@phdthesis{Šustr2020, author = {Šustr, David}, title = {Molecular diffusion in polyelectrolyte multilayers}, doi = {10.25932/publishup-48903}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-489038}, school = {Universit{\"a}t Potsdam}, pages = {106}, year = {2020}, abstract = {Research on novel and advanced biomaterials is an indispensable step towards their applications in desirable fields such as tissue engineering, regenerative medicine, cell culture, or biotechnology. The work presented here focuses on such a promising material: polyelectrolyte multilayer (PEM) composed of hyaluronic acid (HA) and poly(L-lysine) (PLL). This gel-like polymer surface coating is able to accumulate (bio-)molecules such as proteins or drugs and release them in a controlled manner. It serves as a mimic of the extracellular matrix (ECM) in composition and intrinsic properties. These qualities make the HA/PLL multilayers a promising candidate for multiple bio-applications such as those mentioned above. The work presented aims at the development of a straightforward approach for assessment of multi-fractional diffusion in multilayers (first part) and at control of local molecular transport into or from the multilayers by laser light trigger (second part). The mechanism of the loading and release is governed by the interaction of bioactives with the multilayer constituents and by the diffusion phenomenon overall. The diffusion of a molecule in HA/PLL multilayers shows multiple fractions of different diffusion rate. Approaches, that are able to assess the mobility of molecules in such a complex system, are limited. This shortcoming motivated the design of a novel evaluation tool presented here. The tool employs a simulation-based approach for evaluation of the data acquired by fluorescence recovery after photobleaching (FRAP) method. In this approach, possible fluorescence recovery scenarios are primarily simulated and afterwards compared with the data acquired while optimizing parameters of a model until a sufficient match is achieved. Fluorescent latex particles of different sizes and fluorescein in an aqueous medium are utilized as test samples validating the analysis results. The diffusion of protein cytochrome c in HA/PLL multilayers is evaluated as well. This tool significantly broadens the possibilities of analysis of spatiotemporal FRAP data, which originate from multi-fractional diffusion, while striving to be widely applicable. This tool has the potential to elucidate the mechanisms of molecular transport and empower rational engineering of the drug release systems. The second part of the work focuses on the fabrication of such a spatiotemporarily-controlled drug release system employing the HA/PLL multilayer. This release system comprises different layers of various functionalities that together form a sandwich structure. The bottom layer, which serves as a reservoir, is formed by HA/PLL PEM deposited on a planar glass substrate. On top of the PEM, a layer of so-called hybrids is deposited. The hybrids consist of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) -based hydrogel microparticles with surface-attached gold nanorods. The layer of hybrids is intended to serve as a gate that controls the local molecular transport through the PEM-solution-interface. The possibility of stimulating the molecular transport by near-infrared (NIR) laser irradiation is being explored. From several tested approaches for the deposition of hybrids onto the PEM surface, the drying-based approach was identified as optimal. Experiments, that examine the functionality of the fabricated sandwich at elevated temperature, document the reversible volume phase transition of the PEM-attached hybrids while sustaining the sandwich stability. Further, the gold nanorods were shown to effectively absorb light radiation in the tissue- and cell-friendly NIR spectral region while transducing the energy of light into heat. The rapid and reversible shrinkage of the PEM-attached hybrids was thereby achieved. Finally, dextran was employed as a model transport molecule. It loads into the PEM reservoir in a few seconds with the partition constant of 2.4, while it spontaneously releases in a slower, sustained manner. The local laser irradiation of the sandwich, which contains the fluorescein isothiocyanate tagged dextran, leads to a gradual reduction of fluorescence intensity in the irradiated region. The release system fabricated employs renowned photoresponsivity of the hybrids in an innovative setting. The results of the research are a step towards a spatially-controlled on-demand drug release system that paves the way to spatiotemporally controlled drug release. The approaches developed in this work have the potential to elucidate the molecular dynamics in ECM and to foster engineering of multilayers with properties tuned to mimic the ECM. The work aims at spatiotemporal control over the diffusion of bioactives and their presentation to the cells.}, language = {en} } @phdthesis{Šedova2022, author = {Šedov{\´a}, Barbora}, title = {Heterogeneous effects of weather and climate change on human migration}, doi = {10.25932/publishup-53673}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-536733}, school = {Universit{\"a}t Potsdam}, pages = {xix, 284}, year = {2022}, abstract = {While estimated numbers of past and future climate migrants are alarming, the growing empirical evidence suggests that the association between adverse climate-related events and migration is not universally positive. This dissertation seeks to advance our understanding of when and how climate migration emerges by analyzing heterogeneous climatic influences on migration in low- and middle-income countries. To this end, it draws on established economic theories of migration, datasets from physical and social sciences, causal inference techniques and approaches from systematic literature review. In three of its five chapters, I estimate causal effects of processes of climate change on inequality and migration in India and Sub-Saharan Africa. By employing interaction terms and by analyzing sub-samples of data, I explore how these relationships differ for various segments of the population. In the remaining two chapters, I present two systematic literature reviews. First, I undertake a comprehensive meta-regression analysis of the econometric climate migration literature to summarize general climate migration patterns and explain the conflicting findings. Second, motivated by the broad range of approaches in the field, I examine the literature from a methodological perspective to provide best practice guidelines for studying climate migration empirically. Overall, the evidence from this dissertation shows that climatic influences on human migration are highly heterogeneous. Whether adverse climate-related impacts materialize in migration depends on the socio-economic characteristics of the individual households, such as wealth, level of education, agricultural dependence or access to adaptation technologies and insurance. For instance, I show that while adverse climatic shocks are generally associated with an increase in migration in rural India, they reduce migration in the agricultural context of Sub-Saharan Africa, where the average wealth levels are much lower so that households largely cannot afford the upfront costs of moving. I find that unlike local climatic shocks which primarily enhance internal migration to cities and hence accelerate urbanization, shocks transmitted via agricultural producer prices increase migration to neighboring countries, likely due to the simultaneous decrease in real income in nearby urban areas. These findings advance our current understanding by showing when and how economic agents respond to climatic events, thus providing explicit contexts and mechanisms of climate change effects on migration in the future. The resulting collection of findings can guide policy interventions to avoid or mitigate any present and future welfare losses from climate change-related migration choices.}, language = {en} } @phdthesis{Oeztuerk2018, author = {{\"O}zt{\"u}rk, Ugur}, title = {Learning more to predict landslides}, doi = {10.25932/publishup-42643}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426439}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 104}, year = {2018}, abstract = {Landslides are frequent natural hazards in rugged terrain, when the resisting frictional force of the surface of rupture yields to the gravitational force. These forces are functions of geological and morphological factors, such as angle of internal friction, local slope gradient or curvature, which remain static over hundreds of years; whereas more dynamic triggering events, such as rainfall and earthquakes, compromise the force balance by temporarily reducing resisting forces or adding transient loads. This thesis investigates landslide distribution and orientation due to landslide triggers (e.g. rainfall) at different scales (6-4∙10^5 km^2) and aims to link rainfall movement with the landslide distribution. It additionally explores the local impacts of the extreme rainstorms on landsliding and the role of precursory stability conditions that could be induced by an earlier trigger, such as an earthquake. Extreme rainfall is a common landslide trigger. Although several studies assessed rainfall intensity and duration to study the distribution of thus triggered landslides, only a few case studies quantified spatial rainfall patterns (i.e. orographic effect). Quantifying the regional trajectories of extreme rainfall could aid predicting landslide prone regions in Japan. To this end, I combined a non-linear correlation metric, namely event synchronization, and radial statistics to assess the general pattern of extreme rainfall tracks over distances of hundreds of kilometers using satellite based rainfall estimates. Results showed that, although the increase in rainfall intensity and duration positively correlates with landslide occurrence, the trajectories of typhoons and frontal storms were insufficient to explain landslide distribution in Japan. Extreme rainfall trajectories inclined northwestwards and were concentrated along some certain locations, such as coastlines of southern Japan, which was unnoticed in the landslide distribution of about 5000 rainfall-triggered landslides. These landslides seemed to respond to the mean annual rainfall rates. Above mentioned findings suggest further investigation on a more local scale to better understand the mechanistic response of landscape to extreme rainfall in terms of landslides. On May 2016 intense rainfall struck southern Germany triggering high waters and landslides. The highest damage was reported at the Braunsbach, which is located on the tributary-mouth fan formed by the Orlacher Bach. Orlacher Bach is a ~3 km long creek that drains a catchment of about ~6 km^2. I visited this catchment in June 2016 and mapped 48 landslides along the creek. Such high landslide activity was not reported in the nearby catchments within ~3300 km^2, despite similar rainfall intensity and duration based on weather radar estimates. My hypothesis was that several landslides were triggered by rainfall-triggered flash floods that undercut hillslope toes along the Orlacher Bach. I found that morphometric features such as slope and curvature play an important role in landslide distribution on this micro scale study site (<10 km^2). In addition, the high number of landslides along the Orlacher Bach could also be boosted by accumulated damages on hillslopes due karst weathering over longer time scales. Precursory damages on hillslopes could also be induced by past triggering events that effect landscape evolution, but this interaction is hard to assess independently from the latest trigger. For example, an earthquake might influence the evolution of a landscape decades long, besides its direct impacts, such as landslides that follow the earthquake. Here I studied the consequences of the 2016 Kumamoto Earthquake (MW 7.1) that triggered some 1500 landslides in an area of ~4000 km^2 in central Kyushu, Japan. Topography, i.e. local slope and curvature, both amplified and attenuated seismic waves, thus controlling the failure mechanism of those landslides (e.g. progressive). I found that topography fails in explaining the distribution and the preferred orientation of the landslides after the earthquake; instead the landslides were concentrated around the northeast of the rupture area and faced mostly normal to the rupture plane. This preferred location of the landslides was dominated mainly by the directivity effect of the strike-slip earthquake, which is the propagation of wave energy along the fault in the rupture direction; whereas amplitude variations of the seismic radiation altered the preferred orientation. I suspect that the earthquake directivity and the asymmetry of seismic radiation damaged hillslopes at those preferred locations increasing landslide susceptibility. Hence a future weak triggering event, e.g. scattered rainfall, could further trigger landslides at those damaged hillslopes.}, language = {en} } @phdthesis{Oenel2008, author = {{\"O}nel, Hakan}, title = {Electron acceleration in a flare plasma via coronal circuits}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29035}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {The Sun is a star, which due to its proximity has a tremendous influence on Earth. Since its very first days mankind tried to "understand the Sun", and especially in the 20th century science has uncovered many of the Sun's secrets by using high resolution observations and describing the Sun by means of models. As an active star the Sun's activity, as expressed in its magnetic cycle, is closely related to the sunspot numbers. Flares play a special role, because they release large energies on very short time scales. They are correlated with enhanced electromagnetic emissions all over the spectrum. Furthermore, flares are sources of energetic particles. Hard X-ray observations (e.g., by NASA's RHESSI spacecraft) reveal that a large fraction of the energy released during a flare is transferred into the kinetic energy of electrons. However the mechanism that accelerates a large number of electrons to high energies (beyond 20 keV) within fractions of a second is not understood yet. The thesis at hand presents a model for the generation of energetic electrons during flares that explains the electron acceleration based on real parameters obtained by real ground and space based observations. According to this model photospheric plasma flows build up electric potentials in the active regions in the photosphere. Usually these electric potentials are associated with electric currents closed within the photosphere. However as a result of magnetic reconnection, a magnetic connection between the regions of different magnetic polarity on the photosphere can establish through the corona. Due to the significantly higher electric conductivity in the corona, the photospheric electric power supply can be closed via the corona. Subsequently a high electric current is formed, which leads to the generation of hard X-ray radiation in the dense chromosphere. The previously described idea is modelled and investigated by means of electric circuits. For this the microscopic plasma parameters, the magnetic field geometry and hard X-ray observations are used to obtain parameters for modelling macroscopic electric components, such as electric resistors, which are connected with each other. This model demonstrates that such a coronal electric current is correlated with large scale electric fields, which can accelerate the electrons quickly up to relativistic energies. The results of these calculations are encouraging. The electron fluxes predicted by the model are in agreement with the electron fluxes deduced from the measured photon fluxes. Additionally the model developed in this thesis proposes a new way to understand the observed double footpoint hard X-ray sources.}, language = {en} } @phdthesis{Zoeller1999, author = {Z{\"o}ller, Gert}, title = {Analyse raumzeitlicher Muster in Erdbebendaten}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000122}, school = {Universit{\"a}t Potsdam}, year = {1999}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der Charakterisierung von Seismizit{\"a}t anhand von Erdbebenkatalogen. Es werden neue Verfahren der Datenanalyse entwickelt, die Aufschluss dar{\"u}ber geben sollen, ob der seismischen Dynamik ein stochastischer oder ein deterministischer Prozess zugrunde liegt und was daraus f{\"u}r die Vorhersagbarkeit starker Erdbeben folgt. Es wird gezeigt, dass seismisch aktive Regionen h{\"a}ufig durch nichtlinearen Determinismus gekennzeichent sind. Dies schließt zumindest die M{\"o}glichkeit einer Kurzzeitvorhersage ein. Das Auftreten seismischer Ruhe wird h{\"a}ufig als Vorl{\"a}uferphaenomen f{\"u}r starke Erdbeben gedeutet. Es wird eine neue Methode pr{\"a}sentiert, die eine systematische raumzeitliche Kartierung seismischer Ruhephasen erm{\"o}glicht. Die statistische Signifikanz wird mit Hilfe des Konzeptes der Ersatzdaten bestimmt. Als Resultat erh{\"a}lt man deutliche Korrelationen zwischen seismischen Ruheperioden und starken Erdbeben. Gleichwohl ist die Signifikanz daf{\"u}r nicht hoch genug, um eine Vorhersage im Sinne einer Aussage {\"u}ber den Ort, die Zeit und die St{\"a}rke eines zu erwartenden Hauptbebens zu erm{\"o}glichen.}, language = {en} } @phdthesis{Zurell2011, author = {Zurell, Damaris}, title = {Integrating dynamic and statistical modelling approaches in order to improve predictions for scenarios of environmental change}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-56845}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Species respond to environmental change by dynamically adjusting their geographical ranges. Robust predictions of these changes are prerequisites to inform dynamic and sustainable conservation strategies. Correlative species distribution models (SDMs) relate species' occurrence records to prevailing environmental factors to describe the environmental niche. They have been widely applied in global change context as they have comparably low data requirements and allow for rapid assessments of potential future species' distributions. However, due to their static nature, transient responses to environmental change are essentially ignored in SDMs. Furthermore, neither dispersal nor demographic processes and biotic interactions are explicitly incorporated. Therefore, it has often been suggested to link statistical and mechanistic modelling approaches in order to make more realistic predictions of species' distributions for scenarios of environmental change. In this thesis, I present two different ways of such linkage. (i) Mechanistic modelling can act as virtual playground for testing statistical models and allows extensive exploration of specific questions. I promote this 'virtual ecologist' approach as a powerful evaluation framework for testing sampling protocols, analyses and modelling tools. Also, I employ such an approach to systematically assess the effects of transient dynamics and ecological properties and processes on the prediction accuracy of SDMs for climate change projections. That way, relevant mechanisms are identified that shape the species' response to altered environmental conditions and which should hence be considered when trying to project species' distribution through time. (ii) I supplement SDM projections of potential future habitat for black grouse in Switzerland with an individual-based population model. By explicitly considering complex interactions between habitat availability and demographic processes, this allows for a more direct assessment of expected population response to environmental change and associated extinction risks. However, predictions were highly variable across simulations emphasising the need for principal evaluation tools like sensitivity analysis to assess uncertainty and robustness in dynamic range predictions. Furthermore, I identify data coverage of the environmental niche as a likely cause for contrasted range predictions between SDM algorithms. SDMs may fail to make reliable predictions for truncated and edge niches, meaning that portions of the niche are not represented in the data or niche edges coincide with data limits. Overall, my thesis contributes to an improved understanding of uncertainty factors in predictions of range dynamics and presents ways how to deal with these. Finally I provide preliminary guidelines for predictive modelling of dynamic species' response to environmental change, identify key challenges for future research and discuss emerging developments.}, language = {en} } @phdthesis{Zupok2015, author = {Zupok, Arkadiusz}, title = {The psbB-operon is a major locus for plastome-genome incompatibility in Oenothera}, school = {Universit{\"a}t Potsdam}, pages = {108}, year = {2015}, language = {en} } @phdthesis{Zuo2017, author = {Zuo, Zhe}, title = {From unstructured to structured: Context-based named entity mining from text}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412576}, school = {Universit{\"a}t Potsdam}, pages = {vii, 112}, year = {2017}, abstract = {With recent advances in the area of information extraction, automatically extracting structured information from a vast amount of unstructured textual data becomes an important task, which is infeasible for humans to capture all information manually. Named entities (e.g., persons, organizations, and locations), which are crucial components in texts, are usually the subjects of structured information from textual documents. Therefore, the task of named entity mining receives much attention. It consists of three major subtasks, which are named entity recognition, named entity linking, and relation extraction. These three tasks build up an entire pipeline of a named entity mining system, where each of them has its challenges and can be employed for further applications. As a fundamental task in the natural language processing domain, studies on named entity recognition have a long history, and many existing approaches produce reliable results. The task is aiming to extract mentions of named entities in text and identify their types. Named entity linking recently received much attention with the development of knowledge bases that contain rich information about entities. The goal is to disambiguate mentions of named entities and to link them to the corresponding entries in a knowledge base. Relation extraction, as the final step of named entity mining, is a highly challenging task, which is to extract semantic relations between named entities, e.g., the ownership relation between two companies. In this thesis, we review the state-of-the-art of named entity mining domain in detail, including valuable features, techniques, evaluation methodologies, and so on. Furthermore, we present two of our approaches that focus on the named entity linking and relation extraction tasks separately. To solve the named entity linking task, we propose the entity linking technique, BEL, which operates on a textual range of relevant terms and aggregates decisions from an ensemble of simple classifiers. Each of the classifiers operates on a randomly sampled subset of the above range. In extensive experiments on hand-labeled and benchmark datasets, our approach outperformed state-of-the-art entity linking techniques, both in terms of quality and efficiency. For the task of relation extraction, we focus on extracting a specific group of difficult relation types, business relations between companies. These relations can be used to gain valuable insight into the interactions between companies and perform complex analytics, such as predicting risk or valuating companies. Our semi-supervised strategy can extract business relations between companies based on only a few user-provided seed company pairs. By doing so, we also provide a solution for the problem of determining the direction of asymmetric relations, such as the ownership_of relation. We improve the reliability of the extraction process by using a holistic pattern identification method, which classifies the generated extraction patterns. Our experiments show that we can accurately and reliably extract new entity pairs occurring in the target relation by using as few as five labeled seed pairs.}, language = {en} } @phdthesis{Zuhr2023, author = {Zuhr, Alexandra}, title = {Proxy signal formation in palaeoclimate archives}, doi = {10.25932/publishup-58286}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-582864}, school = {Universit{\"a}t Potsdam}, pages = {xx, 167}, year = {2023}, abstract = {Throughout the last ~3 million years, the Earth's climate system was characterised by cycles of glacial and interglacial periods. The current warm period, the Holocene, is comparably stable and stands out from this long-term cyclicality. However, since the industrial revolution, the climate has been increasingly affected by a human-induced increase in greenhouse gas concentrations. While instrumental observations are used to describe changes over the past ~200 years, indirect observations via proxy data are the main source of information beyond this instrumental era. These data are indicators of past climatic conditions, stored in palaeoclimate archives around the Earth. The proxy signal is affected by processes independent of the prevailing climatic conditions. In particular, for sedimentary archives such as marine sediments and polar ice sheets, material may be redistributed during or after the initial deposition and subsequent formation of the archive. This leads to noise in the records challenging reliable reconstructions on local or short time scales. This dissertation characterises the initial deposition of the climatic signal and quantifies the resulting archive-internal heterogeneity and its influence on the observed proxy signal to improve the representativity and interpretation of climate reconstructions from marine sediments and ice cores. To this end, the horizontal and vertical variation in radiocarbon content of a box-core from the South China Sea is investigated. The three-dimensional resolution is used to quantify the true uncertainty in radiocarbon age estimates from planktonic foraminifera with an extensive sampling scheme, including different sample volumes and replicated measurements of batches of small and large numbers of specimen. An assessment on the variability stemming from sediment mixing by benthic organisms reveals strong internal heterogeneity. Hence, sediment mixing leads to substantial time uncertainty of proxy-based reconstructions with error terms two to five times larger than previously assumed. A second three-dimensional analysis of the upper snowpack provides insights into the heterogeneous signal deposition and imprint in snow and firn. A new study design which combines a structure-from-motion photogrammetry approach with two-dimensional isotopic data is performed at a study site in the accumulation zone of the Greenland Ice Sheet. The photogrammetry method reveals an intermittent character of snowfall, a layer-wise snow deposition with substantial contributions by wind-driven erosion and redistribution to the final spatially variable accumulation and illustrated the evolution of stratigraphic noise at the surface. The isotopic data show the preservation of stratigraphic noise within the upper firn column, leading to a spatially variable climate signal imprint and heterogeneous layer thicknesses. Additional post-depositional modifications due to snow-air exchange are also investigated, but without a conclusive quantification of the contribution to the final isotopic signature. Finally, this characterisation and quantification of the complex signal formation in marine sediments and polar ice contributes to a better understanding of the signal content in proxy data which is needed to assess the natural climate variability during the Holocene.}, language = {en} } @phdthesis{Zubaidah2010, author = {Zubaidah, Teti}, title = {Spatio-temporal characteristics of the geomagnetic field over the Lombok Island, the Lesser Sunda Islands region : new geological, tectonic, and seismo-electromagnetic insights along the Sunda-Banda Arcs transition}, address = {Potsdam}, pages = {XV, 117 S. : Ill., graph. Darst.}, year = {2010}, language = {en} } @phdthesis{Zubaidah2010, author = {Zubaidah, Teti}, title = {Spatio-temporal characteristics of the geomagnetic field over the Lombok Island, the Lesser Sunda Islands region}, series = {Scientific Technical Report}, volume = {STR10}, journal = {Scientific Technical Report}, number = {07}, publisher = {Deutsches GeoForschungsZentrum GFZ}, address = {Potsdam}, doi = {10.2312/GFZ.b103-10079}, school = {Universit{\"a}t Potsdam}, pages = {xv, 117}, year = {2010}, abstract = {The Lombok Island is part of the Lesser Sunda Islands (LSI) region - Indonesia, situated along the Sunda-Banda Arcs transition. It lies between zones characterized by the highest intensity geomagnetic anomalies of this region, remarkable as one of the eight most important features provided on the 1st edition of World Digital Magnetic Anomaly Map. The seismicity of this region during the last years is high, while the geological and tectonic structures of this region are still not known in detail. Some local magnetic surveys have been conducted previously during 2004-2005. However, due to the lower accuracy of the used equipment and a limited number of stations, the qualities of the previous measurements are questionable for more interpretations. Thus a more detailed study to better characterize the geomagnetic anomaly -spatially and temporally- over this region and to deeply explore the related regional geology, tectonic and seismicity is needed. The intriguing geomagnetic anomalies over this island region vis-{\`a}-vis the socio-cultural situations lead to a study with a special aim to contribute to the assessment of the potential of natural hazards (earthquakes) as well as a new natural resource of energy (geothermal potential). This study is intended to discuss several crucial questions, including: i. The real values and the general pattern of magnetic anomalies over the island, as well as their relation to the regional one. ii. Any temporal changes of regional anomalies over the recent time. iii. The relationships between the anomalies and the geology and tectonic of this region, especially new insights that can be gained from the geomagnetic observations. iv. The relationships between the anomalies and the high seismicity of this region, especially some possible links between their variations to the earthquake occurrence. First, all available geomagnetic data of this region and results of the previous measurements are evaluated. The new geomagnetic surveys carried out in 2006 and 2007/2008 are then presented in detail, followed by the general description of data processing and data quality evaluation. The new results show the general pattern of contiguous negative-positive anomalies, revealing an active arc related subduction region. They agree with earlier results obtained by satellite, aeromagnetic, and marine platforms; and provide a much more detailed picture of the strong anomalies on this island. The temporal characteristics of regional anomalies show a decreasing strength of the dipolar structure, where decreasing of the field intensities is faster than the regional secular variations as defined by the global model (the 10th generation of IGRF). However, some exceptions (increasing of anomalies) have to be noted and further analyzed for several locations. Thereafter, simultaneous magnetic anomalies and gravity models are generated and interpreted in detail. Three profiles are investigated, providing new insights into the tectonics and geological evolution of the Lombok Island. Geological structure of this island can be divided as two main parts with different consecutive ages: an old part (from late Oligocene to late Miocene) in the South and a younger one (from Pliocene to Holocene) in the North. A new subduction in the back arc region (the Flores Thrust zone) is considered mature and active, showing a tendency of progressive subduction during 2005-2008. Geothermal potential in the northern part of this island can be mapped in more detail using these geomagnetic regional survey data. The earlier estimates of reservoir depth can be confirmed further to a depth of about 800 m. Evaluation of temporal changes of the anomalies gives some possible explanations related to the evolution of the back arc region, large stress accumulations over the LSI region, a specific electrical characteristic of the crust of the Lombok Island region, and a structural discontinuity over this island. Based on the results, several possible advanced studies involving geomagnetic data and anomaly investigations over the Lombok Island region can be suggested for the future: i. Monitoring the subduction activity of the back arc region (the Flores Thrust zone) and the accumulated stress over the LSI, that could contribute to middle term hazard assessment with a special attention to the earthquake occurrence in this region. Continuous geomagnetic field measurements from a geomagnetic observatory which can be established in the northern part of the Lombok Island and systematic measurements at several repeat stations can be useful in this regards. ii. Investigating the specific electrical characteristic (high conductivity) of the crust, that is probably related to some aquifer layers or metal mineralization. It needs other complementary geophysical methods, such as magnetotelluric (MT) or preferably DC resistivity measurements. iii. Determining the existence of an active structural fault over the Lombok Island, that could be related to long term hazard assessment over the LSI region. This needs an extension of geomagnetic investigations over the neighbouring islands (the Bali Island in the West and the Sumbawa Island in the East; probably also the Sumba and the Flores islands). This seems possible because the regional magnetic lineations might be used to delineate some structural discontinuities, based on the modelling of contrasts in crustal magnetizations.}, language = {en} } @phdthesis{Zuba2018, author = {Zuba, Anna}, title = {The role of weight stigma and weight bias internalization in psychological functioning among school-aged children}, school = {Universit{\"a}t Potsdam}, pages = {146}, year = {2018}, language = {en} } @phdthesis{Zou2007, author = {Zou, Yong}, title = {Exploring recurrences in quasiperiodic systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16497}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {In this work, some new results to exploit the recurrence properties of quasiperiodic dynamical systems are presented by means of a two dimensional visualization technique, Recurrence Plots(RPs). Quasiperiodicity is the simplest form of dynamics exhibiting nontrivial recurrences, which are common in many nonlinear systems. The concept of recurrence was introduced to study the restricted three body problem and it is very useful for the characterization of nonlinear systems. I have analyzed in detail the recurrence patterns of systems with quasiperiodic dynamics both analytically and numerically. Based on a theoretical analysis, I have proposed a new procedure to distinguish quasiperiodic dynamics from chaos. This algorithm is particular useful in the analysis of short time series. Furthermore, this approach demonstrates to be efficient in recognizing regular and chaotic trajectories of dynamical systems with mixed phase space. Regarding the application to real situations, I have shown the capability and validity of this method by analyzing time series from fluid experiments.}, language = {en} } @phdthesis{Zorn2020, author = {Zorn, Edgar Ulrich}, title = {Monitoring lava dome growth and deformation with photogrammetric methods and modelling}, doi = {10.25932/publishup-48360}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-483600}, school = {Universit{\"a}t Potsdam}, pages = {IX, 167}, year = {2020}, abstract = {Lava domes are severely hazardous, mound-shaped extrusions of highly viscous lava and commonly erupt at many active stratovolcanoes around the world. Due to gradual growth and flank oversteepening, such lava domes regularly experience partial or full collapses, resulting in destructive and far-reaching pyroclastic density currents. They are also associated with cyclic explosive activity as the complex interplay of cooling, degassing, and solidification of dome lavas regularly causes gas pressurizations on the dome or the underlying volcano conduit. Lava dome extrusions can last from days to decades, further highlighting the need for accurate and reliable monitoring data. This thesis aims to improve our understanding of lava dome processes and to contribute to the monitoring and prediction of hazards posed by these domes. The recent rise and sophistication of photogrammetric techniques allows for the extraction of observational data in unprecedented detail and creates ideal tools for accomplishing this purpose. Here, I study natural lava dome extrusions as well as laboratory-based analogue models of lava dome extrusions and employ photogrammetric monitoring by Structure-from-Motion (SfM) and Particle-Image-Velocimetry (PIV) techniques. I primarily use aerial photography data obtained by helicopter, airplanes, Unoccupied Aircraft Systems (UAS) or ground-based timelapse cameras. Firstly, by combining a long time-series of overflight data at Volc{\´a}n de Colima, M{\´e}xico, with seismic and satellite radar data, I construct a detailed timeline of lava dome and crater evolution. Using numerical model, the impact of the extrusion on dome morphology and loading stress is further evaluated and an impact on the growth direction is identified, bearing important implications for the location of collapse hazards. Secondly, sequential overflight surveys at the Santiaguito lava dome, Guatemala, reveal surface motion data in high detail. I quantify the growth of the lava dome and the movement of a lava flow, showing complex motions that occur on different timescales and I provide insight into rock properties relevant for hazard assessment inferred purely by photogrammetric processing of remote sensing data. Lastly, I recreate artificial lava dome and spine growth using analogue modelling under controlled conditions, providing new insights into lava extrusion processes and structures as well as the conditions in which they form. These findings demonstrate the capabilities of photogrammetric data analyses to successfully monitor lava dome growth and evolution while highlighting the advantages of complementary modelling methods to explain the observed phenomena. The results presented herein further bear important new insights and implications for the hazards posed by lava domes.}, language = {en} } @phdthesis{Zona2024, author = {Zona, Carlotta Isabella}, title = {Visuo-linguistic integration for thematic-role assignment across speakers}, doi = {10.25932/publishup-63185}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-631857}, school = {Universit{\"a}t Potsdam}, pages = {147}, year = {2024}, abstract = {This dissertation examines the integration of incongruent visual-scene and morphological-case information ("cues") in building thematic-role representations of spoken relative clauses in German. Addressing the mutual influence of visual and linguistic processing, the Coordinated Interplay Account (CIA) describes a mechanism in two steps supporting visuo-linguistic integration (Knoeferle \& Crocker, 2006, Cog Sci). However, the outcomes and dynamics of integrating incongruent thematic-role representations from distinct sources have been investigated scarcely. Further, there is evidence that both second-language (L2) and older speakers may rely on non-syntactic cues relatively more than first-language (L1)/young speakers. Yet, the role of visual information for thematic-role comprehension has not been measured in L2 speakers, and only limitedly across the adult lifespan. Thematically unambiguous canonically ordered (subject-extracted) and noncanonically ordered (object-extracted) spoken relative clauses in German (see 1a-b) were presented in isolation and alongside visual scenes conveying either the same (congruent) or the opposite (incongruent) thematic relations as the sentence did. 1 a Das ist der Koch, der die Braut verfolgt. This is the.NOM cook who.NOM the.ACC bride follows This is the cook who is following the bride. b Das ist der Koch, den die Braut verfolgt. This is the.NOM cook whom.ACC the.NOM bride follows This is the cook whom the bride is following. The relative contribution of each cue to thematic-role representations was assessed with agent identification. Accuracy and latency data were collected post-sentence from a sample of L1 and L2 speakers (Zona \& Felser, 2023), and from a sample of L1 speakers from across the adult lifespan (Zona \& Reifegerste, under review). In addition, the moment-by-moment dynamics of thematic-role assignment were investigated with mouse tracking in a young L1 sample (Zona, under review). The following questions were addressed: (1) How do visual scenes influence thematic-role representations of canonical and noncanonical sentences? (2) How does reliance on visual-scene, case, and word-order cues vary in L1 and L2 speakers? (3) How does reliance on visual-scene, case, and word-order cues change across the lifespan? The results showed reliable effects of incongruence of visually and linguistically conveyed thematic relations on thematic-role representations. Incongruent (vs. congruent) scenes yielded slower and less accurate responses to agent-identification probes presented post-sentence. The recently inspected agent was considered as the most likely agent ~300ms after trial onset, and the convergence of visual scenes and word order enabled comprehenders to assign thematic roles predictively. L2 (vs. L1) participants relied more on word order overall. In response to noncanonical clauses presented with incongruent visual scenes, sensitivity to case predicted the size of incongruence effects better than L1-L2 grouping. These results suggest that the individual's ability to exploit specific cues might predict their weighting. Sensitivity to case was stable throughout the lifespan, while visual effects increased with increasing age and were modulated by individual interference-inhibition levels. Thus, age-related changes in comprehension may stem from stronger reliance on visually (vs. linguistically) conveyed meaning. These patterns represent evidence for a recent-role preference - i.e., a tendency to re-assign visually conveyed thematic roles to the same referents in temporally coordinated utterances. The findings (i) extend the generalizability of CIA predictions across stimuli, tasks, populations, and measures of interest, (ii) contribute to specifying the outcomes and mechanisms of detecting and indexing incongruent representations within the CIA, and (iii) speak to current efforts to understand the sources of variability in sentence comprehension.}, language = {en} } @phdthesis{Zinck2009, author = {Zinck, Richard}, title = {Diversity, criticality and disturbance in wildfire ecosystems}, address = {Potsdam}, pages = {97 S.}, year = {2009}, language = {en} } @phdthesis{Zimmermann2018, author = {Zimmermann, Marc}, title = {Multifunctional patchy silica particles via microcontact printing}, doi = {10.25932/publishup-42773}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427731}, school = {Universit{\"a}t Potsdam}, pages = {IX, 121, xiii}, year = {2018}, abstract = {This research addressed the question, if it is possible to simplify current microcontact printing systems for the production of anisotropic building blocks or patchy particles, by using common chemicals while still maintaining reproducibility, high precision and tunability of the Janus-balance Chapter 2 introduced the microcontact printing materials as well as their defined electrostatic interactions. In particular polydimethylsiloxane stamps, silica particles and high molecular weight polyethylenimine ink were mainly used in this research. All of these components are commercially available in large quantities and affordable, which gives this approach a huge potential for further up-scaling developments. The benefits of polymeric over molecular inks was described including its flexible influence on the printing pressure. With this alteration of the µCP concept, a new method of solvent assisted particle release mechanism enabled the switch from two-dimensional surface modification to three-dimensional structure printing on colloidal silica particles, without changing printing parameters or starting materials. This effect opened the way to use the internal volume of the achieved patches for incorporation of nano additives, introducing additional physical properties into the patches without alteration of the surface chemistry. The success of this system and its achievable range was further investigated in chapter 3 by giving detailed information about patch geometry parameters including diameter, thickness and yield. For this purpose, silica particles in a size range between 1µm and 5µm were printed with different ink concentrations to change the Janus-balance of these single patched particles. A necessary intermediate step, consisting of air-plasma treatment, for the production of trivalent particles using "sandwich" printing was discovered and comparative studies concerning the patch geometry of single and double patched particles were conducted. Additionally, the usage of structured PDMS stamps during printing was described. These results demonstrate the excellent precision of this approach and opens the pathway for even greater accuracy as further parameters can be finely tuned and investigated, e.g. humidity and temperature during stamp loading. The performance of these synthesized anisotropic colloids was further investigated in chapter 4, starting with behaviour studies in alcoholic and aqueous dispersions. Here, the stability of the applied patches was studied in a broad pH range, discovering a release mechanism by disabling the electrostatic bonding between particle surface and polyelectrolyte ink. Furthermore, the absence of strong attractive forces between divalent particles in water was investigated using XPS measurements. These results lead to the conclusion that the transfer of small PDMS oligomers onto the patch surface is shielding charges, preventing colloidal agglomeration. However, based on this knowledge, further patch modifications for particle self-assembly were introduced including physical approaches using magnetic nano additives, chemical patch functionalization with avidin-biotin or the light responsive cyclodextrin-arylazopyrazoles coupling as well as particle surface modification for the synthesis of highly amphiphilic colloids. The successful coupling, its efficiency, stability and behaviour in different solvents were evaluated to find a suitable coupling system for future assembly experiments. Based on these results the possibility of more sophisticated structures by colloidal self-assembly is given. Certain findings needed further analysis to understand their underlying mechanics, including the relatively broad patch diameter distribution and the decreasing patch thickness for smaller silica particles. Mathematical assumptions for both effects are introduced in chapter 5. First, they demonstrate the connection between the naturally occurring particle size distribution and the broadening of the patch diameter, indicating an even higher precision for this µCP approach. Second, explaining the increase of contact area between particle and ink surface due to higher particle packaging, leading to a decrease in printing pressure for smaller particles. These calculations ultimately lead to the development of a new mechanical microcontact printing approach, using centrifugal forces for high pressure control and excellent parallel alignment of printing substrates. First results with this device and the comparison with previously conducted by-hand experiments conclude this research. It furthermore displays the advantages of such a device for future applications using a mechanical printing approach, especially for accessing even smaller nano particles with great precision and excellent yield. In conclusion, this work demonstrates the successful adjustment of the µCP approach using commercially available and affordable silica particles and polyelectrolytes for high flexibility, reduced costs and higher scale-up value. Furthermore, its was possible to increase the modification potential by introducing three-dimensional patches for additional functionalization volume. While keeping a high colloidal stability, different coupling systems showed the self-assembly capabilities of this toolbox for anisotropic particles.}, language = {en} } @phdthesis{Zimmermann2009, author = {Zimmermann, Julia}, title = {Population ecology of a dominant perennial grass : recruitment, growth and mortality in semi-arid savanna}, series = {PhD dissertation / Helmholtz Centre for Environmental Research, UFZ}, volume = {2009,4}, journal = {PhD dissertation / Helmholtz Centre for Environmental Research, UFZ}, publisher = {UFZ}, address = {Leipzig}, pages = {VI, 97 S.}, year = {2009}, language = {en} } @phdthesis{Zimmermann2017, author = {Zimmermann, Heike Hildegard}, title = {Vegetation changes and treeline dynamics in northern Siberia since the last interglacial revealed by sedimentary ancient DNA metabarcoding and organelle genome assembly of modern larches}, school = {Universit{\"a}t Potsdam}, pages = {138}, year = {2017}, language = {en} } @phdthesis{Zimmermann2007, author = {Zimmermann, Beate}, title = {Spatial and temporal variability of the soil saturated hydraulic conductivity in gradients of disturbance}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16402}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {As land-cover conversion continues to expand into ever more remote areas in the humid tropics, montane rainforests are increasingly threatened. In the south Ecuadorian Andes, they are not only subject to man-made disturbances but also to naturally occurring landslides. I was interested in the impact of this ecosystem dynamics on a key parameter of the hydrologic cycle, the soil saturated hydraulic conductivity (synonym: permeability; Ks from here on), because it is a sensitive indicator for soil disturbances. My general objective was to quantify the effects of the regional natural and human disturbances on the saturated hydraulic conductivity and to describe the resulting spatial-temporal patterns. The main hypotheses were: 1) disturbances cause an apparent displacement of the less permeable soil layer towards the surface, either due to a loss of the permeable surface soil after land-sliding, or as a consequence of the surface soil compaction under cattle pastures; 2) 'recovery' from disturbance, either because of landslide re-vegetation or because of secondary succession after pasture abandonment, involves an apparent displacement of the less permeable layer back towards the original depth an 3) disturbances cause a simplification of the Ks spatial structure, i.e. the spatially dependent random variation diminishes; the subsequent recovery entails the re-establishment of the original structure. In my first study, I developed a synthesis of recent geostatistical research regarding its applicability to soil hydraulic data, including exploratory data analysis and variogram estimation techniques; I subsequently evaluated the results in terms of spatial prediction uncertainty. Concerning the exploratory data analysis, my main results were: 1) Gaussian uni- and bivariate distributions of the log-transformed data; 2) the existence of significant local trends; 3) no need for robust estimation; 4) no anisotropic variation. I found partly considerable differences in covariance parameters resulting from different variogram estimation techniques, which, in the framework of spatial prediction, were mainly reflected in the spatial connectivity of the Ks-field. Ignoring the trend component and an arbitrary use of robust estimators, however, would have the most severe consequences in this respect. Regarding variogram modeling, I encouraged restricted maximum likelihood estimation because of its accuracy and independence on the selected lags needed for experimental variograms. The second study dealt with the Ks spatial-temporal pattern in the sequences of natural and man-made disturbances characteristic for the montane rainforest study area. To investigate the disturbance effects both on global means and the spatial structure of Ks, a combined design-and model-based sampling approach was used for field-measurements at soil depths of 12.5, 20, and 50 cm (n=30-150/depth) under landslides of different ages (2 and 8 years), under actively grazed pasture, fallows following pasture abandonment (2 to 25 years of age), and under natural forest. Concerning global means, our main findings were 1) global means of the soil permeability generally decrease with increasing soil depth; 2) no significant Ks differences can be observed among landslides and compared to the natural forest; 3) a distinct permeability decrease of two orders of magnitude occurs after forest conversion to pasture at shallow soil depths, and 4) the slow regeneration process after pasture abandonment requires at least one decade. Regarding the Ks spatial structure, we found that 1) disturbances affect the Ks spatial structure in the topsoil, and 2) the largest differences in spatial patterns are associated with the subsoil permeability. In summary, the regional landslide activity seems to affect soil hydrology to a marginal extend only, which is in contrast to the pronounced drop of Ks after forest conversion. We used this spatial-temporal information combined with local rain intensities to assess the partitioning of rainfall into vertical and lateral flowpaths under undisturbed, disturbed, and regenerating land-cover types in the third study. It turned out that 1) the montane rainforest is characterized by prevailing vertical flowpaths in the topsoil, which can switch to lateral directions below 20 cm depth for a small number of rain events, which may, however, transport a high portion of the annual runoff; 2) similar hydrological flowpaths occur under the landslides except for a somewhat higher probability of impermeable layer formation in the topsoil of a young landslide, and 3) pronounced differences in runoff components can be observed for the human disturbance sequence involving the development of near-surface impeding layers for 24, 44, and 8 \% of rain events for pasture, a two-year-old fallow, and a ten-year-old fallow, respectively.}, language = {en} } @phdthesis{Zimmermann2009, author = {Zimmermann, Alexander}, title = {Rainfall redistribution and change of water quality in tropical forest canopies : patterns and persistence}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-32556}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Motivations and research objectives: During the passage of rain water through a forest canopy two main processes take place. First, water is redistributed; and second, its chemical properties change substantially. The rain water redistribution and the brief contact with plant surfaces results in a large variability of both throughfall and its chemical composition. Since throughfall and its chemistry influence a range of physical, chemical and biological processes at or below the forest floor the understanding of throughfall variability and the prediction of throughfall patterns potentially improves the understanding of near-surface processes in forest ecosystems. This thesis comprises three main research objectives. The first objective is to determine the variability of throughfall and its chemistry, and to investigate some of the controlling factors. Second, I explored throughfall spatial patterns. Finally, I attempted to assess the temporal persistence of throughfall and its chemical composition. Research sites and methods: The thesis is based on investigations in a tropical montane rain forest in Ecuador, and lowland rain forest ecosystems in Brazil and Panama. The first two studies investigate both throughfall and throughfall chemistry following a deterministic approach. The third study investigates throughfall patterns with geostatistical methods, and hence, relies on a stochastic approach. Results and Conclusions: Throughfall is highly variable. The variability of throughfall in tropical forests seems to exceed that of many temperate forests. These differences, however, do not solely reflect ecosystem-inherent characteristics, more likely they also mirror management practices. Apart from biotic factors that influence throughfall variability, rainfall magnitude is an important control. Throughfall solute concentrations and solute deposition are even more variable than throughfall. In contrast to throughfall volumes, the variability of solute deposition shows no clear differences between tropical and temperate forests, hence, biodiversity is not a strong predictor of solute deposition heterogeneity. Many other factors control solute deposition patterns, for instance, solute concentration in rainfall and antecedent dry period. The temporal variability of the latter factors partly accounts for the low temporal persistence of solute deposition. In contrast, measurements of throughfall volume are quite stable over time. Results from the Panamanian research site indicate that wet and dry areas outlast consecutive wet seasons. At this research site, throughfall exhibited only weak or pure nugget autocorrelation structures over the studies lag distances. A close look at the geostatistical tools at hand provided evidence that throughfall datasets, in particular those of large events, require robust variogram estimation if one wants to avoid outlier removal. This finding is important because all geostatistical throughfall studies that have been published so far analyzed their data using the classical, non-robust variogram estimator.}, language = {en} } @phdthesis{Zillmer2003, author = {Zillmer, R{\"u}diger}, title = {Statistical properties and scaling of the Lyapunov exponents in stochastic systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001147}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Die vorliegende Arbeit umfaßt drei Abhandlungen, welche allgemein mit einer stochastischen Theorie f{\"u}r die Lyapunov-Exponenten befaßt sind. Mit Hilfe dieser Theorie werden universelle Skalengesetze untersucht, die in gekoppelten chaotischen und ungeordneten Systemen auftreten. Zun{\"a}chst werden zwei zeitkontinuierliche stochastische Modelle f{\"u}r schwach gekoppelte chaotische Systeme eingef{\"u}hrt, um die Skalierung der Lyapunov-Exponenten mit der Kopplungsst{\"a}rke ('coupling sensitivity of chaos') zu untersuchen. Mit Hilfe des Fokker-Planck-Formalismus werden Skalengesetze hergeleitet, die von Ergebnissen numerischer Simulationen best{\"a}tigt werden. Anschließend wird gezeigt, daß 'coupling sensitivity' im Fall gekoppelter ungeordneter Ketten auftritt, wobei der Effekt sich durch ein singul{\"a}res Anwachsen der Lokalisierungsl{\"a}nge {\"a}ußert. Numerische Ergebnisse f{\"u}r gekoppelte Anderson-Modelle werden bekr{\"a}ftigt durch analytische Resultate f{\"u}r gekoppelte raumkontinuierliche Schr{\"o}dinger-Gleichungen. Das resultierende Skalengesetz f{\"u}r die Lokalisierungsl{\"a}nge {\"a}hnelt der Skalierung der Lyapunov-Exponenten gekoppelter chaotischer Systeme. Schließlich wird die Statistik der exponentiellen Wachstumsrate des linearen Oszillators mit parametrischem Rauschen studiert. Es wird gezeigt, daß die Verteilung des zeitabh{\"a}ngigen Lyapunov-Exponenten von der Normalverteilung abweicht. Mittels der verallgemeinerten Lyapunov-Exponenten wird der Parameterbereich bestimmt, in welchem die Abweichungen von der Normalverteilung signifikant sind und Multiskalierung wesentlich wird.}, language = {en} } @phdthesis{Ziese2014, author = {Ziese, Ramona}, title = {Geometric electroelasticity}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72504}, school = {Universit{\"a}t Potsdam}, pages = {vi, 113}, year = {2014}, abstract = {In this work a diffential geometric formulation of the theory of electroelasticity is developed which also includes thermal and magnetic influences. We study the motion of bodies consisting of an elastic material that are deformed by the influence of mechanical forces, heat and an external electromagnetic field. To this end physical balance laws (conservation of mass, balance of momentum, angular momentum and energy) are established. These provide an equation that describes the motion of the body during the deformation. Here the body and the surrounding space are modeled as Riemannian manifolds, and we allow that the body has a lower dimension than the surrounding space. In this way one is not (as usual) restricted to the description of the deformation of three-dimensional bodies in a three-dimensional space, but one can also describe the deformation of membranes and the deformation in a curved space. Moreover, we formulate so-called constitutive relations that encode the properties of the used material. Balance of energy as a scalar law can easily be formulated on a Riemannian manifold. The remaining balance laws are then obtained by demanding that balance of energy is invariant under the action of arbitrary diffeomorphisms on the surrounding space. This generalizes a result by Marsden and Hughes that pertains to bodies that have the same dimension as the surrounding space and does not allow the presence of electromagnetic fields. Usually, in works on electroelasticity the entropy inequality is used to decide which otherwise allowed deformations are physically admissible and which are not. It is alsoemployed to derive restrictions to the possible forms of constitutive relations describing the material. Unfortunately, the opinions on the physically correct statement of the entropy inequality diverge when electromagnetic fields are present. Moreover, it is unclear how to formulate the entropy inequality in the case of a membrane that is subjected to an electromagnetic field. Thus, we show that one can replace the use of the entropy inequality by the demand that for a given process balance of energy is invariant under the action of arbitrary diffeomorphisms on the surrounding space and under linear rescalings of the temperature. On the one hand, this demand also yields the desired restrictions to the form of the constitutive relations. On the other hand, it needs much weaker assumptions than the arguments in physics literature that are employing the entropy inequality. Again, our result generalizes a theorem of Marsden and Hughes. This time, our result is, like theirs, only valid for bodies that have the same dimension as the surrounding space.}, language = {en} } @phdthesis{Ziemann2022, author = {Ziemann, Niklas}, title = {Four essays on the role of distance for economic decision-making}, doi = {10.25932/publishup-59107}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-591073}, school = {Universit{\"a}t Potsdam}, pages = {xii, 128}, year = {2022}, abstract = {Distances affect economic decision-making in numerous situations. The time at which we make a decision about future consumption has an impact on our consumption behavior. The spatial distance to employer, school or university impacts the place where we live and vice versa. The emotional closeness to other individuals influences our willingness to give money to them. This cumulative thesis aims to enrich the literature on the role of distance for economic decision-making. Thereby, each of my research projects sheds light on the impact of one kind of distance for efficient decision-making.}, language = {en} } @phdthesis{Ziehe2005, author = {Ziehe, Andreas}, title = {Blind source separation based on joint diagonalization of matrices with applications in biomedical signal processing}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5694}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {This thesis is concerned with the solution of the blind source separation problem (BSS). The BSS problem occurs frequently in various scientific and technical applications. In essence, it consists in separating meaningful underlying components out of a mixture of a multitude of superimposed signals. In the recent research literature there are two related approaches to the BSS problem: The first is known as Independent Component Analysis (ICA), where the goal is to transform the data such that the components become as independent as possible. The second is based on the notion of diagonality of certain characteristic matrices derived from the data. Here the goal is to transform the matrices such that they become as diagonal as possible. In this thesis we study the latter method of approximate joint diagonalization (AJD) to achieve a solution of the BSS problem. After an introduction to the general setting, the thesis provides an overview on particular choices for the set of target matrices that can be used for BSS by joint diagonalization. As the main contribution of the thesis, new algorithms for approximate joint diagonalization of several matrices with non-orthogonal transformations are developed. These newly developed algorithms will be tested on synthetic benchmark datasets and compared to other previous diagonalization algorithms. Applications of the BSS methods to biomedical signal processing are discussed and exemplified with real-life data sets of multi-channel biomagnetic recordings.}, subject = {Signaltrennung}, language = {en} } @phdthesis{Ziegler2017, author = {Ziegler, Moritz O.}, title = {The 3D in-situ stress field and its changes in geothermal reservoirs}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403838}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 110, XV}, year = {2017}, abstract = {Information on the contemporary in-situ stress state of the earth's crust is essential for geotechnical applications and physics-based seismic hazard assessment. Yet, stress data records for a data point are incomplete and their availability is usually not dense enough to allow conclusive statements. This demands a thorough examination of the in-situ stress field which is achieved by 3D geomechanicalnumerical models. However, the models spatial resolution is limited and the resulting local stress state is subject to large uncertainties that confine the significance of the findings. In addition, temporal variations of the in-situ stress field are naturally or anthropogenically induced. In my thesis I address these challenges in three manuscripts that investigate (1) the current crustal stress field orientation, (2) the 3D geomechanical-numerical modelling of the in-situ stress state, and (3) the phenomenon of injection induced temporal stress tensor rotations. In the first manuscript I present the first comprehensive stress data compilation of Iceland with 495 data records. Therefore, I analysed image logs from 57 boreholes in Iceland for indicators of the orientation of the maximum horizontal stress component. The study is the first stress survey from different kinds of stress indicators in a geologically very young and tectonically active area of an onshore spreading ridge. It reveals a distinct stress field with a depth independent stress orientation even very close to the spreading centre. In the second manuscript I present a calibrated 3D geomechanical-numerical modelling approach of the in-situ stress state of the Bavarian Molasse Basin that investigates the regional (70x70x10km³) and local (10x10x10km³) stress state. To link these two models I develop a multi-stage modelling approach that provides a reliable and efficient method to derive from the larger scale model initial and boundary conditions for the smaller scale model. Furthermore, I quantify the uncertainties in the models results which are inherent to geomechanical-numerical modelling in general and the multi-stage approach in particular. I show that the significance of the models results is mainly reduced due to the uncertainties in the material properties and the low number of available stress magnitude data records for calibration. In the third manuscript I investigate the phenomenon of injection induced temporal stress tensor rotation and its controlling factors. I conduct a sensitivity study with a 3D generic thermo-hydro-mechanical model. I show that the key control factors for the stress tensor rotation are the permeability as the decisive factor, the injection rate, and the initial differential stress. In particular for enhanced geothermal systems with a low permeability large rotations of the stress tensor are indicated. According to these findings the estimation of the initial differential stress in a reservoir is possible provided the permeability is known and the angle of stress rotation is observed. I propose that the stress tensor rotations can be a key factor in terms of the potential for induced seismicity on pre-existing faults due to the reorientation of the stress field that changes the optimal orientation of faults.}, language = {en} } @phdthesis{Zieger2017, author = {Zieger, Tobias}, title = {Self-adaptive data quality}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410573}, school = {Universit{\"a}t Potsdam}, pages = {vii, 125}, year = {2017}, abstract = {Carrying out business processes successfully is closely linked to the quality of the data inventory in an organization. Lacks in data quality lead to problems: Incorrect address data prevents (timely) shipments to customers. Erroneous orders lead to returns and thus to unnecessary effort. Wrong pricing forces companies to miss out on revenues or to impair customer satisfaction. If orders or customer records cannot be retrieved, complaint management takes longer. Due to erroneous inventories, too few or too much supplies might be reordered. A special problem with data quality and the reason for many of the issues mentioned above are duplicates in databases. Duplicates are different representations of same real-world objects in a dataset. However, these representations differ from each other and are for that reason hard to match by a computer. Moreover, the number of required comparisons to find those duplicates grows with the square of the dataset size. To cleanse the data, these duplicates must be detected and removed. Duplicate detection is a very laborious process. To achieve satisfactory results, appropriate software must be created and configured (similarity measures, partitioning keys, thresholds, etc.). Both requires much manual effort and experience. This thesis addresses automation of parameter selection for duplicate detection and presents several novel approaches that eliminate the need for human experience in parts of the duplicate detection process. A pre-processing step is introduced that analyzes the datasets in question and classifies their attributes semantically. Not only do these annotations help understanding the respective datasets, but they also facilitate subsequent steps, for example, by selecting appropriate similarity measures or normalizing the data upfront. This approach works without schema information. Following that, we show a partitioning technique that strongly reduces the number of pair comparisons for the duplicate detection process. The approach automatically finds particularly suitable partitioning keys that simultaneously allow for effective and efficient duplicate retrieval. By means of a user study, we demonstrate that this technique finds partitioning keys that outperform expert suggestions and additionally does not need manual configuration. Furthermore, this approach can be applied independently of the attribute types. To measure the success of a duplicate detection process and to execute the described partitioning approach, a gold standard is required that provides information about the actual duplicates in a training dataset. This thesis presents a technique that uses existing duplicate detection results and crowdsourcing to create a near gold standard that can be used for the purposes above. Another part of the thesis describes and evaluates strategies how to reduce these crowdsourcing costs and to achieve a consensus with less effort.}, language = {en} } @phdthesis{Ziege2022, author = {Ziege, Ricardo}, title = {Growth dynamics and mechanical properties of E. coli biofilms}, doi = {10.25932/publishup-55986}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559869}, school = {Universit{\"a}t Potsdam}, pages = {xi, 123}, year = {2022}, abstract = {Biofilms are complex living materials that form as bacteria get embedded in a matrix of self-produced protein and polysaccharide fibres. The formation of a network of extracellular biopolymer fibres contributes to the cohesion of the biofilm by promoting cell-cell attachment and by mediating biofilm-substrate interactions. This sessile mode of bacteria growth has been well studied by microbiologists to prevent the detrimental effects of biofilms in medical and industrial settings. Indeed, biofilms are associated with increased antibiotic resistance in bacterial infections, and they can also cause clogging of pipelines or promote bio-corrosion. However, biofilms also gained interest from biophysics due to their ability to form complex morphological patterns during growth. Recently, the emerging field of engineered living materials investigates biofilm mechanical properties at multiple length scales and leverages the tools of synthetic biology to tune the functions of their constitutive biopolymers. This doctoral thesis aims at clarifying how the morphogenesis of Escherichia coli (E. coli) biofilms is influenced by their growth dynamics and mechanical properties. To address this question, I used methods from cell mechanics and materials science. I first studied how biological activity in biofilms gives rise to non-uniform growth patterns. In a second study, I investigated how E. coli biofilm morphogenesis and its mechanical properties adapt to an environmental stimulus, namely the water content of their substrate. Finally, I estimated how the mechanical properties of E. coli biofilms are altered when the bacteria express different extracellular biopolymers. On nutritive hydrogels, micron-sized E. coli cells can build centimetre-large biofilms. During this process, bacterial proliferation and matrix production introduce mechanical stresses in the biofilm, which release through the formation of macroscopic wrinkles and delaminated buckles. To relate these biological and mechanical phenomena, I used time-lapse fluorescence imaging to track cell and matrix surface densities through the early and late stages of E. coli biofilm growth. Colocalization of high cell and matrix densities at the periphery precede the onset of mechanical instabilities at this annular region. Early growth is detected at this outer annulus, which was analysed by adding fluorescent microspheres to the bacterial inoculum. But only when high rates of matrix production are present in the biofilm centre, does overall biofilm spreading initiate along the solid-air interface. By tracking larger fluorescent particles for a long time, I could distinguish several kinematic stages of E. coli biofilm expansion and observed a transition from non-linear to linear velocity profiles, which precedes the emergence of wrinkles at the biofilm periphery. Decomposing particle velocities to their radial and circumferential components revealed a last kinematic stage, where biofilm movement is mostly directed towards the radial delaminated buckles, which verticalize. The resulting compressive strains computed in these regions were observed to substantially deform the underlying agar substrates. The co-localization of higher cell and matrix densities towards an annular region and the succession of several kinematic stages are thus expected to promote the emergence of mechanical instabilities at the biofilm periphery. These experimental findings are predicted to advance future modelling approaches of biofilm morphogenesis. E. coli biofilm morphogenesis is further anticipated to depend on external stimuli from the environment. To clarify how the water could be used to tune biofilm material properties, we quantified E. coli biofilm growth, wrinkling dynamics and rigidity as a function of the water content of the nutritive substrates. Time-lapse microscopy and computational image analysis revealed that substrates with high water content promote biofilm spreading kinetics, while substrates with low water content promote biofilm wrinkling. The wrinkles observed on biofilm cross-sections appeared more bent on substrates with high water content, while they tended to be more vertical on substrates with low water content. Both wet and dry biomass, accumulated over 4 days of culture, were larger in biofilms cultured on substrates with high water content, despite extra porosity within the matrix layer. Finally, the micro-indentation analysis revealed that substrates with low water content supported the formation of stiffer biofilms. This study shows that E. coli biofilms respond to the water content of their substrate, which might be used for tuning their material properties in view of further applications. Biofilm material properties further depend on the composition and structure of the matrix of extracellular proteins and polysaccharides. In particular, E. coli biofilms were suggested to present tissue-like elasticity due to a dense fibre network consisting of amyloid curli and phosphoethanolamine-modified cellulose. To understand the contribution of these components to the emergent mechanical properties of E. coli biofilms, we performed micro-indentation on biofilms grown from bacteria of several strains. Besides showing higher dry masses, larger spreading diameters and slightly reduced water contents, biofilms expressing both main matrix components also presented high rigidities in the range of several hundred kPa, similar to biofilms containing only curli fibres. In contrast, a lack of amyloid curli fibres provides much higher adhesive energies and more viscoelastic fluid-like material behaviour. Therefore, the combination of amyloid curli and phosphoethanolamine-modified cellulose fibres implies the formation of a composite material whereby the amyloid curli fibres provide rigidity to E. coli biofilms, whereas the phosphoethanolamine-modified cellulose rather acts as a glue. These findings motivate further studies involving purified versions of these protein and polysaccharide components to better understand how their interactions benefit biofilm functions. All three studies depict different aspects of biofilm morphogenesis, which are interrelated. The first work reveals the correlation between non-uniform biological activities and the emergence of mechanical instabilities in the biofilm. The second work acknowledges the adaptive nature of E. coli biofilm morphogenesis and its mechanical properties to an environmental stimulus, namely water. Finally, the last study reveals the complementary role of the individual matrix components in the formation of a stable biofilm material, which not only forms complex morphologies but also functions as a protective shield for the bacteria it contains. Our experimental findings on E. coli biofilm morphogenesis and their mechanical properties can have further implications for fundamental and applied biofilm research fields.}, language = {en} } @phdthesis{Zickfeld2003, author = {Zickfeld, Kirsten}, title = {Modeling large-scale singular climate events for integrated assessment}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001176}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Erkenntnisse aus pal{\"a}oklimatologischen Studien, theoretischen Betrachtungen und Modellsimulationen deuten darauf hin, dass anthropogene Emissionen von Treibhausgasen und Aerosolen zu großskaligen, singul{\"a}ren Klimaereignissen f{\"u}hren k{\"o}nnten. Diese bezeichnen stark nichtlineare, abrupte Klima{\"a}nderungen, mit regionalen bis hin zu globalen Auswirkungen. Ziel dieser Arbeit ist die Entwicklung von Modellen zweier maßgeblicher Komponenten des Klimasystems, die singul{\"a}res Verhalten aufweisen k{\"o}nnten: die atlantische thermohaline Zirkulation (THC) und der indische Monsun. Diese Modelle sind so konzipiert, dass sie den Anforderungen der "Integrated Assessment"-Modellierung gen{\"u}gen, d.h., sie sind realistisch, recheneffizient, transparent und flexibel. Das THC-Modell ist ein einfaches, interhemisph{\"a}risches Boxmodell, das anhand von Daten kalibriert wird, die mit einem gekoppelten Klimamodell mittlerer Komplexit{\"a}t erzeugt wurden. Das Modell wird durch die globale Mitteltemperatur angetrieben, die mit Hilfe eines linearen Downscaling-Verfahrens in regionale W{\"a}rme- und S{\"u}ßwasserfl{\"u}sse {\"u}bersetzt wird. Die Ergebnisse einer Vielzahl von zeitabh{\"a}ngigen Simulationen zeigen, dass das Modell in der Lage ist, maßgebliche Eigenschaften des Verhaltens komplexer Klimamodelle wiederzugeben, wie die Sensitivit{\"a}t bez{\"u}glich des Ausmaßes, der regionalen Verteilung und der Rate der Klima{\"a}nderung. Der indische Monsun wird anhand eines neuartigen eindimensionalen Boxmodells der tropischen Atmosph{\"a}re beschrieben. Dieses enth{\"a}lt Parmetrisierungen der Oberfl{\"a}chen- und Strahlungsfl{\"u}sse, des hydrologischen Kreislaufs und derHydrologie der Landoberfl{\"a}che. Trotz des hohen Idealisierungsgrades ist das Modell in der Lage, relevante Aspekte der beobachteten Monsundynamik, wie z.B. den Jahresgang des Niederschlags und das Eintritts- sowie R{\"u}ckzugsdatum des Sommermonsuns, zufrieden stellend zu simulieren. Außerdem erfasst das Modell die Sensitivit{\"a}tdes Monsuns bez{\"u}glich {\"A}nderungen der Treibhausgas- und Aerosolkonzentrationen, die aus komplexeren Modellen bekannt sind. Eine vereinfachte Version des Monsunmodells wird f{\"u}r die Untersuchung des qualitativen Systemverhaltens in Abh{\"a}ngigkeit von {\"A}nderungen der Randbedingungen eingesetzt. Das bemerkenswerteste Ergebnis ist das Auftreten einer Sattelknotenbifurkation des Sommermonsuns f{\"u}r kritische Werte der Albedo oder der Sonneneinstrahlung. Dar{\"u}ber hinaus weist das Modell zwei stabile Zust{\"a}nde auf: neben dem niederschlagsreichen Sommermonsun besteht ein Zustand, der sich durch einen schwachen hydrologischen Kreislauf auszeichnet. Das Beachtliche an diesen Ergebnissen ist, dass anthropogene St{\"o}rungen der plantetaren Albedo, wie Schwefelemissionen und/oder Landnutzungs{\"a}nderungen, zu einer Destabilisierung des indischen Monsuns f{\"u}hren k{\"o}nnten. Das THC-Boxmodell findet exemplarische Anwendung in einem "Integrated Assessment" von Klimaschutzstrategien. Basierend auf dem konzeptionellen und methodischen Ger{\"u}st des Leitplankenansatzes werden Emissionskorridore (d.h. zul{\"a}ssige Spannen an CO2-Emissionen) berechnet, die das Risiko eines THC-Zusammenbruchs begrenzen sowie sozio{\"o}konomische Randbedingungen ber{\"u}cksichtigen. Die Ergebnisse zeigen u.a. eine starke Abh{\"a}ngigkeit der Breite der Emissionskorridore von der Klima- und hydrologischen Sensitivit{\"a}t. F{\"u}r kleine Werte einer oder beider Sensitivit{\"a}ten liegt der obere Korridorrand bei weit h{\"o}heren Emissionswerten als jene, die von plausiblen Emissionsszenarien f{\"u}r das 21. Jahrhundert erreicht werden. F{\"u}r große Werte der Sensitivit{\"a}ten hingegen, verlassen schon niedrige Emissionsszenarien den Korridor in den fr{\"u}hen Jahrzehnten des 21. Jahrhunderts. Dies impliziert eine Abkehr von den gegenw{\"a}rtigen Emissionstrends innherhalb der kommenden Jahrzehnte, wenn das Risko eines THC Zusammenbruchs gering gehalten werden soll. Anhand einer Vielzahl von Anwendungen - von Sensitivit{\"a}ts- {\"u}ber Bifurkationsanalysen hin zu integrierter Modellierung - zeigt diese Arbeit den Wert reduzierter Modelle auf. Die Ergebnisse und die daraus zu ziehenden Schlussfolgerungen liefern einen wertvollen Beitrag zu der wissenschaftlichen und politischen Diskussion bez{\"u}glich der Folgen des anthropogenen Klimawandels und der langfristigen Klimaschutzziele.}, language = {en} } @phdthesis{Zibulski2014, author = {Zibulski, Romy}, title = {Taxonomic composition and biochemical and isotopic characteristics of North-Siberian mosses and their application to the palaeoecological reconstruction of tundra polygon development}, pages = {ii, 127}, year = {2014}, language = {en} } @phdthesis{Zhu2016, author = {Zhu, Fangjun}, title = {Gene evolution and expression patterns in the all-female fish Amazon molly: Poecilia formosa}, school = {Universit{\"a}t Potsdam}, pages = {113}, year = {2016}, language = {en} } @phdthesis{Zhou2014, author = {Zhou, Xu}, title = {Atmospheric interactions with land surface in the arctic based on regional climate model solutions}, pages = {143}, year = {2014}, language = {en} } @phdthesis{Zhou2024, author = {Zhou, Xiangqian}, title = {Modeling of spatially distributed nitrate transport to investigate the effects of drought and river restoration in the Bode catchment, Central Germany}, doi = {10.25932/publishup-62105}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-621059}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 168}, year = {2024}, abstract = {The European Water Framework Directive (WFD) has identified river morphological alteration and diffuse pollution as the two main pressures affecting water bodies in Europe at the catchment scale. Consequently, river restoration has become a priority to achieve the WFD's objective of good ecological status. However, little is known about the effects of stream morphological changes, such as re-meandering, on in-stream nitrate retention at the river network scale. Therefore, catchment nitrate modeling is necessary to guide the implementation of spatially targeted and cost-effective mitigation measures. Meanwhile, Germany, like many other regions in central Europe, has experienced consecutive summer droughts from 2015-2018, resulting in significant changes in river nitrate concentrations in various catchments. However, the mechanistic exploration of catchment nitrate responses to changing weather conditions is still lacking. Firstly, a fully distributed, process-based catchment Nitrate model (mHM-Nitrate) was used, which was properly calibrated and comprehensively evaluated at numerous spatially distributed nitrate sampling locations. Three calibration schemes were designed, taking into account land use, stream order, and mean nitrate concentrations, and they varied in spatial coverage but used data from the same period (2011-2019). The model performance for discharge was similar among the three schemes, with Nash-Sutcliffe Efficiency (NSE) scores ranging from 0.88 to 0.92. However, for nitrate concentrations, scheme 2 outperformed schemes 1 and 3 when compared to observed data from eight gauging stations. This was likely because scheme 2 incorporated a diverse range of data, including low discharge values and nitrate concentrations, and thus provided a better representation of within-catchment heterogenous. Therefore, the study suggests that strategically selecting gauging stations that reflect the full range of within-catchment heterogeneity is more important for calibration than simply increasing the number of stations. Secondly, the mHM-Nitrate model was used to reveal the causal relations between sequential droughts and nitrate concentration in the Bode catchment (3200 km2) in central Germany, where stream nitrate concentrations exhibited contrasting trends from upstream to downstream reaches. The model was evaluated using data from six gauging stations, reflecting different levels of runoff components and their associated nitrate-mixing from upstream to downstream. Results indicated that the mHM-Nitrate model reproduced dynamics of daily discharge and nitrate concentration well, with Nash-Sutcliffe Efficiency ≥ 0.73 for discharge and Kling-Gupta Efficiency ≥ 0.50 for nitrate concentration at most stations. Particularly, the spatially contrasting trends of nitrate concentration were successfully captured by the model. The decrease of nitrate concentration in the lowland area in drought years (2015-2018) was presumably due to (1) limited terrestrial export loading (ca. 40\% lower than that of normal years 2004-2014), and (2) increased in-stream retention efficiency (20\% higher in summer within the whole river network). From a mechanistic modelling perspective, this study provided insights into spatially heterogeneous flow and nitrate dynamics and effects of sequential droughts, which shed light on water-quality responses to future climate change, as droughts are projected to be more frequent. Thirdly, this study investigated the effects of stream restoration via re-meandering on in-stream nitrate retention at network-scale in the well-monitored Bode catchment. The mHM-Nitrate model showed good performance in reproducing daily discharge and nitrate concentrations, with median Kling-Gupta values of 0.78 and 0.74, respectively. The mean and standard deviation of gross nitrate retention efficiency, which accounted for both denitrification and assimilatory uptake, were 5.1 ± 0.61\% and 74.7 ± 23.2\% in winter and summer, respectively, within the stream network. The study found that in the summer, denitrification rates were about two times higher in lowland sub-catchments dominated by agricultural lands than in mountainous sub-catchments dominated by forested areas, with median ± SD of 204 ± 22.6 and 102 ± 22.1 mg N m-2 d-1, respectively. Similarly, assimilatory uptake rates were approximately five times higher in streams surrounded by lowland agricultural areas than in those in higher-elevation, forested areas, with median ± SD of 200 ± 27.1 and 39.1 ± 8.7 mg N m-2 d-1, respectively. Therefore, restoration strategies targeting lowland agricultural areas may have greater potential for increasing nitrate retention. The study also found that restoring stream sinuosity could increase net nitrate retention efficiency by up to 25.4 ± 5.3\%, with greater effects seen in small streams. These results suggest that restoration efforts should consider augmenting stream sinuosity to increase nitrate retention and decrease nitrate concentrations at the catchment scale.}, language = {en} } @phdthesis{Zhou2008, author = {Zhou, Wei}, title = {Access control model and policies for collaborative environments}, address = {Potsdam}, pages = {199 S. : graph. Darst.}, year = {2008}, language = {en} } @phdthesis{Zhou2022, author = {Zhou, Shuo}, title = {Biological evaluation and sulfation of polymer networks from glycerol glycidyl ether}, school = {Universit{\"a}t Potsdam}, pages = {96}, year = {2022}, abstract = {Cardiovascular diseases are the main cause of death worldwide, and their prevalence is expected to rise in the coming years. Polymer-based artificial replacements have been widely used for the treatment of cardiovascular diseases. Coagulation and thrombus formation on the interfaces between the materials and the human physiological environment are key issues leading to the failure of the medical device in clinical implantation. The surface properties of the materials have a strong influence on the protein adsorption and can direct the blood cell adhesion behavior on the interfaces. Furthermore, implant-associated infections will be induced by bacterial adhesion and subsequent biofilm formation at the implantation site. Thus, it is important to improve the hemocompatibility of an implant by altering the surface properties. One of the effective strategies is surface passivation to achieve protein/cell repelling ability to reduce the risk of thrombosis. This thesis consists of synthesis, functionalization, sterilization, and biological evaluation of bulk poly(glycerol glycidyl ether) (polyGGE), which is a highly crosslinked polyether-based polymer synthesized by cationic ring-opening polymerization. PolyGGE is hypothesized to be able to resist plasma protein adsorption and bacterial adhesion due to analogous chemical structure as polyethylene glycol and hyperbranched polyglycerol. Hydroxyl end groups of polyGGE provide possibilities to be functionalized with sulfates to mimic the anti-thrombogenic function of the endothelial glycocalyx. PolyGGE was synthesized by polymerization of the commercially available monomer glycerol glycidyl ether, which was characterized as a mixture of mono-, di- and tri-glycidyl ether. Cationic ring opening-polymerization of this monomer was carried out by ultraviolet (UV) initiation of the photo-initiator diphenyliodonium hexafluorophosphate. With the increased UV curing time, more epoxides in the side chains of the monomers participated in chemical crosslinking, resulting in an increase of Young's modulus, while the value of elongation at break of polyGGE first increased due to the propagation of the polymer chains then decreased with the increase of crosslinking density. Eventually, the chain propagation can be effectively terminated by potassium hydroxide aqueous solution. PolyGGE exhibited different tensile properties in hydrated conditions at body temperature compared to the values in the dry state at room temperature. Both Young's modulus and values of elongation at break were remarkably reduced when tested in water at 37 °C, which was above the glass transition temperature of polyGGE. At physiological conditions, entanglements of the ployGGE networks unfolded and the free volume of networks were replaced by water molecules as softener, which increased the mobility of the polymer chains, resulting in a lower Young's modulus. Protein adsorption analysis was performed on polyGGE films with 30 min UV curing using an enzyme-linked immunosorbent assay. PolyGGE could effectively prevent the adsorption of human plasma fibrinogen, albumin, and fibronectin at the interface of human plasma and polyGGE films. The protein resistance of polyGGE was comparable to the negative controls: the hemocompatible polydimethylsiloxane (PDMS), showing its potential as a coating material for cardiovascular implants. Moreover, antimicrobial tests of bacterial activity using isothermal microcalorimetry and the microscopic image of direct bacteria culturing demonstrated that polyGGE could directly interfere biofilm formation and growth of both Gram-negative and antibiotic-resistant Gram-positive bacteria, indicating the potential application of polyGGE for combating the risk of hospital-acquired infections and preventing drug-resistant superbug spreading. To investigate its cell compatibility, polyGGE films were extracted by different solvents (ethanol, chloroform, acetone) and cell culture medium. Indirect cytotoxicity tests showed extracted polyGGE films still had toxic effects on L929 fibroblast cells. High-performance liquid chromatography/electrospray ionization mass spectrometry revealed the occurrence of organochlorine-containing compounds released during the polymer-cell culture medium interaction. A constant level of those organochlorine-containing compounds was confirmed from GGE monomer by a specific peak of C-Cl stretching in infrared spectra of GGE. This is assumed to be the main reason causing the increased cell membrane permeability and decreased metabolic activity, leading to cell death. Attempts as changing solvents were made to remove toxic substances, however, the release of these small molecules seems to be sluggish. The densely crosslinked polyGGE networks can possibly contribute to the trapping of organochlorine-containing compounds. These results provide valuable information for exploring the potentially toxic substances, leaching from polyGGE networks, and propose a feasible strategy for minimizing the cytotoxicity via reducing their crosslinking density. Sulfamic acid/ N-Methyl-2-pyrrolidone (NMP) were selected as the reagents for the sulfation of polyGGE surfaces. Fourier transform attenuated total reflection infrared spectroscopy (ATR-FT-IR) was used to monitor the functionalization kinetics and the results confirmed the successful sulfate grafting on the surface of polyGGE with the covalent bond -C-O-S-. X-ray photoelectron spectroscopy was used to determine the element composition on the surface and the cross-section of the functionalized polyGGE and sulfation within 15 min guarantees the sulfation only takes place on the surface while not occurring in the bulk of the polymer. The concentration of grafted sulfates increased with the increasing reaction time. The hydrophilicity of the surface of polyGGE was highly increased due to the increase of negatively charged end groups. Three sterilization techniques including autoclaving, gamma irradiation, and ethylene oxide (EtO) sterilization were used for polyGGE sulfates. Results from ATR-FT-IR and Toluidine Blue O quantitative assay demonstrated the total loss of the sulfates after autoclave sterilization, which was also confirmed by the increased water contact angle. Little influence on the concentration of sulfates was found for gamma-irradiated and autoclaving sterilized polyGGE sulfates. To investigate the thermal influence on polyGGE sulfates, one strategy was to use poly(hydroxyethyl acrylate) sulfates (PHEAS) for modeling. The thermogravimetric analysis profile of PHEAS demonstrated that sulfates are not thermally stable independent of the substrate materials and decomposition of sulfates occurs at around 100 °C. Although gamma irradiation also showed little negative effect on the sulfate content, the color change in the polyGGE sulfates indicates chemical or physical change might occur in the polymer. EtO sterilization was validated as the most suitable sterilization technique to maintain the chemical structure of polyGGE sulfates. In conclusion, the conducted work proved that bulk polyGGE can be used as an antifouling coating material and shows its antimicrobial potential. Sulfates functionalization can be effectively realized using sulfamic acid/NMP. EtO sterilization is the most suitable sterilization technique for grafted sulfates. Besides, this thesis also offers a good strategy for the analysis of toxic leachable substances using suitable physicochemical characterization techniques. Future work will focus on minimizing/eliminating the release of toxic substances via reducing the crosslinking density. Another interesting aspect is to study whether grafted sulfates can meet the need for anti-thrombogenicity.}, language = {en} } @phdthesis{Zhou2008, author = {Zhou, Fei}, title = {Optimization of foreign gene expression in plastids}, pages = {VIII, 134 S.}, year = {2008}, language = {en} } @phdthesis{Zhou2017, author = {Zhou, Bin}, title = {On the assessment of surface urban heat island}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404383}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 119}, year = {2017}, abstract = {Inwiefern St{\"a}dte unter den Megatrends der Urbanisierung und des Klimawandels nachhaltig gestaltet werden k{\"o}nnen, bleibt umstritten. Dies ist zum Teil auf unzureichende Kenntnisse der Mensch-Umwelt-Interaktionen zur{\"u}ckzuf{\"u}hren. Als die am vollst{\"a}ndigsten dokumentierte anthropogene Klimamodifikation ruft der Urbane Hitzeinsel (UHI) Effekt weltweit Sorgen hinsichtlich der Gesundheit der Bev{\"o}lkerung hervor. Dazu kommt noch ein immer h{\"a}ufigeres und intensiveres Auftreten von Hitzewellen, wodurch das Wohlbefinden der Stadtbewohner weiter beeintr{\"a}chtigt wird. Trotz eines deutlichen Anstiegs der Zahl der UHI-bezogenen Ver{\"o}ffentlichungen in den letzten Jahrzehnten haben die unterschiedlichen Definitionen von st{\"a}dtischen und l{\"a}ndlichen Gebieten in bisherigen Studien die allgemeine Vergleichbarkeit der Resultate stark erschwert. Dar{\"u}ber hinaus haben nur wenige Studien den UHI-Effekt und seine Einflussfaktoren anhand einer Kombination der Landnutzungsdaten und der thermischen Fernerkundung systematisch untersucht. Diese Arbeit stellt einen allgemeinen Rahmen zur Quantifizierung von UHI-Intensit{\"a}ten mittels eines automatisierten Algorithmus vor, wobei St{\"a}dte als Agglomerationen maximal r{\"a}umlicher Kontinuit{\"a}t basierend auf Landnutzungsdaten identifiziert, sowie deren l{\"a}ndliche Umfelder analog definiert werden. Durch Verkn{\"u}pfung der Landnutzungsdaten mit Landoberfl{\"a}chentemperaturen von Satelliten kann die UHI-Intensit{\"a}t robust und konsistent berechnet werden. Anhand dieser Innovation wurde nicht nur der Zusammenhang zwischen Stadtgr{\"o}ße und UHI-Intensit{\"a}t erneut untersucht, sondern auch die Auswirkungen der Stadtform auf die UHI-Intensit{\"a}t quantifiziert. Diese Arbeit leistet vielf{\"a}ltige Beitr{\"a}ge zum tieferen Verst{\"a}ndnis des UHI-Ph{\"a}nomens. Erstens wurde eine log-lineare Beziehung zwischen UHI-Intensit{\"a}t und Stadtgr{\"o}ße unter Ber{\"u}cksichtigung der 5,000 europ{\"a}ischen St{\"a}dte best{\"a}tigt. Werden kleinere St{\"a}dte auch ber{\"u}cksichtigt, ergibt sich eine log-logistische Beziehung. Zweitens besteht ein komplexes Zusammenspiel zwischen der Stadtform und der UHI-Intensit{\"a}t: die Stadtgr{\"o}ße stellt den st{\"a}rksten Einfluss auf die UHI-Intensit{\"a}t dar, gefolgt von der fraktalen Dimension und der Anisometrie. Allerdings zeigen ihre relativen Beitr{\"a}ge zur UHI-Intensit{\"a}t eine regionale Heterogenit{\"a}t, welche die Bedeutung r{\"a}umlicher Muster w{\"a}hrend der Umsetzung von UHI-Anpassungsmaßnahmen hervorhebt. Des Weiteren ergibt sich eine neue Saisonalit{\"a}t der UHI-Intensit{\"a}t f{\"u}r individuelle St{\"a}dte in Form von Hysteresekurven, die eine Phasenverschiebung zwischen den Zeitreihen der UHI-Intensit{\"a}t und der Hintergrundtemperatur andeutet. Diese Saisonalit{\"a}t wurde anhand von Luft- und Landoberfl{\"a}chentemperaturen untersucht, indem die Satellitenbeobachtung und die Modellierung der urbanen Grenzschicht mittels des UrbClim-Modells kombiniert wurden. Am Beispiel von London ist die Diskrepanz der Saisonalit{\"a}ten zwischen den beiden Temperaturen vor allem auf die mit der einfallenden Sonnenstrahlung verbundene Besonderheit der Landoberfl{\"a}chentemperatur zur{\"u}ckzuf{\"u}hren. Dar{\"u}ber hinaus spielt das regionale Klima eine wichtige Rolle bei der Entwicklung der UHI. Diese Arbeit ist eine der ersten Studien dieser Art, die eine systematische und statistische Untersuchung des UHI-Effektes erm{\"o}glicht. Die Ergebnisse sind von besonderer Bedeutung f{\"u}r die allgemeine r{\"a}umliche Planung und Regulierung auf Meso- und Makroebenen, damit sich Vorteile der rapiden Urbanisierung nutzbar machen und zeitgleich die folgende Hitzebelastung proaktiv vermindern lassen.}, language = {en} } @phdthesis{Zheng2021, author = {Zheng, Chunming}, title = {Bursting and synchronization in noisy oscillatory systems}, doi = {10.25932/publishup-50019}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-500199}, school = {Universit{\"a}t Potsdam}, pages = {iv, 87}, year = {2021}, abstract = {Noise is ubiquitous in nature and usually results in rich dynamics in stochastic systems such as oscillatory systems, which exist in such various fields as physics, biology and complex networks. The correlation and synchronization of two or many oscillators are widely studied topics in recent years. In this thesis, we mainly investigate two problems, i.e., the stochastic bursting phenomenon in noisy excitable systems and synchronization in a three-dimensional Kuramoto model with noise. Stochastic bursting here refers to a sequence of coherent spike train, where each spike has random number of followers due to the combined effects of both time delay and noise. Synchronization, as a universal phenomenon in nonlinear dynamical systems, is well illustrated in the Kuramoto model, a prominent model in the description of collective motion. In the first part of this thesis, an idealized point process, valid if the characteristic timescales in the problem are well separated, is used to describe statistical properties such as the power spectral density and the interspike interval distribution. We show how the main parameters of the point process, the spontaneous excitation rate, and the probability to induce a spike during the delay action can be calculated from the solutions of a stationary and a forced Fokker-Planck equation. We extend it to the delay-coupled case and derive analytically the statistics of the spikes in each neuron, the pairwise correlations between any two neurons, and the spectrum of the total output from the network. In the second part, we investigate the three-dimensional noisy Kuramoto model, which can be used to describe the synchronization in a swarming model with helical trajectory. In the case without natural frequency, the Kuramoto model can be connected with the Vicsek model, which is widely studied in collective motion and swarming of active matter. We analyze the linear stability of the incoherent state and derive the critical coupling strength above which the incoherent state loses stability. In the limit of no natural frequency, an exact self-consistent equation of the mean field is derived and extended straightforward to any high-dimensional case.}, language = {en} } @phdthesis{Zhelavskaya2020, author = {Zhelavskaya, Irina S.}, title = {Modeling of the Plasmasphere Dynamics}, doi = {10.25932/publishup-48243}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-482433}, school = {Universit{\"a}t Potsdam}, pages = {xlii, 256}, year = {2020}, abstract = {The plasmasphere is a dynamic region of cold, dense plasma surrounding the Earth. Its shape and size are highly susceptible to variations in solar and geomagnetic conditions. Having an accurate model of plasma density in the plasmasphere is important for GNSS navigation and for predicting hazardous effects of radiation in space on spacecraft. The distribution of cold plasma and its dynamic dependence on solar wind and geomagnetic conditions remain, however, poorly quantified. Existing empirical models of plasma density tend to be oversimplified as they are based on statistical averages over static parameters. Understanding the global dynamics of the plasmasphere using observations from space remains a challenge, as existing density measurements are sparse and limited to locations where satellites can provide in-situ observations. In this dissertation, we demonstrate how such sparse electron density measurements can be used to reconstruct the global electron density distribution in the plasmasphere and capture its dynamic dependence on solar wind and geomagnetic conditions. First, we develop an automated algorithm to determine the electron density from in-situ measurements of the electric field on the Van Allen Probes spacecraft. In particular, we design a neural network to infer the upper hybrid resonance frequency from the dynamic spectrograms obtained with the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite, which is then used to calculate the electron number density. The developed Neural-network-based Upper hybrid Resonance Determination (NURD) algorithm is applied to more than four years of EMFISIS measurements to produce the publicly available electron density data set. We utilize the obtained electron density data set to develop a new global model of plasma density by employing a neural network-based modeling approach. In addition to the location, the model takes the time history of geomagnetic indices and location as inputs, and produces electron density in the equatorial plane as an output. It is extensively validated using in-situ density measurements from the Van Allen Probes mission, and also by comparing the predicted global evolution of the plasmasphere with the global IMAGE EUV images of He+ distribution. The model successfully reproduces erosion of the plasmasphere on the night side as well as plume formation and evolution, and agrees well with data. The performance of neural networks strongly depends on the availability of training data, which is limited during intervals of high geomagnetic activity. In order to provide reliable density predictions during such intervals, we can employ physics-based modeling. We develop a new approach for optimally combining the neural network- and physics-based models of the plasmasphere by means of data assimilation. The developed approach utilizes advantages of both neural network- and physics-based modeling and produces reliable global plasma density reconstructions for quiet, disturbed, and extreme geomagnetic conditions. Finally, we extend the developed machine learning-based tools and apply them to another important problem in the field of space weather, the prediction of the geomagnetic index Kp. The Kp index is one of the most widely used indicators for space weather alerts and serves as input to various models, such as for the thermosphere, the radiation belts and the plasmasphere. It is therefore crucial to predict the Kp index accurately. Previous work in this area has mostly employed artificial neural networks to nowcast and make short-term predictions of Kp, basing their inferences on the recent history of Kp and solar wind measurements at L1. We analyze how the performance of neural networks compares to other machine learning algorithms for nowcasting and forecasting Kp for up to 12 hours ahead. Additionally, we investigate several machine learning and information theory methods for selecting the optimal inputs to a predictive model of Kp. The developed tools for feature selection can also be applied to other problems in space physics in order to reduce the input dimensionality and identify the most important drivers. Research outlined in this dissertation clearly demonstrates that machine learning tools can be used to develop empirical models from sparse data and also can be used to understand the underlying physical processes. Combining machine learning, physics-based modeling and data assimilation allows us to develop novel methods benefiting from these different approaches.}, language = {en} } @phdthesis{Zhao2021, author = {Zhao, Yuhang}, title = {Synthesis and surface functionalization on plasmonic nanoparticles for optical applications}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 149}, year = {2021}, abstract = {This thesis focuses on the synthesis of novel functional materials based on plasmonic nanoparticles. Three systems with targeted surface modification and functionalization have been designed and synthesized, involving modified perylenediimide doped silica-coated silver nanowires, polydopamine or TiO2 coated gold-palladium nanorods and thiolated poly(ethylene glycol) (PEG-SH)/dodecanethiol (DDT) modified silver nanospheres. Their possible applications as plasmonic resonators, chiral sensors as well as photo-catalysts have been studied. In addition, the interaction between silver nanospheres and 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) molecules has also been investigated in detail. In the first part of the thesis, surface modification on Ag nanowires (NWs) with optimized silica coating through a modified St{\"o}ber method has been firstly conducted, employing sodium hydroxide (NaOH) to replace ammonia solution (NH4OH). The coated silver nanowires with a smooth silica shell have been investigated by single-particle dark-field scattering spectroscopy, transmission electron microscopy and electron-energy loss spectroscopy to characterize the morphologies and structural components. The silica-coated silver nanowires can be further functionalized with fluorescent molecules in the silica shell via a facile one-step coating method. The as-synthesized nanowire is further coupled with a gold nanosphere by spin-coating for the application of the sub-diffractional chiral sensor for the first time. The exciton-plasmon-photon interconversion in the system eases the signal detection in the perfectly matched 1D nanostructure and contributes to the high contrast of the subwavelength chiral sensing for the polarized light. In the second part of the thesis, dumbbell-shaped Au-Pd nanorods coated with a layer of polydopamine (PDA) or titanium dioxide (TiO2) have been constructed. The PDA- and TiO2- coated Au-Pd nanorods show a strong photothermal conversion performance under NIR illumination. Moreover, the catalytic performance of the particles has been investigated using the reduction of 4-nitrophenol (4-NP) as the model reaction. Under light irradiation, the PDA-coated Au-Pd nanorods exhibit a superior catalytic activity by increasing the reaction rate constant of 3 times. The Arrhenius-like behavior of the reaction with similar activation energies in the presence and absence of light irradiation indicates the photoheating effect to be the dominant mechanism of the reaction acceleration. Thus, we attribute the enhanced performance of the catalysis to the strong photothermal effect that is driven by the optical excitation of the gold surface plasmon as well as the synergy with the PDA layer. In the third part, the kinetic study on the adsorption of 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquino-dimethane (F4TCNQ) on the surface of Ag nanoparticles (Ag NPs) in chloroform has been reported in detail. Based on the results obtained from the UV-vis-NIR absorption spectroscopy, cryogenic transmission electron microscopy (cryo-TEM), scanning nano-beam electron diffraction (NBED) and electron energy loss spectroscopy (EELS), a two-step interaction kinetics has been proposed for the Ag NPs and F4TCNQ molecules. It includes the first step of electron transfer from Ag NPs to F4TCNQ indicated by the ionization of F4TCNQ, and the second step of the formation of Ag-F4TCNQ complex. The whole process has been followed via UV-vis-NIR absorption spectroscopy, which reveals distinct kinetics at two stages: the instantaneous ionization and the long-term complex formation. The kinetics and the influence of the molar ratio of Ag NPs/F4TCNQ molecules on the interaction between Ag NPs and F4TCNQ molecules in the organic solution are reported herein for the first time. Furthermore, the control experiment with silica-coated Ag NPs indicates that the charge transfer at the surface between Ag NPs and F4TCNQ molecules has been prohibited by a silica layer of 18 nm.}, language = {en} } @phdthesis{Zhao2021, author = {Zhao, Xueru}, title = {Palaeoclimate and palaeoenvironment evolution from the last glacial maximum into the early holocene (23-8 ka BP) derived from Lago Grande di Monticchio sediment record (S Italy)}, pages = {123}, year = {2021}, language = {en} } @phdthesis{Zhao2015, author = {Zhao, Liming}, title = {Characterization genes involved in leaf development and senescence of arabidopsis}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2015}, language = {en} } @phdthesis{Zhao2010, author = {Zhao, Li}, title = {Sustainable approaches towards novel nitrogen-doped carbonaceous structures}, address = {Potsdam}, pages = {136 S. : graph. Darst.}, year = {2010}, language = {en} } @phdthesis{Zhang2011, author = {Zhang, Zhuodong}, title = {A regional scale study of wind erosion in the Xilingele grassland based on computational fluid dynamics}, address = {Potsdam}, pages = {143 S.}, year = {2011}, language = {en} } @phdthesis{Zhang2016, author = {Zhang, Youjun}, title = {Investigation of the TCA cycle and glycolytic metabolons and their physiological impacts in plants}, school = {Universit{\"a}t Potsdam}, pages = {175}, year = {2016}, language = {en} } @phdthesis{Zhang2019, author = {Zhang, Xiaorong}, title = {Electrosynthesis and characterization of molecularly imprinted polymers for peptides and proteins}, school = {Universit{\"a}t Potsdam}, pages = {116}, year = {2019}, language = {en} } @phdthesis{Zhang2023, author = {Zhang, Xiaolin}, title = {Evaluation of nitrogen dynamics in high-order streams and rivers based on high-frequency monitoring}, doi = {10.25932/publishup-60764}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-607642}, school = {Universit{\"a}t Potsdam}, pages = {X, 113}, year = {2023}, abstract = {Nutrient storage, transform and transport are important processes for achieving environmental and ecological health, as well as conducting water management plans. Nitrogen is one of the most noticeable elements due to its impacts on tremendous consequences of eutrophication in aquatic systems. Among all nitrogen components, researches on nitrate are blooming because of widespread deployments of in-situ high-frequency sensors. Monitoring and studying nitrate can become a paradigm for any other reactive substances that may damage environmental conditions and cause economic losses. Identifying nitrate storage and its transport within a catchment are inspiring to the management of agricultural activities and municipal planning. Storm events are periods when hydrological dynamics activate the exchange between nitrate storage and flow pathways. In this dissertation, long-term high-frequency monitoring data at three gauging stations in the Selke river were used to quantify event-scale nitrate concentration-discharge (C-Q) hysteretic relationships. The Selke catchment is characterized into three nested subcatchments by heterogeneous physiographic conditions and land use. With quantified hysteresis indices, impacts of seasonality and landscape gradients on C-Q relationships are explored. For example, arable area has deep nitrate legacy and can be activated with high intensity precipitation during wetting/wet periods (i.e., the strong hydrological connectivity). Hence, specific shapes of C-Q relationships in river networks can identify targeted locations and periods for agricultural management actions within the catchment to decrease nitrate output into downstream aquatic systems like the ocean. The capacity of streams for removing nitrate is of both scientific and social interest, which makes the quantification motivated. Although measurements of nitrate dynamics are advanced compared to other substances, the methodology to directly quantify nitrate uptake pathways is still limited spatiotemporally. The major problem is the complex convolution of hydrological and biogeochemical processes, which limits in-situ measurements (e.g., isotope addition) usually to small streams with steady flow conditions. This makes the extrapolation of nitrate dynamics to large streams highly uncertain. Hence, understanding of in-stream nitrate dynamic in large rivers is still necessary. High-frequency monitoring of nitrate mass balance between upstream and downstream measurement sites can quantitatively disentangle multi-path nitrate uptake dynamics at the reach scale (3-8 km). In this dissertation, we conducted this approach in large stream reaches with varying hydro-morphological and environmental conditions for several periods, confirming its success in disentangling nitrate uptake pathways and their temporal dynamics. Net nitrate uptake, autotrophic assimilation and heterotrophic uptake were disentangled, as well as their various diel and seasonal patterns. Natural streams generally can remove more nitrate under similar environmental conditions and heterotrophic uptake becomes dominant during post-wet seasons. Such two-station monitoring provided novel insights into reach-scale nitrate uptake processes in large streams. Long-term in-stream nitrate dynamics can also be evaluated with the application of water quality model. This is among the first time to use a data-model fusion approach to upscale the two-station methodology in large-streams with complex flow dynamics under long-term high-frequency monitoring, assessing the in-stream nitrate retention and its responses to drought disturbances from seasonal to sub-daily scale. Nitrate retention (both net uptake and net release) exhibited substantial seasonality, which also differed in the investigated normal and drought years. In the normal years, winter and early spring seasons exhibited extensive net releases, then general net uptake occurred after the annual high-flow season at later spring and early summer with autotrophic processes dominating and during later summer-autumn low-flow periods with heterotrophy-characteristics predominating. Net nitrate release occurred since late autumn until the next early spring. In the drought years, the late-autumn net releases were not so consistently persisted as in the normal years and the predominance of autotrophic processes occurred across seasons. Aforementioned comprehensive results of nitrate dynamics on stream scale facilitate the understanding of instream processes, as well as raise the importance of scientific monitoring schemes for hydrology and water quality parameters.}, language = {en} } @phdthesis{Zhang2017, author = {Zhang, Weiyi}, title = {Functional Poly(ionic liquid) Materials based on Poly(1,2,4-triazolium)s}, school = {Universit{\"a}t Potsdam}, pages = {108}, year = {2017}, language = {en} } @phdthesis{Zhang2019, author = {Zhang, Shuhao}, title = {Synthesis and self-assembly of protein-polymer conjugates for the preparation of biocatalytically active membranes}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 161}, year = {2019}, abstract = {This thesis covers the synthesis of conjugates of 2-Deoxy-D-ribose-5-phosphate aldolase (DERA) with suitable polymers and the subsequent immobilization of these conjugates in thin films via two different approaches. 2-Deoxy-D-ribose-5-phosphate aldolase (DERA) is a biocatalyst that is capable of converting acetaldehyde and a second aldehyde as acceptor into enantiomerically pure mono- and diyhydroxyaldehydes, which are important structural motifs in a number of pharmaceutically active compounds. Conjugation and immobilization renders the enzyme applicable for utilization in a continuously run biocatalytic process which avoids the common problem of product inhibition. Within this thesis, conjugates of DERA and poly(N-isopropylacrylamide) (PNIPAm) for immobilization via a self-assembly approach were synthesized and isolated, as well as conjugates with poly(N,N-dimethylacrylamide) (PDMAA) for a simplified and scalable spray-coating approach. For the DERA/PNIPAm-conjugates different synthesis routes were tested, including grafting-from and grafting-to, both being common methods for the conjugation. Furthermore, both lysines and cysteines were addressed for the conjugation in order to find optimum conjugation conditions. It turned out that conjugation via lysine causes severe activity loss as one lysine plays a key role in the catalyzing mechanism. The conjugation via the cysteines by a grafting-to approach using pyridyl disulfide (PDS) end-group functionalized polymers led to high conjugation efficiencies in the presence of polymer solubilizing NaSCN. The resulting conjugates maintained enzymatic activity and also gained high acetaldehyde tolerance which is necessary for their use later on in an industrial relevant process after their immobilization. The resulting DERA/PNIPAm conjugates exhibited enhanced interfacial activity at the air/water interface compared to the single components, which is an important pre-requisite for the immobilization via the self-assembly approach. Conjugates with longer polymer chains formed homogeneous films on silicon wafers and glass slides while the ones with short chains could only form isolated aggregates. On top of that, long chain conjugates showed better activity maintenance upon the immobilization. The crosslinking of conjugates, as well as their fixation on the support materials, are important for the mechanical stability of the films obtained from the self-assembly process. Therefore, in a second step, we introduced the UV-crosslinkable monomer DMMIBA to the PNIPAm polymers to be used for conjugation. The introduction of DMMIBA reduced the lower critical solution temperature (LCST) of the polymer and thus the water solubility at ambient conditions, resulting in lower conjugation efficiencies and in turn slightly poorer acetaldehyde tolerance of the resulting conjugates. Unlike the DERA/PNIPAm, the conjugates from the copolymer P(NIPAM-co-DMMIBA) formed continuous, homogenous films only after the crosslinking step via UV-treatment. For a firm binding of the crosslinked films, a functionalization protocol for the model support material cyclic olefin copolymer (COC) and the final target support, PAN based membranes, was developed that introduces analogue UV-reactive groups to the support surface. The conjugates immobilized on the modified COC films maintained enzymatic activity and showed good mechanical stability after several cycles of activity assessment. Conjugates with longer polymer chains, however, showed a higher degree of crosslinking after the UV-treatment leading to a pronounced loss of activity. A porous PAN membrane onto which the conjugates were immobilized as well, was finally transferred to a dead end filtration membrane module to catalyze the aldol reaction of the industrially relevant mixture of acetaldehyde and hexanal in a continuous mode. Mono aldol product was detectable, but yields were comparably low and the operational stability needs to be further improved Another approach towards immobilization of DERA conjugates that was followed, was to generate the conjugates in situ by simply mixing enzyme and polymer and spray coat the mixture onto the membrane support. Compared to the previous approach, the focus was more put on simplicity and a possible scalability of the immobilization. Conjugates were thus only generated in-situ and not further isolated and characterized. For the conjugation, PDMAA equipped with N-2-thiolactone acrylamide (TlaAm) side chains was used, an amine-reactive comonomer that can react with the lysine residues of DERA, as well as with amino groups introduced to a desired support surface. Furthermore disulfide formation after hydrolysis of the Tla groups causes a crosslinking effect. The synthesized copolymer poly(N,N-Dimethylacrylamide-co-N-2-thiolactone acrylamide) (P(DMAA-co-TlaAm)) thus serves a multiple purpose including protein binding, crosslinking and binding to support materials. The mixture of DERA and polymer could be immobilized on the PAN support by spray-coating under partial maintenance of enzymatic activity. To improve the acetaldehyde tolerance, the polymer in used was further equipped with cysteine reactive PDS end-groups that had been used for the conjugation as described in the first part of the thesis. The generated conjugates indeed showed good acetaldehyde tolerance and were thus used to be coated onto PAN membrane supports. Post treatment with a basic aqueous solution of H2O2 was supposed to further crosslink the spray-coated film hydrolysis and oxidation of the thiolactone groups. However, a washing off of the material was observed. Optimization is thus still necessary.}, language = {en} } @phdthesis{Zhang2018, author = {Zhang, Quanchao}, title = {Shape-memory properties of polymeric micro-scale objects prepared by electrospinning and electrospraying}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 53}, year = {2018}, abstract = {The ongoing trend of miniaturizing multifunctional devices, especially for minimally-invasive medical or sensor applications demands new strategies for designing the required functional polymeric micro-components or micro-devices. Here, polymers, which are capable of active movement, when an external stimulus is applied (e.g. shape-memory polymers), are intensively discussed as promising material candidates for realization of multifunctional micro-components. In this context further research activities are needed to gain a better knowledge about the underlying working principles for functionalization of polymeric micro-scale objects with a shape-memory effect. First reports about electrospun solid microfiber scaffolds, demonstrated a much more pronounced shape-memory effect than their bulk counterparts, indicating the high potential of electrospun micro-objects. Based on these initial findings this thesis was aimed at exploring whether the alteration of the geometry of micro-scale electrospun polymeric objects can serve as suitable parameter to tailor their shape-memory properties. The central hypothesis was that different geometries should result in different degrees of macromolecular chain orientation in the polymeric micro-scale objects, which will influence their mechanical properties as well as thermally-induced shape-memory function. As electrospun micro-scale objects, microfiber scaffolds composed of hollow microfibers with different wall thickness and electrosprayed microparticles as well as their magneto-sensitive nanocomposites all prepared from the same polymer exhibiting pronounced bulk shape-memory properties were investigated. For this work a thermoplastic multiblock copolymer, named PDC, with excellent bulk shape-memory properties, associated with crystallizable oligo(ε-caprolactone) (OCL) switching domains, was chosen for the preparation of electrospun micro-scale objects, while crystallizable oligo(p-dioxanone) (OPDO) segments serve as hard domains in PDC. In the first part of the thesis microfiber scaffolds with different microfiber geometries (solid or hollow with different wall thickness) were discussed. Hollow microfiber based PDC scaffolds were prepared by coaxial electrospinning from a 1, 1, 1, 3, 3, 3 hexafluoro-2-propanol (HFP) solution with a polymer concentration of 13\% w·v-1. Here as a first step core-shell fiber scaffolds consisting of microfibers with a PDC shell and sacrificial poly(ethylene glycol) (PEG) core are generated. The hollow PDC microfibers were achieved after dissolving the PEG core with water. The utilization of a fixed electrospinning setup and the same polymer concentration of the PDC spinning solution could ensure the fabrication of microfibers with almost identical outer diameters of 1.4 ± 0.3 µm as determined by scanning electron microscopy (SEM). Different hollow microfiber wall thicknesses of 0.5 ± 0.2 and 0.3 ± 0.2 µm (analyzed by SEM) have been realized by variation of the mass flow rate, while solid microfibers were obtained by coaxial electrospinning without supplying any core solution. Differential scanning calorimetry experiments and tensile tests at ambient temperature revealed an increase in degree of OCL crystallinity form χc,OCL = 34 ± 1\% to 43 ± 1\% and a decrease in elongation of break from 800 ± 40\% to 200 ± 50\% associated with an increase in Young´s modulus and failture stress for PDC hollow microfiber scaffolds when compared with soild fibers. The observed effects were enhanced with decreasing wall thickness of the single hollow fibers. The shape-memory properties of the electrospun PDC scaffolds were quantified by cyclic, thermomechanical tensile tests. Here, scaffolds comprising hollow microfibers exhibited lower shape fixity ratios around Rf = 82 ± 1\% and higher shape recovery ratios of Rr = 67 ± 1\% associated to more pronounced relaxation at constant strain during the first test cycle and a lower switching temperature of Tsw = 33 ± 1 °C than the fibrous meshes consisting of solid microfibers. These findings strongly support the central hypothesis that different fiber geometries (solid or hollow with different wall thickness) in electrospun scaffolds result in different degrees of macromolecular chain orientation in the polymeric micro-scale objects, which can be applied as design parameter for tailoring their mechanical and shape-memory properties. The second part of the thesis deals with electrosprayed particulate PDC micro-scale objects. Almost spherical PDC microparticles with diameters of 3.9 ± 0.9 μm (as determined by SEM) were achieved by electrospraying of HFP solution with a polymer concentration of 2\% w·v-1. In contrast, smaller particles with sizes of 400 ± 100 nm or 1.2 ± 0.3 μm were obtained for the magneto-sensitive composite PDC microparticles containing 23 ± 0.5 wt\% superparamagnetic magnetite nanoparticles (mNPs). All prepared PDC microparticles exhibited a similar overall crystallinity like the PDC bulk material as analyzed by DSC. AFM nanoindentation results revealed no influence of the nanofiller incorporation on the local mechanical properties represented by the reduced modulus determined for pure PDC microparticles and magneto-sensitive composite PDC microparticles with similar diameters around 1.3 µm. It was found that the reduced modulus of the nanocomposite microparticles increased substantially with decreasing particles size from 2.4 ± 0.9 GPa (1.2 µm) to 11.9 ± 3.1 GPa (0.4 µm), which can be related to a higher orientation of the macromolecules at the surface of smaller sized microparticles. The magneto-sensitivity of such nanocomposite microparticles could be demonstrated in two aspects. One was by attracting/collecting the composite micro-objects with an external permanent magnet. The other one was by a inductive heating to 44 ± 1 °C, which is well above the melting transition of the OCL switching domains, when compacted to a 10 x 10 mm2 film with a thickness of 10 µm and exposed to an alternating magnet field with an magnetic field strength of 30 kA·m-1. Both functions are of great relevance for designing next generation drug delivery systems combining targeting and on demand release. By a compression approach shape-memory functionalization of individual microparticles could be realized. Here different programming pressures and compression temperatures were applied. The shape-recovery capability of the programmed PDC microparticles was quantified by online and off-line heating experiments analyzed via microscopy measurement. The obtained shape-memory properties were found to be strongly depending on the applied programming pressure and temperature. The best shape-memory performance with a high shape recovery rate of about Rr = 80±1\% was obtained when a low pressure of 0.2 MPa was applied at 55 °C. Finally, it was demonstrated that PDC microparticles can be utilized as micro building parts for preparation of a macroscopic film with temporary stability by compression of a densely packed array of PDC microparticles at 60 °C followed by subsequent cooling to ambient temperature. This film disintegrates into individual microparticles upon heating to 60 °C. Based on this technology the design of stable macroscopic release systems can be envisioned, which can be easily fixed at the site of treatment (i.e. by suturing) and disintegrate on demand to microparticles facilitating the drug release. In summary, the results of this thesis could confirm the central hypothesis that the variation of the geometry of polymeric micro-objects is a suitable parameter to adjust their shape-memory performance by changing the degree of macromolecular chain orientation in the specimens or by enabling new functions like on demand disintegration. These fundamental findings might be relevant for designing novel miniaturized multifunctional polymer-based devices.}, language = {en} }