@phdthesis{Hildebrandt2006, author = {Hildebrandt, Niko}, title = {Lanthanides and quantum dots : time-resolved laser spectroscopy of biochemical F{\"o}rster Resonance Energy Transfer (FRET) systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12686}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {F{\"o}rster Resonance Energy Transfer (FRET) plays an important role for biochemical applications such as DNA sequencing, intracellular protein-protein interactions, molecular binding studies, in vitro diagnostics and many others. For qualitative and quantitative analysis, FRET systems are usually assembled through molecular recognition of biomolecules conjugated with donor and acceptor luminophores. Lanthanide (Ln) complexes, as well as semiconductor quantum dot nanocrystals (QD), possess unique photophysical properties that make them especially suitable for applied FRET. In this work the possibility of using QD as very efficient FRET acceptors in combination with Ln complexes as donors in biochemical systems is demonstrated. The necessary theoretical and practical background of FRET, Ln complexes, QD and the applied biochemical models is outlined. In addition, scientific as well as commercial applications are presented. FRET can be used to measure structural changes or dynamics at distances ranging from approximately 1 to 10 nm. The very strong and well characterized binding process between streptavidin (Strep) and biotin (Biot) is used as a biomolecular model system. A FRET system is established by Strep conjugation with the Ln complexes and QD biotinylation. Three Ln complexes (one with Tb3+ and two with Eu3+ as central ion) are used as FRET donors. Besides the QD two further acceptors, the luminescent crosslinked protein allophycocyanin (APC) and a commercial fluorescence dye (DY633), are investigated for direct comparison. FRET is demonstrated for all donor-acceptor pairs by acceptor emission sensitization and a more than 1000-fold increase of the luminescence decay time in the case of QD reaching the hundred microsecond regime. Detailed photophysical characterization of donors and acceptors permits analysis of the bioconjugates and calculation of the FRET parameters. Extremely large F{\"o}rster radii of more than 100 {\AA} are achieved for QD as acceptors, considerably larger than for APC and DY633 (ca. 80 and 60 {\AA}). Special attention is paid to interactions with different additives in aqueous solutions, namely borate buffer, bovine serum albumin (BSA), sodium azide and potassium fluoride (KF). A more than 10-fold limit of detection (LOD) decrease compared to the extensively characterized and frequently used donor-acceptor pair of Europium tris(bipyridine) (Eu-TBP) and APC is demonstrated for the FRET system, consisting of the Tb complex and QD. A sub-picomolar LOD for QD is achieved with this system in azide free borate buffer (pH 8.3) containing 2 \% BSA and 0.5 M KF. In order to transfer the Strep-Biot model system to a real-life in vitro diagnostic application, two kinds of imunnoassays are investigated using human chorionic gonadotropin (HCG) as analyte. HCG itself, as well as two monoclonal anti-HCG mouse-IgG (immunoglobulin G) antibodies are labeled with the Tb complex and QD, respectively. Although no sufficient evidence for FRET can be found for a sandwich assay, FRET becomes obvious in a direct HCG-IgG assay showing the feasibility of using the Ln-QD donor-acceptor pair as highly sensitive analytical tool for in vitro diagnostics.}, language = {en} } @article{Picconi2021, author = {Picconi, David}, title = {Nonadiabatic quantum dynamics of the coherent excited state intramolecular proton transfer of 10-hydroxybenzo[h]quinoline}, series = {Photochemical \& photobiological sciences}, volume = {20}, journal = {Photochemical \& photobiological sciences}, number = {11}, publisher = {Springer}, address = {Heidelberg}, issn = {1474-905X}, doi = {10.1007/s43630-021-00112-z}, pages = {1455 -- 1473}, year = {2021}, abstract = {The photoinduced nonadiabatic dynamics of the enol-keto isomerization of 10-hydroxybenzo[h]quinoline (HBQ) are studied computationally using high-dimensional quantum dynamics. The simulations are based on a diabatic vibronic coupling Hamiltonian, which includes the two lowest pi pi* excited states and a n pi* state, which has high energy in the Franck-Condon zone, but significantly stabilizes upon excited state intramolecular proton transfer. A procedure, applicable to large classes of excited state proton transfer reactions, is presented to parametrize this model using potential energies, forces and force constants, which, in this case, are obtained by time-dependent density functional theory. The wave packet calculations predict a time scale of 10-15 fs for the photoreaction, and reproduce the time constants and the coherent oscillations observed in time- resolved spectroscopic studies performed on HBQ. In contrast to the interpretation given to the most recent experiments, it is found that the reaction initiated by 1 pi pi* <- S-0 photoexcitation proceeds essentially on a single potential energy surface, and the observed coherences bear signatures of Duschinsky mode-mixing along the reaction path. The dynamics after the 2 pi pi* <- S-0 excitation are instead nonadiabatic, and the n pi* state plays a major role in the relaxation process. The simulations suggest a mainly active role of the proton in the isomerization, rather than a passive migration assisted by the vibrations of the benzoquinoline backbone.
[GRAPHICS]
.}, language = {en} } @article{ZehbeZehbe2016, author = {Zehbe, Rolf and Zehbe, Kerstin}, title = {Strontium doped poly-epsilon-caprolactone composite scaffolds made by reactive foaming}, series = {The European journal of the history of economic thought}, volume = {67}, journal = {The European journal of the history of economic thought}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0928-4931}, doi = {10.1016/j.msec.2016.05.045}, pages = {259 -- 266}, year = {2016}, abstract = {In the reconstruction and regeneration of bone tissue, a primary goal is to initiate bone growth and to stabilize the surrounding bone. In this regard, a potentially useful component in biomaterials for bone tissue engineering is strontium, which acts as cationic active agent, triggering certain intracellular pathways and acting as so called dual action bone agent which inhibits bone resorption while stimulating bone regeneration. In this study we established a novel processing for the foaming of a polymer (poly-epsilon-caprolactone) and simultaneous chemical reaction of a mixture of calcium and strontium hydroxides to the respective carbonates using supercritical carbon dioxide. The resultant porous composite scaffold was optimized in composition and strontium content and was characterized via different spectroscopic (infrared and Raman spectroscopy, energy dispersive X-ray spectroscopy), imaging (SEM, mu CT), mechanical testing and in vitro methods (fluorescence vital staining, MTT-assay). As a result, the composite scaffold showed good in vitro biocompatibility with partly open pore structure and the expected chemistry. First mechanical testing results indicate sufficient mechanical stability to support future in vivo applications. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} }