@misc{HoffmannJurischAlbaetal.2017, author = {Hoffmann, Mathias and Jurisch, Nicole and Alba, Juana Garcia and Borraz, Elisa Albiac and Schmidt, Marten and Huth, Vytas and Rogasik, Helmut and Rieckh, Helene and Verch, Gernot and Sommer, Michael and Augustin, J{\"u}rgen}, title = {Detecting small-scale spatial heterogeneity and temporal dynamics of soil organic carbon (SOC) stocks}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {666}, issn = {1866-8372}, doi = {10.25932/publishup-41711}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417118}, pages = {17}, year = {2017}, abstract = {Carbon (C) sequestration in soils plays a key role in the global C cycle. It is therefore crucial to adequately monitor dynamics in soil organic carbon (Delta SOC) stocks when aiming to reveal underlying processes and potential drivers. However, small-scale spatial (10-30 m) and temporal changes in SOC stocks, particularly pronounced in arable lands, are hard to assess. The main reasons for this are limitations of the well-established methods. On the one hand, repeated soil inventories, often used in long-term field trials, reveal spatial patterns and trends in Delta SOC but require a longer observation period and a sufficient number of repetitions. On the other hand, eddy covariance measurements of C fluxes towards a complete C budget of the soil-plant-atmosphere system may help to obtain temporal Delta SOC patterns but lack small-scale spatial resolution. To overcome these limitations, this study presents a reliable method to detect both short-term temporal dynamics as well as small-scale spatial differences of Delta SOC using measurements of the net ecosystem carbon balance (NECB) as a proxy. To estimate the NECB, a combination of automatic chamber (AC) measurements of CO2 exchange and empirically modeled aboveground biomass development (NPPshoot / were used. To verify our method, results were compared with Delta SOC observed by soil resampling. Soil resampling and AC measurements were performed from 2010 to 2014 at a colluvial depression located in the hummocky ground moraine landscape of northeastern Germany. The measurement site is characterized by a variable groundwater level (GWL) and pronounced small-scale spatial heterogeneity regarding SOC and nitrogen (Nt) stocks. Tendencies and magnitude of Delta SOC values derived by AC measurements and repeated soil inventories corresponded well. The period of maximum plant growth was identified as being most important for the development of spatial differences in annual Delta SOC. Hence, we were able to confirm that AC-based C budgets are able to reveal small-scale spatial differences and short-term temporal dynamics of Delta SOC.}, language = {en} } @misc{PohlHoffmannHagemannetal.2015, author = {Pohl, Madlen and Hoffmann, M. and Hagemann, Ulrike and Giebels, M. and Albiac Borraz, E. and Sommer, Michael and Augustin, J{\"u}rgen}, title = {Dynamic C and N stocks}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {496}, issn = {1866-8372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408184}, pages = {16}, year = {2015}, abstract = {The drainage and cultivation of fen peatlands create complex small-scale mosaics of soils with extremely variable soil organic carbon (SOC) stocks and groundwater levels (GWLs). To date, the significance of such sites as sources or sinks for greenhouse gases such as CO2 and CH4 is still unclear, especially if the sites are used for cropland. As individual control factors such as GWL fail to account for this complexity, holistic approaches combining gas fluxes with the underlying processes are required to understand the carbon (C) gas exchange of drained fens. It can be assumed that the stocks of SOC and N located above the variable GWL - defined as dynamic C and N stocks - play a key role in the regulation of the plant- and microbially mediated CO2 fluxes in these soils and, inversely, for CH4. To test this assumption, the present study analysed the C gas exchange (gross primary production - GPP; ecosystem respiration - R-eco; net ecosystem exchange - NEE; CH4) of maize using manual chambers for 4 years. The study sites were located near Paulinenaue, Germany, where we selected three soil types representing the full gradient of GWL and SOC stocks (0-1 m) of the landscape: (a) Haplic Arenosol (AR; 8 kg C m(-2)); (b) Mollic Gleysol (GL; 38 kg C m(-2)); and (c) Hemic Histosol (HS; 87 kg C m(-2)). Daily GWL data were used to calculate dynamic SOC (SOCdyn) and N (N-dyn) stocks. Average annual NEE differed considerably among sites, ranging from 47 +/- 30 g C m(-2) yr(-1) in AR to -305 +/- 123 g C m(-2) yr(-1) in GL and -127 +/- 212 g C m(-2) yr(-1) in HS. While static SOC and N stocks showed no significant effect on C fluxes, SOCdyn and N-dyn and their interaction with GWL strongly influenced the C gas exchange, particularly NEE and the GPP : R-eco ratio. Moreover, based on nonlinear regression analysis, 86\% of NEE variability was explained by GWL and SOCdyn. The observed high relevance of dynamic SOC and N stocks in the aerobic zone for plant and soil gas exchange likely originates from the effects of GWL-dependent N availability on C formation and transformation processes in the plant-soil system, which promote CO2 input via GPP more than CO2 emission via R-eco. The process-oriented approach of dynamic C and N stocks is a promising, potentially generalisable method for system-oriented investigations of the C gas exchange of groundwater-influenced soils and could be expanded to other nutrients and soil characteristics. However, in order to assess the climate impact of arable sites on drained peatlands, it is always necessary to consider the entire range of groundwater-influenced mineral and organic soils and their respective areal extent within the soil landscape.}, language = {en} }