchments. Herein lies the utility of remote sensing. Remote sensing is defined as any measurement that does not disturb the natural environment, typically via acquisition of images in the visible- to radio-wavelength range of the electromagnetic spectrum. Remote sensing is an especially attractive option for measuring earth surface processes, because large areal measurements can be acquired at much lower cost and effort than traditional methods. These measurements cover not only topographic form, but also climatic and environmental metrics, which are all intertwined in the study of earth surface processes. This dissertation uses remote sensing data ranging from handheld camera-based photo surveying to spaceborne satellite observations to measure the expressions, rates, and magnitudes of earth surface processes in high-mountain catchments of the Eastern Central Andes in Northwest Argentina. This work probes the limits and caveats of remote sensing data and techniques applied to geomorphic research questions, and presents important progress at this disciplinary intersection.}, language = {en} } @phdthesis{Pudell2020, author = {Pudell, Jan-Etienne}, title = {Lattice dynamics}, doi = {10.25932/publishup-48445}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-484453}, school = {Universit{\"a}t Potsdam}, pages = {XII, 259}, year = {2020}, abstract = {In this thesis I summarize my contribution to the research field of ultrafast structural dynamics in condensend matter. It consists of 17 publications that cover the complex interplay between electron, magnon, and phonon subsystems in solid materials and the resulting lattice dynamics after ultrafast photoexcitation. The investigation of such dynamics is necessary for the physical understanding of the processes in materials that might become important in the future as functional materials for technological applications, for example in data storage applications, information processing, sensors, or energy harvesting. In this work I present ultrafast x-ray diffraction (UXRD) experiments based on the optical pump - x-ray probe technique revealing the time-resolved lattice strain. To study these dynamics the samples (mainly thin film heterostructures) are excited by femtosecond near-infrared or visible light pulses. The induced strain dynamics caused by stresses of the excited subsystems are measured in a pump-probe scheme with x-ray diffraction (XRD) as a probe. The UXRD setups used during my thesis are a laser-driven table-top x-ray source and large-scale synchrotron facilities with dedicated time-resolved diffraction setups. The UXRD experiments provide quantitative access to heat reservoirs in nanometric layers and monitor the transient responses of these layers with coupled electron, magnon, and phonon subsystems. In contrast to optical probes, UXRD allows accessing the material-specific information, which is unavailable for optical light due to the detection of multiple indistinguishable layers in the range of the penetration depth. In addition, UXRD facilitates a layer-specific probe for layers buried opaque heterostructures to study the energy flow. I extended this UXRD technique to obtain the driving stress profile by measuring the strain dynamics in the unexcited buried layer after excitation of the adjacent absorbing layers with femtosecond laser pulses. This enables the study of negative thermal expansion (NTE) in magnetic materials, which occurs due to the loss of the magnetic order. Part of this work is the investigation of stress profiles which are the source of coherent acoustic phonon wave packets (hypersound waves). The spatiotemporal shape of these stress profiles depends on the energy distribution profile and the ability of the involved subsystems to produce stress. The evaluation of the UXRD data of rare-earth metals yields a stress profile that closely matches the optical penetration profile: In the paramagnetic (PM) phase the photoexcitation results in a quasi-instantaneous expansive stress of the metallic layer whereas in the antiferromagnetic (AFM) phase a quasi-instantaneous contractive stress and a second contractive stress contribution rising on a 10 ps time scale adds to the PM contribution. These two time scales are characteristic for the magnetic contribution and are in agreement with related studies of the magnetization dynamics of rare-earth materials. Several publications in this thesis demonstrate the scientific progress in the field of active strain control to drive a second excitation or engineer an ultrafast switch. These applications of ultrafast dynamics are necessary to enable control of functional material properties via strain on ultrafast time scales. For this thesis I implemented upgrades of the existing laser-driven table-top UXRD setup in order to achieve an enhancement of x-ray flux to resolve single digit nanometer thick layers. Furthermore, I developed and built a new in-situ time-resolved magneto-optic Kerr effect (MOKE) and optical reflectivity setup at the laser-driven table-top UXRD setup to measure the dynamics of lattice, electrons and magnons under the same excitation conditions.}, language = {en} }