@misc{SchaeferCarnariusDechetal.2023, author = {Schaefer, Laura and Carnarius, Friederike and Dech, Silas and Bittmann, Frank}, title = {Repeated measurements of Adaptive Force}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {831}, issn = {1866-8364}, doi = {10.25932/publishup-58803}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-588030}, pages = {19}, year = {2023}, abstract = {The Adaptive Force (AF) reflects the neuromuscular capacity to adapt to external loads during holding muscle actions and is similar to motions in real life and sports. The maximal isometric AF (AFisomax) was considered to be the most relevant parameter and was assumed to have major importance regarding injury mechanisms and the development of musculoskeletal pain. The aim of this study was to investigate the behavior of different torque parameters over the course of 30 repeated maximal AF trials. In addition, maximal holding vs. maximal pushing isometric muscle actions were compared. A side consideration was the behavior of torques in the course of repeated AF actions when comparing strength and endurance athletes. The elbow flexors of n = 12 males (six strength/six endurance athletes, non-professionals) were measured 30 times (120 s rest) using a pneumatic device. Maximal voluntary isometric contraction (MVIC) was measured pre and post. MVIC, AFisomax, and AFmax (maximal torque of one AF measurement) were evaluated regarding different considerations and statistical tests. AFmax and AFisomax declined in the course of 30 trials [slope regression (mean ± standard deviation): AFmax = -0.323 ± 0.263; AFisomax = -0.45 ± 0.45]. The decline from start to end amounted to -12.8\% ± 8.3\% (p < 0.001) for AFmax and -25.41\% ± 26.40\% (p < 0.001) for AFisomax. AF parameters declined more in strength vs. endurance athletes. Thereby, strength athletes showed a rather stable decline for AFmax and a plateau formation for AFisomax after 15 trials. In contrast, endurance athletes reduced their AFmax, especially after the first five trials, and remained on a rather similar level for AFisomax. The maximum of AFisomax of all 30 trials amounted 67.67\% ± 13.60\% of MVIC (p < 0.001, n = 12), supporting the hypothesis of two types of isometric muscle action (holding vs. pushing). The findings provided the first data on the behavior of torque parameters after repeated isometric-eccentric actions and revealed further insights into neuromuscular control strategies. Additionally, they highlight the importance of investigating AF parameters in athletes based on the different behaviors compared to MVIC. This is assumed to be especially relevant regarding injury mechanisms.}, language = {en} } @misc{SchaeferBittmann2023, author = {Schaefer, Laura and Bittmann, Frank}, title = {The adaptive force as a potential biomechanical parameter in the recovery process of patients with long COVID}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {823}, issn = {1866-8364}, doi = {10.25932/publishup-58518}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-585187}, pages = {25}, year = {2023}, abstract = {Long COVID patients show symptoms, such as fatigue, muscle weakness and pain. Adequate diagnostics are still lacking. Investigating muscle function might be a beneficial approach. The holding capacity (maximal isometric Adaptive Force; AFisomax) was previously suggested to be especially sensitive for impairments. This longitudinal, non-clinical study aimed to investigate the AF in long COVID patients and their recovery process. AF parameters of elbow and hip flexors were assessed in 17 patients at three time points (pre: long COVID state, post: immediately after first treatment, end: recovery) by an objectified manual muscle test. The tester applied an increasing force on the limb of the patient, who had to resist isometrically for as long as possible. The intensity of 13 common symptoms were queried. At pre, patients started to lengthen their muscles at ~50\% of the maximal AF (AFmax), which was then reached during eccentric motion, indicating unstable adaptation. At post and end, AFisomax increased significantly to ~99\% and 100\% of AFmax, respectively, reflecting stable adaptation. AFmax was statistically similar for all three time points. Symptom intensity decreased significantly from pre to end. The findings revealed a substantially impaired maximal holding capacity in long COVID patients, which returned to normal function with substantial health improvement. AFisomax might be a suitable sensitive functional parameter to assess long COVID patients and to support therapy process}, language = {en} } @misc{SchaeferDechWolffetal.2022, author = {Schaefer, Laura and Dech, Silas and Wolff, Lara L. and Bittmann, Frank}, title = {Emotional Imagery Influences the Adaptive Force in Young Women}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {816}, issn = {1866-8364}, doi = {10.25932/publishup-58201}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-582014}, pages = {23}, year = {2022}, abstract = {The link between emotions and motor function has been known for decades but is still not clarified. The Adaptive Force (AF) describes the neuromuscular capability to adapt to increasing forces and was suggested to be especially vulnerable to interfering inputs. This study investigated the influence of pleasant an unpleasant food imagery on the manually assessed AF of elbow and hip flexors objectified by a handheld device in 12 healthy women. The maximal isometric AF was significantly reduced during unpleasant vs. pleasant imagery and baseline (p < 0.001, dz = 0.98-1.61). During unpleasant imagery, muscle lengthening started at 59.00 ± 22.50\% of maximal AF, in contrast to baseline and pleasant imagery, during which the isometric position could be maintained mostly during the entire force increase up to ~97.90 ± 5.00\% of maximal AF. Healthy participants showed an immediately impaired holding function triggered by unpleasant imagery, presumably related to negative emotions. Hence, AF seems to be suitable to test instantaneously the effect of emotions on motor function. Since musculoskeletal complaints can result from muscular instability, the findings provide insights into the understanding of the causal chain of linked musculoskeletal pain and mental stress. A case example (current stress vs. positive imagery) suggests that the approach presented in this study might have future implications for psychomotor diagnostics and therapeutics.}, language = {en} } @misc{SchaeferBittmann2022, author = {Schaefer, Laura and Bittmann, Frank}, title = {Case Study: Intra- and Interpersonal Coherence of Muscle and Brain Activity of Two Coupled Persons during Pushing and Holding Isometric Muscle Action}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-56194}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561942}, pages = {1 -- 27}, year = {2022}, abstract = {Inter-brain synchronization is primarily investigated during social interactions but had not been examined during coupled muscle action between two persons until now. It was previously shown that mechanical muscle oscillations can develop coherent behavior between two isometrically interacting persons. This case study investigated if inter-brain synchronization appears thereby, and if differences of inter- and intrapersonal muscle and brain coherence exist regarding two different types of isometric muscle action. Electroencephalography (EEG) and mechanomyography/mechanotendography (MMG/MTG) of right elbow extensors were recorded during six fatiguing trials of two coupled isometrically interacting participants (70\% MVIC). One partner performed holding and one pushing isometric muscle action (HIMA/PIMA; tasks changed). The wavelet coherence of all signals (EEG, MMG/MTG, force, ACC) were analyzed intra- and interpersonally. The five longest coherence patches in 8-15 Hz and their weighted frequency were compared between real vs. random pairs and between HIMA vs. PIMA. Real vs. random pairs showed significantly higher coherence for intra-muscle, intra-brain, and inter-muscle-brain activity (p < 0.001 to 0.019). Inter-brain coherence was significantly higher for real vs. random pairs for EEG of right and central areas and for sub-regions of EEG left (p = 0.002 to 0.025). Interpersonal muscle-brain synchronization was significantly higher than intrapersonal one, whereby it was significantly higher for HIMA vs. PIMA. These preliminary findings indicate that inter-brain synchronization can arise during muscular interaction. It is hypothesized both partners merge into one oscillating neuromuscular system. The results reinforce the hypothesis that HIMA is characterized by more complex control strategies than PIMA. The pilot study suggests investigating the topic further to verify these results on a larger sample size. Findings could contribute to the basic understanding of motor control and is relevant for functional diagnostics such as the manual muscle test which is applied in several disciplines, e.g., neurology, physiotherapy.}, language = {en} } @misc{SchaeferBittmann2021, author = {Schaefer, Laura and Bittmann, Frank}, title = {Mechanotendography: description and evaluation of a novel method for investigating the physiological mechanical oscillations of tendons using a piezo-based measurement system}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {737}, publisher = {Universit{\"a}t Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-53650}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-536500}, pages = {1 -- 10}, year = {2021}, abstract = {The mechanotendography (MTG) is a method for analyzing the mechanical oscillations of tendons during muscular actions. The aim of this investigation was to evaluate the technical reliability of a piezo-based measurement system used for MTG. The reliability measurements were performed by using audio samples played by a subwoofer. The thereby generated pressure waves were recorded by a piezo-based measurement system. An audio of 40 Hz sine oscillations and four different formerly in vivo recorded MTG-signals were converted into audio files and were used as test signals. Five trials with each audio were performed and one audio was used for repetition trials on another day. The signals' correlation was estimated by Spearman (MCC) and intraclass correlation coefficients (ICC(3,1)), Cronbach's alpha (CA) and by mean distances (MD). All parameters were compared between repetition and randomized matched signals. The repetition trials show high correlations (MCC: 0.86 ± 0.13, ICC: 0.89 ± 0.12, CA: 0.98 ± 0.03), low MD (0.03 ± 0.03V) and differ significantly from the randomized matched signals (MCC: 0.15 ± 0.10, ICC: 0.17 ± 0.09, CA: 0.37 ± 0.16, MD: 0.19 ± 0.01V) (p = 0.001 - 0.043). This speaks for an excellent reliability of the measurement system. Presuming the skin above superficial tendons oscillates adequately, we estimate this tool as valid for the application in musculoskeletal system.}, language = {en} } @misc{SchaeferLoefflerKleinetal.2021, author = {Schaefer, Laura and L{\"o}ffler, Nils and Klein, Julia and Bittmann, Frank}, title = {Mechanomyography and acceleration show interlimb asymmetries in Parkinson patients without tremor compared to controls during a unilateral motor task}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, issn = {1866-8364}, doi = {10.25932/publishup-52304}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-523049}, pages = {17}, year = {2021}, abstract = {The mechanical muscular oscillations are rarely the objective of investigations regarding the identification of a biomarker for Parkinson's disease (PD). Therefore, the aim of this study was to investigate whether or not this specific motor output differs between PD patients and controls. The novelty is that patients without tremor are investigated performing a unilateral isometric motor task. The force of armflexors and the forearm acceleration (ACC) were recorded as well as the mechanomyography of the biceps brachii (MMGbi), brachioradialis (MMGbra) and pectoralis major (MMGpect) muscles using a piezoelectric-sensor-based system during a unilateral motor task at 70\% of the MVIC. The frequency, a power-frequency-ratio, the amplitude variation, the slope of amplitudes and their interlimb asymmetries were analysed. The results indicate that the oscillatory behavior of muscular output in PD without tremor deviates from controls in some parameters: Significant differences appeared for the power-frequency-ratio (p = 0.001, r = 0.43) and for the amplitude variation (p = 0.003, r = 0.34) of MMGpect. The interlimb asymmetries differed significantly concerning the power-frequency-ratio of MMGbi (p = 0.013, r = 0.42) and MMGbra (p = 0.048, r = 0.39) as well as regarding the mean frequency (p = 0.004, r = 0.48) and amplitude variation of MMGpect (p = 0.033, r = 0.37). The mean (M) and variation coefficient (CV) of slope of ACC differed significantly (M: p = 0.022, r = 0.33; CV: p = 0.004, r = 0.43). All other parameters showed no significant differences between PD and controls. It remains open, if this altered mechanical muscular output is reproducible and specific for PD.}, language = {en} } @misc{SchaeferBittmann2021, author = {Schaefer, Laura and Bittmann, Frank}, title = {Paired personal interaction reveals objective differences between pushing and holding isometric muscle action}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {714}, issn = {1866-8364}, doi = {10.25932/publishup-51911}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-519119}, pages = {23}, year = {2021}, abstract = {In sports and movement sciences isometric muscle function is usually measured by pushing against a stable resistance. However, subjectively one can hold or push isometrically. Several investigations suggest a distinction of those forms. The aim of this study was to investigate whether these two forms of isometric muscle action can be distinguished by objective parameters in an interpersonal setting. 20 subjects were grouped in 10 same sex pairs, in which one partner should perform the pushing isometric muscle action (PIMA) and the other partner executed the holding isometric muscle action (HIMA). The partners had contact at the distal forearms via an interface, which included a strain gauge and an acceleration sensor. The mechanical oscillations of the triceps brachii (MMGtri) muscle, its tendon (MTGtri) and the abdominal muscle (MMGobl) were recorded by a piezoelectric-sensor-based measurement system. Each partner performed three 15s (80\% MVIC) and two fatiguing trials (90\% MVIC) during PIMA and HIMA, respectively. Parameters to compare PIMA and HIMA were the mean frequency, the normalized mean amplitude, the amplitude variation, the power in the frequency range of 8 to 15 Hz, a special power-frequency ratio and the number of task failures during HIMA or PIMA (partner who quit the task). A "HIMA failure" occurred in 85\% of trials (p < 0.001). No significant differences between PIMA and HIMA were found for the mean frequency and normalized amplitude. The MMGobl showed significantly higher values of amplitude variation (15s: p = 0.013; fatiguing: p = 0.007) and of power-frequency-ratio (15s: p = 0.040; fatiguing: p = 0.002) during HIMA and a higher power in the range of 8 to 15 Hz during PIMA (15s: p = 0.001; fatiguing: p = 0.011). MMGtri and MTGtri showed no significant differences. Based on the findings it is suggested that a holding and a pushing isometric muscle action can be distinguished objectively, whereby a more complex neural control is assumed for HIMA.}, language = {en} } @misc{BittmannDechAehleetal.2020, author = {Bittmann, Frank and Dech, Silas and Aehle, Markus and Schaefer, Laura}, title = {Manual Muscle Testing—Force Profiles and Their Reproducibility}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {671}, issn = {1866-8364}, doi = {10.25932/publishup-48561}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-485612}, pages = {32}, year = {2020}, abstract = {The manual muscle test (MMT) is a flexible diagnostic tool, which is used in many disciplines, applied in several ways. The main problem is the subjectivity of the test. The MMT in the version of a "break test" depends on the tester's force rise and the patient's ability to resist the applied force. As a first step, the investigation of the reproducibility of the testers' force profile is required for valid application. The study examined the force profiles of n = 29 testers (n = 9 experiences (Exp), n = 8 little experienced (LitExp), n = 12 beginners (Beg)). The testers performed 10 MMTs according to the test of hip flexors, but against a fixed leg to exclude the patient's reaction. A handheld device recorded the temporal course of the applied force. The results show significant differences between Exp and Beg concerning the starting force (padj = 0.029), the ratio of starting to maximum force (padj = 0.005) and the normalized mean Euclidean distances between the 10 trials (padj = 0.015). The slope is significantly higher in Exp vs. LitExp (p = 0.006) and Beg (p = 0.005). The results also indicate that experienced testers show inter-tester differences and partly even a low intra-tester reproducibility. This highlights the necessity of an objective MMT-assessment. Furthermore, an agreement on a standardized force profile is required. A suggestion for this is given.}, language = {en} }