@misc{KotthoffLisecSchwerdtleetal.2019, author = {Kotthoff, Lisa and Lisec, Jan and Schwerdtle, Tanja and Koch, Matthias}, title = {Prediction of transformation products of monensin by electrochemistry compared to microsomal assay and hydrolysis}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1340}, issn = {1866-8372}, doi = {10.25932/publishup-47326}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473262}, pages = {12}, year = {2019}, abstract = {The knowledge of transformation pathways and identification of transformation products (TPs) of veterinary drugs is important for animal health, food, and environmental matters. The active agent Monensin (MON) belongs to the ionophore antibiotics and is widely used as a veterinary drug against coccidiosis in broiler farming. However, no electrochemically (EC) generated TPs of MON have been described so far. In this study, the online coupling of EC and mass spectrometry (MS) was used for the generation of oxidative TPs. EC-conditions were optimized with respect to working electrode material, solvent, modifier, and potential polarity. Subsequent LC/HRMS (liquid+ chromatography/high resolution mass spectrometry) and MS/MS experiments were performed to identify the structures of derived TPs by a suspected target analysis. The obtained EC-results were compared to TPs observed in metabolism tests with microsomes and hydrolysis experiments of MON. Five previously undescribed TPs of MON were identified in our EC/MS based study and one TP, which was already known from literature and found by a microsomal assay, could be confirmed. Two and three further TPs were found as products in microsomal tests and following hydrolysis, respectively. We found decarboxylation, O-demethylation and acid-catalyzed ring-opening reactions to be the major mechanisms of MON transformation}, language = {en} } @misc{MeyerKustererLisecetal.2009, author = {Meyer, Rhonda Christiane and Kusterer, Barbara and Lisec, Jan and Steinfath, Matthias and Becher, Martina and Scharr, Hanno and Melchinger, Albrecht E. and Selbig, Joachim and Schurr, Ulrich and Willmitzer, Lothar and Altmann, Thomas}, title = {QTL analysis of early stage heterosis for biomass in Arabidopsis}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1330}, issn = {1866-8372}, doi = {10.25932/publishup-43127}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431272}, pages = {11}, year = {2009}, abstract = {The main objective of this study was to identify genomic regions involved in biomass heterosis using QTL, generation means, and mode-of-inheritance classification analyses. In a modified North Carolina Design III we backcrossed 429 recombinant inbred line and 140 introgression line populations to the two parental accessions, C24 and Col-0, whose F 1 hybrid exhibited 44\% heterosis for biomass. Mid-parent heterosis in the RILs ranged from -31 to 99\% for dry weight and from -58 to 143\% for leaf area. We detected ten genomic positions involved in biomass heterosis at an early developmental stage, individually explaining between 2.4 and 15.7\% of the phenotypic variation. While overdominant gene action was prevalent in heterotic QTL, our results suggest that a combination of dominance, overdominance and epistasis is involved in biomass heterosis in this Arabidopsis cross.}, language = {en} } @misc{SteinfathGaertnerLisecetal.2009, author = {Steinfath, Matthias and G{\"a}rtner, Tanja and Lisec, Jan and Meyer, Rhonda C. and Altmann, Thomas and Willmitzer, Lothar and Selbig, Joachim}, title = {Prediction of hybrid biomass in Arabidopsis thaliana by selected parental SNP and metabolic markers}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1324}, issn = {1866-8372}, doi = {10.25932/publishup-43111}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431115}, pages = {9}, year = {2009}, abstract = {A recombinant inbred line (RIL) population, derived from two Arabidopsis thaliana accessions, and the corresponding testcrosses with these two original accessions were used for the development and validation of machine learning models to predict the biomass of hybrids. Genetic and metabolic information of the RILs served as predictors. Feature selection reduced the number of variables (genetic and metabolic markers) in the models by more than 80\% without impairing the predictive power. Thus, potential biomarkers have been revealed. Metabolites were shown to bear information on inherited macroscopic phenotypes. This proof of concept could be interesting for breeders. The example population exhibits substantial mid-parent biomass heterosis. The results of feature selection could therefore be used to shed light on the origin of heterosis. In this respect, mainly dominance effects were detected.}, language = {en} } @misc{GaertnerSteinfathAndorfetal.2009, author = {G{\"a}rtner, Tanja and Steinfath, Matthias and Andorf, Sandra and Lisec, Jan and Meyer, Rhonda C. and Altmann, Thomas and Willmitzer, Lothar and Selbig, Joachim}, title = {Improved heterosis prediction by combining information on DNA- and metabolic markers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45132}, year = {2009}, abstract = {Background: Hybrids represent a cornerstone in the success story of breeding programs. The fundamental principle underlying this success is the phenomenon of hybrid vigour, or heterosis. It describes an advantage of the offspring as compared to the two parental lines with respect to parameters such as growth and resistance against abiotic or biotic stress. Dominance, overdominance or epistasis based models are commonly used explanations. Conclusion/Significance: The heterosis level is clearly a function of the combination of the parents used for offspring production. This results in a major challenge for plant breeders, as usually several thousand combinations of parents have to be tested for identifying the best combinations. Thus, any approach to reliably predict heterosis levels based on properties of the parental lines would be highly beneficial for plant breeding. Methodology/Principal Findings: Recently, genetic data have been used to predict heterosis. Here we show that a combination of parental genetic and metabolic markers, identified via feature selection and minimum-description-length based regression methods, significantly improves the prediction of biomass heterosis in resulting offspring. These findings will help furthering our understanding of the molecular basis of heterosis, revealing, for instance, the presence of nonlinear genotype-phenotype relationships. In addition, we describe a possible approach for accelerated selection in plant breeding.}, language = {en} }