@misc{HornickBachCrawfurdetal.2017, author = {Hornick, Thomas and Bach, Lennart T. and Crawfurd, Katharine J. and Spilling, Kristian and Achterberg, Eric Pieter and Woodhouse, Jason Nicholas and Schulz, Kai Georg and Brussaard, Corina P. D. and Riebesell, Ulf and Grossart, Hans-Peter}, title = {Ocean acidification impacts bacteria-phytoplankton coupling at low-nutrient conditions}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {667}, issn = {1866-8372}, doi = {10.25932/publishup-41712}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417126}, pages = {15}, year = {2017}, abstract = {The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm (similar to 55 m(3)) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO(2)) extending from present to future conditions. The study was conducted in July-August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO(2)-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO(2) treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria-phytoplankton community. However, distance-based linear modelling only identified fCO(2) as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO(2) impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of the four fCO(2)-treated mesocosms from both control mesocosms, indicating that complex trophic interactions might be altered in a future acidified ocean. Possible consequences for nutrient cycling and carbon export are still largely unknown, in particular in a nutrient-limited ocean.}, language = {en} } @misc{SpillingSchulzPauletal.2016, author = {Spilling, Kristian and Schulz, Kai Georg and Paul, Allanah J. and Boxhammer, Tim and Achterberg, Eric Pieter and Hornick, Thomas and Lischka, Silke and Stuhr, Annegret and Berm{\´u}dez, Rafael and Czerny, Jan and Crawfurd, Kate and Brussaard, Corina P. D. and Grossart, Hans-Peter and Riebesell, Ulf}, title = {Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {544}, issn = {1866-8372}, doi = {10.25932/publishup-41183}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411835}, pages = {13}, year = {2016}, abstract = {About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging from ambient (similar to 370 mu atm) to high (similar to 1200 mu atm), were set up in mesocosm bags (similar to 55m(3)). We determined standing stocks and temporal changes of total particulate carbon (TPC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and particulate organic carbon (POC) of specific plankton groups. We also measured carbon flux via CO2 exchange with the atmosphere and sedimentation (export), and biological rate measurements of primary production, bacterial production, and total respiration. The experiment lasted for 44 days and was divided into three different phases (I: t0-t16; II: t17-t30; III: t31-t43). Pools of TPC, DOC, and DIC were approximately 420, 7200, and 25 200 mmol Cm-2 at the start of the experiment, and the initial CO2 additions increased the DIC pool by similar to 7\% in the highest CO2 treatment. Overall, there was a decrease in TPC and increase of DOC over the course of the experiment. The decrease in TPC was lower, and increase in DOC higher, in treatments with added CO2. During phase I the estimated gross primary production (GPP) was similar to 100 mmol C m(-2) day(-1), from which 75-95\% was respired, similar to 1\% ended up in the TPC (including export), and 5-25\% was added to the DOC pool. During phase II, the respiration loss increased to similar to 100\% of GPP at the ambient CO2 concentration, whereas respiration was lower (85-95\% of GPP) in the highest CO2 treatment. Bacterial production was similar to 30\% lower, on average, at the highest CO2 concentration than in the controls during phases II and III. This resulted in a higher accumulation of DOC and lower reduction in the TPC pool in the elevated CO2 treatments at the end of phase II extending throughout phase III. The "extra" organic carbon at high CO2 remained fixed in an increasing biomass of small-sized plankton and in the DOC pool, and did not transfer into large, sinking aggregates. Our results revealed a clear effect of increasing CO2 on the carbon budget and mineralization, in particular under nutrient limited conditions. Lower carbon loss processes (respiration and bacterial remineralization) at elevated CO2 levels resulted in higher TPC and DOC pools than ambient CO2 concentration. These results highlight the importance of addressing not only net changes in carbon standing stocks but also carbon fluxes and budgets to better disentangle the effects of ocean acidification.}, language = {en} } @misc{FrielerLevermannElliottetal.2015, author = {Frieler, Katja and Levermann, Anders and Elliott, J. and Heinke, J. and Arneth, A. and Bierkens, M. F. P. and Ciais, Philippe and Clark, D. B. and Deryng, D. and Doell, P. and Falloon, P. and Fekete, B. and Folberth, Christian and Friend, A. D. and Gellhorn, C. and Gosling, S. N. and Haddeland, I. and Khabarov, N. and Lomas, M. and Masaki, Y. and Nishina, K. and Neumann, K. and Oki, T. and Pavlick, R. and Ruane, A. C. and Schmid, E. and Schmitz, C. and Stacke, T. and Stehfest, E. and Tang, Q. and Wisser, D. and Huber, V. and Piontek, Franziska and Warszawski, L. and Schewe, Jacob and Lotze-Campen, Hermann and Schellnhuber, Hans Joachim}, title = {A framework for the cross-sectoral integration of multi-model impact projections}, series = {Earth system dynamics}, journal = {Earth system dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407968}, pages = {14}, year = {2015}, abstract = {Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop-and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making.}, language = {en} } @misc{NauschBachCzernyetal.2016, author = {Nausch, Monika and Bach, Lennart Thomas and Czerny, Jan and Goldstein, Josephine and Grossart, Hans-Peter and Hellemann, Dana and Hornick, Thomas and Achterberg, Eric Pieter and Schulz, Kai Georg and Riebesell, Ulf}, title = {Effects of CO 2 perturbation on phosphorus pool sizes and uptake in a mesocosm experiment during a low productive summer season in the northern Baltic Sea}, series = {Biogeosciences}, journal = {Biogeosciences}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410274}, pages = {16}, year = {2016}, abstract = {Studies investigating the effect of increasing CO2 levels on the phosphorus cycle in natural waters are lacking although phosphorus often controls phytoplankton development in many aquatic systems. The aim of our study was to analyse effects of elevated CO2 levels on phosphorus pool sizes and uptake. The phosphorus dynamic was followed in a CO2-manipulation mesocosm experiment in the Storfjarden (western Gulf of Finland, Baltic Sea) in summer 2012 and was also studied in the surrounding fjord water. In all mesocosms as well as in surface waters of Storfjarden, dissolved organic phosphorus (DOP) concentrations of 0.26aEuro-+/- aEuro-0.03 and 0.23aEuro-+/- aEuro-0.04aEuro-A mu molaEuro-L-1, respectively, formed the main fraction of the total P-pool (TP), whereas phosphate (PO4) constituted the lowest fraction with mean concentration of 0.15aEuro-A +/- aEuro-0.02 in the mesocosms and 0.17aEuro-A +/- aEuro-0.07aEuro-A mu molaEuro-L-1 in the fjord. Transformation of PO4 into DOP appeared to be the main pathway of PO4 turnover. About 82aEuro-\% of PO4 was converted into DOP whereby only 18aEuro-\% of PO4 was transformed into particulate phosphorus (PP). PO4 uptake rates measured in the mesocosms ranged between 0.6 and 3.9aEuro-nmolaEuro-L(-1)aEuro-h(-1). About 86aEuro-\% of them was realized by the size fraction < aEuro-3aEuro-A mu m. Adenosine triphosphate (ATP) uptake revealed that additional P was supplied from organic compounds accounting for 25-27aEuro-\% of P provided by PO4 only. CO2 additions did not cause significant changes in phosphorus (P) pool sizes, DOP composition, and uptake of PO4 and ATP when the whole study period was taken into account. However, significant short-term effects were observed for PO4 and PP pool sizes in CO2 treatments > aEuro-1000aEuro-A mu atm during periods when phytoplankton biomass increased. In addition, we found significant relationships (e.g., between PP and Chl a) in the untreated mesocosms which were not observed under high fCO(2) conditions. Consequently, it can be hypothesized that the relationship between PP formation and phytoplankton growth changed with CO2 elevation. It can be deduced from the results, that visible effects of CO2 on P pools are coupled to phytoplankton growth when the transformation of PO4 into POP was stimulated. The transformation of PO4 into DOP on the other hand does not seem to be affected. Additionally, there were some indications that cellular mechanisms of P regulation might be modified under CO2 elevation changing the relationship between cellular constituents.}, language = {en} }