@article{OeztuerkBozzolanHolcombeetal.2022, author = {{\"O}zt{\"u}rk, Ugur and Bozzolan, Elisa and Holcombe, Elizabeth A. and Shukla, Roopam and Pianosi, Francesca and Wagener, Thorsten}, title = {How climate change and unplanned urban sprawl bring more landslides}, series = {Nature : the international weekly journal of science}, volume = {608}, journal = {Nature : the international weekly journal of science}, number = {7922}, publisher = {Nature portfolio}, address = {Berlin}, issn = {0028-0836}, doi = {10.1038/d41586-022-02141-9}, pages = {262 -- 265}, year = {2022}, abstract = {More settlements will suffer as heavy rains and unregulated construction destabilize slopes in the tropics, models show.}, language = {en} } @article{ZuhrDolmanHoetal.2022, author = {Zuhr, Alexandra M. and Dolman, Andrew M. and Ho, Sze Ling and Groeneveld, Jeroen and Loewemark, Ludvig and Grotheer, Hendrik and Su, Chih-Chieh and Laepple, Thomas}, title = {Age-heterogeneity in marine sediments revealed by three-dimensional high-resolution radiocarbon measurements}, series = {Frontiers in Earth Science}, volume = {10}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2022.871902}, pages = {15}, year = {2022}, abstract = {Marine sedimentary archives are routinely used to reconstruct past environmental changes. In many cases, bioturbation and sedimentary mixing affect the proxy time-series and the age-depth relationship. While idealized models of bioturbation exist, they usually assume homogeneous mixing, thus that a single sample is representative for the sediment layer it is sampled from. However, it is largely unknown to which extent this assumption holds for sediments used for paleoclimate reconstructions. To shed light on 1) the age-depth relationship and its full uncertainty, 2) the magnitude of mixing processes affecting the downcore proxy variations, and 3) the representativity of the discrete sample for the sediment layer, we designed and performed a case study on South China Sea sediment material which was collected using a box corer and which covers the last glacial cycle. Using the radiocarbon content of foraminiferal tests as a tracer of time, we characterize the spatial age-heterogeneity of sediments in a three-dimensional setup. In total, 118 radiocarbon measurements were performed on defined small- and large-volume bulk samples ( similar to 200 specimens each) to investigate the horizontal heterogeneity of the sediment. Additionally, replicated measurements on small numbers of specimens (10 x 5 specimens) were performed to assess the heterogeneity within a sample volume. Visual assessment of X-ray images and a quantitative assessment of the mixing strength show typical mixing from bioturbation corresponding to around 10 cm mixing depth. Notably, our 3D radiocarbon distribution reveals that the horizontal heterogeneity (up to 1,250 years), contributing to the age uncertainty, is several times larger than the typically assumed radiocarbon based age-model error (single errors up to 250 years). Furthermore, the assumption of a perfectly bioturbated layer with no mixing underneath is not met. Our analysis further demonstrates that the age-heterogeneity might be a function of sample size; smaller samples might contain single features from the incomplete mixing and are thus less representative than larger samples. We provide suggestions for future studies, optimal sampling strategies for quantitative paleoclimate reconstructions and realistic uncertainty in age models, as well as discuss possible implications for the interpretation of paleoclimate records.}, language = {en} } @article{ZhangCaoYuanetal.2022, author = {Zhang, Di and Cao, Kai and Yuan, Xiaoping and Wang, Guocan and van der Beek, Pieter A.}, title = {Late Oligocene-early Miocene origin of the First Bend of the Yangtze River explained by thrusting-induced river reorganization}, series = {Geomorphology}, volume = {411}, journal = {Geomorphology}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2022.108303}, pages = {13}, year = {2022}, abstract = {The origin of the First Bend of the Yangtze River is key to understanding the birth of the modern Yangtze River. Despite considerable efforts, the timing and mechanism of formation of the First Bend remain highly debated. Inverse river-profile modeling of three tributaries (Chongjiang, Lima, and Gudu) of the Jinsha River, integrated with regional tectonic and geomorphic interpretations, allows the onset of incision at the First Bend to be constrained to 28-20 Ma. The spatio-temporal coincidence of initial river incision and activity of Yulong Thrust Belt in southeastern Tibet highlights thrusting to be fundamental in reshaping the pre-existing stream network at the First Bend. These results enable us to reinterpret a change in sedimentary environment from a braided river to a swamp-like lake in the Jianchuan Basin south of the First Bend, recording the destruction of the hypothesized southwards-flowing paleo-Jinsha and Shuiluo Rivers at ~36-35 Ma by magmatism. During the late Oligoceneearly Miocene, the paleo-Shuiluo River was diverted to the north by focused rock uplift due to thrusting along the Yulong Thrust Belt, which also led to exhumation of the Jianchuan Basin. Diversion of the paleo-Shuiluo River can be explained by capture from a downstream river in the footwall of the Yulong Thrust Belt. Subsequent rapid headward erosion, that was caused by thrusting-induced drop of local base level, is recorded by upstream younging ages for the onset of incision and led to the formation of the First Bend. The combination of new ages for the onset of incision at 28-20 Ma at the First Bend and younger ages upstream indicates northwards expansion of the Jinsha River at a rate of 62 +/- 18 mm/yr. Our results suggest that the origin of the First Bend was likely triggered by thrusting at 28-20 Ma, after which the Yangtze River formed.}, language = {en} } @article{YuanJiaoDupontNivetetal.2022, author = {Yuan, Xiaoping P. and Jiao, Ruohong and Dupont-Nivet, Guillaume and Shen, Xiaoming}, title = {Southeastern Tibetan Plateau growth revealed by inverse analysis of landscape evolution model}, series = {Geophysical research letters}, volume = {49}, journal = {Geophysical research letters}, number = {10}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2021GL097623}, pages = {10}, year = {2022}, abstract = {The Cenozoic history of the Tibetan Plateau topography is critical for understanding the evolution of the Indian-Eurasian collision, climate, and biodiversity. However, the long-term growth and landscape evolution of the Tibetan Plateau remain ambiguous, it remains unclear if plateau uplift occurred soon after the India-Asia collision in the Paleogene (similar to 50-25 Ma) or later in the Neogene (similar to 20-5 Ma). Here, we reproduce the uplift history of the southeastern Tibetan Plateau using a 2D landscape evolution model, which simultaneously solves fluvial erosion and sediment transport processes in the drainage basins of the Three Rivers region (Yangtze, Mekong, and Salween Rivers). Our model was optimized through a formal inverse analysis with 20,000 forward simulations, which aims to reconcile the transient states of the present-day river profiles. The results, compared to existing paleoelevation and thermochronologic data, suggest initially low elevations (similar to 300-500 m) during the Paleogene, followed by a gradual southeastward propagation of topographic uplift of the plateau margin.}, language = {en} } @article{YenvonSpechtLinetal.2022, author = {Yen, Ming-Hsuan and von Specht, Sebastian and Lin, Yen-Yu and Cotton, Fabrice and Ma, Kuo-Fong}, title = {Within- and between-event variabilities of strong-velocity pulses of moderate earthquakes within dense seismic arrays}, series = {Bulletin of the Seismological Society of America}, volume = {112}, journal = {Bulletin of the Seismological Society of America}, number = {1}, publisher = {Seismological Society of America}, address = {El Cerito, Calif.}, issn = {0037-1106}, doi = {10.1785/0120200376}, pages = {361 -- 380}, year = {2022}, abstract = {Ground motion with strong-velocity pulses can cause significant damage to buildings and structures at certain periods; hence, knowing the period and velocity amplitude of such pulses is critical for earthquake structural engineering. However, the physical factors relating the scaling of pulse periods with magnitude are poorly understood. In this study, we investigate moderate but damaging earthquakes (M-w 6-7) and characterize ground- motion pulses using the method of Shahi and Baker (2014) while considering the potential static-offset effects. We confirm that the within-event variability of the pulses is large. The identified pulses in this study are mostly from strike-slip-like earthquakes. We further perform simulations using the freq uency-wavenumber algorithm to investigate the causes of the variability of the pulse periods within and between events for moderate strike-slip earthquakes. We test the effect of fault dips, and the impact of the asperity locations and sizes. The simulations reveal that the asperity properties have a high impact on the pulse periods and amplitudes at nearby stations. Our results emphasize the importance of asperity characteristics, in addition to earthquake magnitudes for the occurrence and properties of pulses produced by the forward directivity effect. We finally quantify and discuss within- and between-event variabilities of pulse properties at short distances.}, language = {en} } @article{WutzlerHudsonThieken2022, author = {Wutzler, Bianca and Hudson, Paul and Thieken, Annegret}, title = {Adaptation strategies of flood-damaged businesses in Germany}, series = {Frontiers in water}, volume = {4}, journal = {Frontiers in water}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2624-9375}, doi = {10.3389/frwa.2022.932061}, pages = {13}, year = {2022}, abstract = {Flood risk management in Germany follows an integrative approach in which both private households and businesses can make an important contribution to reducing flood damage by implementing property-level adaptation measures. While the flood adaptation behavior of private households has already been widely researched, comparatively less attention has been paid to the adaptation strategies of businesses. However, their ability to cope with flood risk plays an important role in the social and economic development of a flood-prone region. Therefore, using quantitative survey data, this study aims to identify different strategies and adaptation drivers of 557 businesses damaged by a riverine flood in 2013 and 104 businesses damaged by pluvial or flash floods between 2014 and 2017. Our results indicate that a low perceived self-efficacy may be an important factor that can reduce the motivation of businesses to adapt to flood risk. Furthermore, property-owners tended to act more proactively than tenants. In addition, high experience with previous flood events and low perceived response costs could strengthen proactive adaptation behavior. These findings should be considered in business-tailored risk communication.}, language = {en} } @article{WolfHuismansBraunetal.2022, author = {Wolf, Sebastian G. and Huismans, Ritske S. and Braun, Jean and Yuan, Xiaoping}, title = {Topography of mountain belts controlled by rheology and surface processes}, series = {Nature : the international weekly journal of science}, volume = {606}, journal = {Nature : the international weekly journal of science}, number = {7914}, publisher = {Nature portfolio}, address = {Berlin}, issn = {0028-0836}, doi = {10.1038/s41586-022-04700-6}, pages = {516 -- 521}, year = {2022}, abstract = {It is widely recognized that collisional mountain belt topography is generated by crustal thickening and lowered by river bedrock erosion, linking climate and tectonics(1-4). However, whether surface processes or lithospheric strength control mountain belt height, shape and longevity remains uncertain. Additionally, how to reconcile high erosion rates in some active orogens with long-term survival of mountain belts for hundreds of millions of years remains enigmatic. Here we investigate mountain belt growth and decay using a new coupled surface process(5,6) and mantle-scale tectonic model(7). End-member models and the new non-dimensional Beaumont number, Bm, quantify how surface processes and tectonics control the topographic evolution of mountain belts, and enable the definition of three end-member types of growing orogens: type 1, non-steady state, strength controlled (Bm > 0.5); type 2, flux steady state(8), strength controlled (Bm approximate to 0.4-0.5); and type 3, flux steady state, erosion controlled (Bm < 0.4). Our results indicate that tectonics dominate in Himalaya-Tibet and the Central Andes (both type 1), efficient surface processes balance high convergence rates in Taiwan (probably type 2) and surface processes dominate in the Southern Alps of New Zealand (type 3). Orogenic decay is determined by erosional efficiency and can be subdivided into two phases with variable isostatic rebound characteristics and associated timescales. The results presented here provide a unified framework explaining how surface processes and lithospheric strength control the height, shape, and longevity of mountain belts.}, language = {en} } @article{WilhelmsBoersigYangetal.2022, author = {Wilhelms, Andre and B{\"o}rsig, Nicolas and Yang, Jingwei and Holbach, Andreas and Norra, Stefan}, title = {Insights into phytoplankton dynamics and water quality monitoring with the BIOFISH at the Elbe River, Germany}, series = {Water}, volume = {14}, journal = {Water}, number = {13}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w14132078}, pages = {20}, year = {2022}, abstract = {Understanding the key factors influencing the water quality of large river systems forms an important basis for the assessment and protection of cross-regional ecosystems and the implementation of adapted water management concepts. However, identifying these factors requires in-depth comprehension of the unique environmental systems, which can only be achieved by detailed water quality monitoring. Within the scope of the joint science and sports event "Elbschwimmstaffel" (swimming relay on the river Elbe) in June/July 2017 organized by the German Ministry of Education and Research, water quality data were acquired along a 550 km long stretch of the Elbe River in Germany. During the survey, eight physiochemical water quality parameters were recorded in high spatial and temporal resolution with the BIOFISH multisensor system. Multivariate statistical methods were applied to identify and delineate processes influencing the water quality. The BIOFISH dataset revealed that phytoplankton activity has a major impact on the water quality of the Elbe River in the summer months. The results suggest that phytoplankton biomass constitutes a substantial proportion of the suspended particles and that photosynthetic activity of phytoplankton is closely related to significant temporal changes in pH and oxygen saturation. An evaluation of the BIOFISH data based on the combination of statistical analysis with weather and discharge data shows that the hydrological and meteorological history of the sampled water body was the main driver of phytoplankton dynamics. This study demonstrates the capacity of longitudinal river surveys with the BIOFISH or similar systems for water quality assessment, the identification of pollution sources and their utilization for online in situ monitoring of rivers.}, language = {en} } @article{WestRosolemMacDonaldetal.2022, author = {West, Charles and Rosolem, Rafael and MacDonald, Alan M. and Cuthbert, Mark O. and Wagener, Thorsten}, title = {Understanding process controls on groundwater recharge variability across Africa through recharge landscapes}, series = {Journal of hydrology}, volume = {612}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2022.127967}, pages = {19}, year = {2022}, abstract = {Groundwater is critical in supporting current and future reliable water supply throughout Africa. Although continental maps of groundwater storage and recharge have been developed, we currently lack a clear understanding on how the controls on groundwater recharge vary across the entire continent. Reviewing the existing literature, we synthesize information on reported groundwater recharge controls in Africa. We find that 15 out of 22 of these controls can be characterised using global datasets. We develop 11 descriptors of climatic, topographic, vegetation, soil and geologic properties using global datasets, to characterise groundwater recharge controls in Africa. These descriptors cluster Africa into 15 Recharge Landscape Units for which we expect recharge controls to be similar. Over 80\% of the continents land area is organized by just nine of these units. We also find that aggregating the Units by similarity into four broader Recharge Landscapes (Desert, Dryland, Wet tropical and Wet tropical forest) provides a suitable level of landscape organisation to explain differences in ground-based long-term mean annual recharge and recharge ratio (annual recharge / annual precipitation) estimates. Furthermore, wetter Recharge Landscapes are more efficient in converting rainfall to recharge than drier Recharge Landscapes as well as having higher annual recharge rates. In Dryland Recharge Landscapes, we found that annual recharge rates largely varied according to mean annual precipitation, whereas recharge ratio estimates increase with increasing monthly variability in P-PET. However, we were unable to explain why ground based estimates of recharge signatures vary across other Recharge Landscapes, in which there are fewer ground based recharge estimates, using global datasets alone. Even in dryland regions, there is still considerable unexplained variability in the estimates of annual recharge and recharge ratio, stressing the limitations of global datasets for investigating ground-based information.}, language = {en} } @article{WeidleWiesenbergElSharkawyetal.2022, author = {Weidle, Christian and Wiesenberg, Lars and El-Sharkawy, Amr and Kr{\"u}ger, Frank and Scharf, Andreas and Agard, Philippe and Meier, Thomas}, title = {A 3-D crustal shear wave velocity model and Moho map below the Semail Ophiolite, eastern Arabia}, series = {Geophysical journal international}, volume = {231}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggac223}, pages = {817 -- 834}, year = {2022}, abstract = {The Semail Ophiolite in eastern Arabia is the largest and best-exposed slice of oceanic lithosphere on land. Detailed knowledge of the tectonic evolution of the shallow crust, in particular during and after ophiolite obduction in Late Cretaceous times is contrasted by few constraints on physical and compositional properties of the middle and lower continental crust below the obducted units. The role of inherited, pre-obduction crustal architecture remains therefore unaccounted for in our understanding of crustal evolution and the present-day geology. Based on seismological data acquired during a 27-month campaign in northern Oman, Ambient Seismic Noise Tomography and Receiver Function analysis provide for the first time a 3-D radially anisotropic shear wave velocity (V-S) model and a consistent Moho map below the iconic Semail Ophiolite. The model highlights deep crustal boundaries that segment the eastern Arabian basement in two distinct units. The previously undescribed Western Jabal Akhdar Zone separates Arabian crust with typical continental properties and a thickness of similar to 40-45 km in the northwest from a compositionally different terrane in the southeast that is interpreted as a terrane accreted during the Pan-African orogeny in Neoproterozoic times. East of the Ibra Zone, another deep crustal boundary, crustal thickness decreases to 30-35 km and very high lower crustal V-S suggest large-scale mafic intrusions into, and possible underplating of the Arabian continental crust that occurred most likely during Permian breakup of Pangea. Mafic reworking is sharply bounded by the (upper crustal) Semail Gap Fault Zone, northwest of which no such high velocities are found in the crust. Topography of the Oman Mountains is supported by a mild crustal root and Moho depth below the highest topography, the Jabal Akhdar Dome, is similar to 42 km. Radial anisotropy is robustly resolved in the upper crust and aids in discriminating dipping allochthonous units from autochthonous sedimentary rocks that are indistinguishable by isotropic V-S alone. Lateral thickness variations of the ophiolite highlight the Haylayn Ophiolite Massif on the northern flank of Jabal Akhdar Dome and the Hawasina Window as the deepest reaching unit. Ophiolite thickness is similar to 10 km in the southern and northern massifs, and <= 5 km elsewhere.}, language = {en} } @article{VoglimacciStephanopoliWendlederLantuitetal.2022, author = {Voglimacci-Stephanopoli, Jo{\"e}lle and Wendleder, Anna and Lantuit, Hugues and Langlois, Alexandre and Stettner, Samuel and Schmitt, Andreas and Dedieu, Jean-Pierre and Roth, Achim and Royer, Alain}, title = {Potential of X-band polarimetric synthetic aperture radar co-polar phase difference for arctic snow depth estimation}, series = {Cryosphere}, volume = {16}, journal = {Cryosphere}, number = {6}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-16-2163-2022}, pages = {2163 -- 2181}, year = {2022}, abstract = {Changes in snowpack associated with climatic warming has drastic impacts on surface energy balance in the cryosphere. Yet, traditional monitoring techniques, such as punctual measurements in the field, do not cover the full snowpack spatial and temporal variability, which hampers efforts to upscale measurements to the global scale. This variability is one of the primary constraints in model development. In terms of spatial resolution, active microwaves (synthetic aperture radar - SAR) can address the issue and outperform methods based on passive microwaves. Thus, high-spatial-resolution monitoring of snow depth (SD) would allow for better parameterization of local processes that drive the spatial variability of snow. The overall objective of this study is to evaluate the potential of the TerraSAR-X (TSX) SAR sensor and the wave co-polar phase difference (CPD) method for characterizing snow cover at high spatial resolution. Consequently, we first (1) investigate SD and depth hoar fraction (DHF) variability between different vegetation classes in the Ice Creek catchment (Qikiqtaruk/Herschel Island, Yukon, Canada) using in situ measurements collected over the course of a field campaign in 2019; (2) evaluate linkages between snow characteristics and CPD distribution over the 2019 dataset; and (3) determine CPD seasonality considering meteorological data over the 2015-2019 period. SD could be extracted using the CPD when certain conditions are met. A high incidence angle (>30 circle) with a high topographic wetness index (TWI) (>7.0) showed correlation between SD and CPD (R2 up to 0.72). Further, future work should address a threshold of sensitivity to TWI and incidence angle to map snow depth in such environments and assess the potential of using interpolation tools to fill in gaps in SD information on drier vegetation types.}, language = {en} } @article{ViltresNobileVasyuraBathkeetal.2022, author = {Viltres, Renier and Nobile, Adriano and Vasyura-Bathke, Hannes and Trippanera, Daniele and Xu, Wenbin and J{\´o}nsson, Sigurj{\´o}n}, title = {Transtensional rupture within a diffuse plate boundary zone during the 2020 M-w 6.4 Puerto Rico earthquake}, series = {Seismological research letters}, volume = {93}, journal = {Seismological research letters}, number = {2A}, publisher = {Seismological Society of America}, address = {Boulder, Colo.}, issn = {0895-0695}, doi = {10.1785/0220210261}, pages = {567 -- 583}, year = {2022}, abstract = {On 7 January 2020, an M-w 6.4 earthquake occurred in the northeastern Caribbean, a few kilometers offshore of the island of Puerto Rico. It was the mainshock of a complex seismic sequence, characterized by a large number of energetic earthquakes illuminating an east-west elongated area along the southwestern coast of Puerto Rico. Deformation fields constrained by Interferometric Synthetic Aperture Radar and Global Navigation Satellite System data indicate that the coseismic movements affected only the western part of the island. To assess the mainshock's source fault parameters, we combined the geodetically derived coseismic deformation with teleseismic waveforms using Bayesian inference. The results indicate a roughly east-west oriented fault, dipping northward and accommodating similar to 1.4 m of transtensional motion. Besides, the determined location and orientation parameters suggest an offshore continuation of the recently mapped North Boqueron Bay-Punta Montalva fault in southwest Puerto Rico. This highlights the existence of unmapped faults with moderate-to-large earthquake potential within the Puerto Rico region.}, language = {en} } @article{VehLuetzowKharlamovaetal.2022, author = {Veh, Georg and L{\"u}tzow, Natalie and Kharlamova, Varvara and Petrakov, Dmitry and Hugonnet, Romain and Korup, Oliver}, title = {Trends, Breaks, and Biases in the Frequency of Reported Glacier Lake Outburst Floods}, series = {Earth's Future}, volume = {10}, journal = {Earth's Future}, edition = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken, New Jersey}, issn = {2328-4277}, doi = {10.1029/2021EF002426}, pages = {1 -- 14}, year = {2022}, abstract = {Thousands of glacier lakes have been forming behind natural dams in high mountains following glacier retreat since the early 20th century. Some of these lakes abruptly released pulses of water and sediment with disastrous downstream consequences. Yet it remains unclear whether the reported rise of these glacier lake outburst floods (GLOFs) has been fueled by a warming atmosphere and enhanced meltwater production, or simply a growing research effort. Here we estimate trends and biases in GLOF reporting based on the largest global catalog of 1,997 dated glacier-related floods in six major mountain ranges from 1901 to 2017. We find that the positive trend in the number of reported GLOFs has decayed distinctly after a break in the 1970s, coinciding with independently detected trend changes in annual air temperatures and in the annual number of field-based glacier surveys (a proxy of scientific reporting). We observe that GLOF reports and glacier surveys decelerated, while temperature rise accelerated in the past five decades. Enhanced warming alone can thus hardly explain the annual number of reported GLOFs, suggesting that temperature-driven glacier lake formation, growth, and failure are weakly coupled, or that outbursts have been overlooked. Indeed, our analysis emphasizes a distinct geographic and temporal bias in GLOF reporting, and we project that between two to four out of five GLOFs on average might have gone unnoticed in the early to mid-20th century. We recommend that such biases should be considered, or better corrected for, when attributing the frequency of reported GLOFs to atmospheric warming.}, language = {en} } @misc{VehLuetzowKharlamovaetal.2022, author = {Veh, Georg and L{\"u}tzow, Natalie and Kharlamova, Varvara and Petrakov, Dmitry and Hugonnet, Romain and Korup, Oliver}, title = {Trends, Breaks, and Biases in the Frequency of Reported Glacier Lake Outburst Floods}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-56100}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561005}, pages = {1 -- 14}, year = {2022}, abstract = {Thousands of glacier lakes have been forming behind natural dams in high mountains following glacier retreat since the early 20th century. Some of these lakes abruptly released pulses of water and sediment with disastrous downstream consequences. Yet it remains unclear whether the reported rise of these glacier lake outburst floods (GLOFs) has been fueled by a warming atmosphere and enhanced meltwater production, or simply a growing research effort. Here we estimate trends and biases in GLOF reporting based on the largest global catalog of 1,997 dated glacier-related floods in six major mountain ranges from 1901 to 2017. We find that the positive trend in the number of reported GLOFs has decayed distinctly after a break in the 1970s, coinciding with independently detected trend changes in annual air temperatures and in the annual number of field-based glacier surveys (a proxy of scientific reporting). We observe that GLOF reports and glacier surveys decelerated, while temperature rise accelerated in the past five decades. Enhanced warming alone can thus hardly explain the annual number of reported GLOFs, suggesting that temperature-driven glacier lake formation, growth, and failure are weakly coupled, or that outbursts have been overlooked. Indeed, our analysis emphasizes a distinct geographic and temporal bias in GLOF reporting, and we project that between two to four out of five GLOFs on average might have gone unnoticed in the early to mid-20th century. We recommend that such biases should be considered, or better corrected for, when attributing the frequency of reported GLOFs to atmospheric warming.}, language = {en} } @article{vanGeffenHeimBriegeretal.2022, author = {van Geffen, Femke and Heim, Birgit and Brieger, Frederic and Geng, Rongwei and Shevtsova, Iuliia and Schulte, Luise and Stuenzi, Simone M. and Bernhardt, Nadine and Troeva, Elena I. and Pestryakova, Luidmila Agafyevna and Zakharov, Evgenii S. and Pflug, Bringfried and Herzschuh, Ulrike and Kruse, Stefan}, title = {SiDroForest: a comprehensive forest inventory of Siberian boreal forest investigations including drone-based point clouds, individually labeled trees, synthetically generated tree crowns, and Sentinel-2 labeled image patches}, series = {Earth system science data}, volume = {14}, journal = {Earth system science data}, number = {11}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1866-3508}, doi = {10.5194/essd-14-4967-2022}, pages = {4967 -- 4994}, year = {2022}, abstract = {The SiDroForest (Siberian drone-mapped forest inventory) data collection is an attempt to remedy the scarcity of forest structure data in the circumboreal region by providing adjusted and labeled tree-level and vegetation plot-level data for machine learning and upscaling purposes. We present datasets of vegetation composition and tree and plot level forest structure for two important vegetation transition zones in Siberia, Russia; the summergreen-evergreen transition zone in Central Yakutia and the tundra-taiga transition zone in Chukotka (NE Siberia). The SiDroForest data collection consists of four datasets that contain different complementary data types that together support in-depth analyses from different perspectives of Siberian Forest plot data for multi-purpose applications. i. Dataset 1 provides unmanned aerial vehicle (UAV)-borne data products covering the vegetation plots surveyed during fieldwork (Kruse et al., 2021, ). The dataset includes structure-from-motion (SfM) point clouds and red-green-blue (RGB) and red-green-near-infrared (RGN) orthomosaics. From the orthomosaics, point-cloud products were created such as the digital elevation model (DEM), canopy height model (CHM), digital surface model (DSM) and the digital terrain model (DTM). The point-cloud products provide information on the three-dimensional (3D) structure of the forest at each plot. Dataset 2 contains spatial data in the form of point and polygon shapefiles of 872 individually labeled trees and shrubs that were recorded during fieldwork at the same vegetation plots (van Geffen et al., 2021c, ). The dataset contains information on tree height, crown diameter, and species type. These tree and shrub individually labeled point and polygon shapefiles were generated on top of the RGB UVA orthoimages. The individual tree information collected during the expedition such as tree height, crown diameter, and vitality are provided in table format. This dataset can be used to link individual information on trees to the location of the specific tree in the SfM point clouds, providing for example, opportunity to validate the extracted tree height from the first dataset. The dataset provides unique insights into the current state of individual trees and shrubs and allows for monitoring the effects of climate change on these individuals in the future. Dataset 3 contains a synthesis of 10 000 generated images and masks that have the tree crowns of two species of larch ( and ) automatically extracted from the RGB UAV images in the common objects in context (COCO) format (van Geffen et al., 2021a, ). As machine-learning algorithms need a large dataset to train on, the synthetic dataset was specifically created to be used for machine-learning algorithms to detect Siberian larch species. Larix gmeliniiLarix cajanderiDataset 4 contains Sentinel-2 (S-2) Level-2 bottom-of-atmosphere processed labeled image patches with seasonal information and annotated vegetation categories covering the vegetation plots (van Geffen et al., 2021b, ). The dataset is created with the aim of providing a small ready-to-use validation and training dataset to be used in various vegetation-related machine-learning tasks. It enhances the data collection as it allows classification of a larger area with the provided vegetation classes. The SiDroForest data collection serves a variety of user communities.
The detailed vegetation cover and structure information in the first two datasets are of use for ecological applications, on one hand for summergreen and evergreen needle-leaf forests and also for tundra-taiga ecotones. Datasets 1 and 2 further support the generation and validation of land cover remote-sensing products in radar and optical remote sensing. In addition to providing information on forest structure and vegetation composition of the vegetation plots, the third and fourth datasets are prepared as training and validation data for machine-learning purposes. For example, the synthetic tree-crown dataset is generated from the raw UAV images and optimized to be used in neural networks. Furthermore, the fourth SiDroForest dataset contains S-2 labeled image patches processed to a high standard that provide training data on vegetation class categories for machine-learning classification with JavaScript Object Notation (JSON) labels provided. The SiDroForest data collection adds unique insights into remote hard-to-reach circumboreal forest regions.}, language = {en} } @article{ValenzuelaMalebranCescaLopezCominoetal.2022, author = {Valenzuela-Malebran, Carla and Cesca, Simone and Lopez-Comino, Jos{\´e} {\´A}ngel and Zeckra, Martin and Kr{\"u}ger, F. and Dahm, Torsten}, title = {Source mechanisms and rupture processes of the Jujuy seismic nest, Chile-Argentina border}, series = {Journal of South American earth sciences}, volume = {117}, journal = {Journal of South American earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {0895-9811}, doi = {10.1016/j.jsames.2022.103887}, pages = {13}, year = {2022}, abstract = {The Altiplano-Puna plateau, in Central Andes, is the second-largest continental plateau on Earth, extending between 22 degrees and 27 degrees S at an average altitude of 4400 m. The Puna plateau has been formed in consequence of the subduction of the oceanic Nazca Plate beneath the continental South American plate, which has an average crustal thickness of 50 km at this location. A large seismicity cluster, the Jujuy cluster, is observed at depth of 150-250 km beneath the central region of the Puna plateau. The cluster is seismically very active, with hundreds of earthquakes reported and a peak magnitude MW 6.6 on 25th August 2006. The cluster is situated in one of three band of intermediate-depth focus seismicity, which extend parallel to the trench roughly North to South. It has been hypothesized that the Jujuy cluster could be a seismic nest, a compact seismogenic region characterized by a high stationary activity relative to its surroundings. In this study, we collected more than 40 years of data from different catalogs and proof that the cluster meets the three conditions of a seismic nest. Compared to other known intermediate depth nests at Hindu Kush (Afganisthan) or Bucaramanga (Colombia), the Jujuy nest presents an outstanding seismicity rate, with more than 100 M4+ earthquakes per year. We additionally performed a detailed analysis of the rupture process of some of the largest earthquakes in the nest, by means of moment tensor inversion and directivity analysis. We focused on the time period 2017-2018, where the seismic monitoring was the most extended. Our results show that earthquakes in the nest take place within the eastward subducting oceanic plate, but rupture along sub-horizontal planes dipping westward. We suggest that seismicity at Jujuy nest is controlled by dehydration processes, which are also responsible for the generation of fluids ascending to the crust beneath the Puna volcanic region. We use the rupture plane and nest geometry to provide a constraint to maximal expected magnitude, which we estimate as MW -6.7.}, language = {en} } @article{TuerkerCottonPilzetal.2022, author = {T{\"u}rker, Elif and Cotton, Fabrice and Pilz, Marco and Weatherill, Graeme}, title = {Analysis of the 2019 Mw 5.8 Silivri earthquake ground motions}, series = {Seismological research letters}, volume = {93}, journal = {Seismological research letters}, number = {2A}, publisher = {Seismological Society of America}, address = {Boulder, Colo.}, issn = {0895-0695}, doi = {10.1785/0220210168}, pages = {693 -- 705}, year = {2022}, abstract = {The main Marmara fault (MMF) extends for 150 km through the Sea of Marmara and forms the only portion of the North Anatolian fault zone that has not ruptured in a large event (Mw >7) for the last 250 yr. Accordingly, this portion is potentially a major source contributing to the seismic hazard of the Istanbul region. On 26 September 2019, a sequence of moderate-sized events started along the MMF only 20 km south of Istanbul and were widely felt by the population. The largest three events, 26 September Mw 5.8 (10:59 UTC), 26 September 2019 Mw 4.1 (11:26 UTC), and 20 January 2020 Mw 4.7 were recorded by numerous strong-motion seismic stations and the resulting ground motions were compared to the predicted means resulting from a set of the most recent ground-motion prediction equations (GMPEs). The estimated residuals were used to investigate the spatial variation of ground motion across the Marmara region. Our results show a strong azimuthal trend in ground-motion residuals, which might indicate systematically repeating directivity effects toward the eastern Marmara region.}, language = {en} } @article{TrauthMarwan2022, author = {Trauth, Martin H. and Marwan, Norbert}, title = {Introduction-time series analysis for Earth, climate and life interactions}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {284}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2022.107475}, pages = {3}, year = {2022}, language = {en} } @book{Trauth2022, author = {Trauth, Martin H.}, title = {Python Recipes for Earth Sciences}, series = {Springer Textbooks in Earth Sciences, Geography and Environment}, journal = {Springer Textbooks in Earth Sciences, Geography and Environment}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-07719-7}, issn = {2510-1307}, doi = {10.1007/978-3-031-07719-7}, pages = {453}, year = {2022}, abstract = {Python is used in a wide range of geoscientific applications, such as in processing images for remote sensing, in generating and processing digital elevation models, and in analyzing time series. This book introduces methods of data analysis in the geosciences using Python that include basic statistics for univariate, bivariate, and multivariate data sets, time series analysis, and signal processing; the analysis of spatial and directional data; and image analysis. The text includes numerous examples that demonstrate how Python can be used on data sets from the earth sciences. The supplementary electronic material (available online through Springer Link) contains the example data as well as recipes that include all the Python commands featured in the book.}, language = {en} } @phdthesis{Tranter2022, author = {Tranter, Morgan Alan}, title = {Numerical quantification of barite reservoir scaling and the resulting injectivity loss in geothermal systems}, doi = {10.25932/publishup-56113}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561139}, school = {Universit{\"a}t Potsdam}, pages = {131}, year = {2022}, abstract = {Due to the major role of greenhouse gas emissions in global climate change, the development of non-fossil energy technologies is essential. Deep geothermal energy represents such an alternative, which offers promising properties such as a high base load capability and a large untapped potential. The present work addresses barite precipitation within geothermal systems and the associated reduction in rock permeability, which is a major obstacle to maintaining high efficiency. In this context, hydro-geochemical models are essential to quantify and predict the effects of precipitation on the efficiency of a system. The objective of the present work is to quantify the induced injectivity loss using numerical and analytical reactive transport simulations. For the calculations, the fractured-porous reservoirs of the German geothermal regions North German Basin (NGB) and Upper Rhine Graben (URG) are considered. Similar depth-dependent precipitation potentials could be determined for both investigated regions (2.8-20.2 g/m3 fluid). However, the reservoir simulations indicate that the injectivity loss due to barite deposition in the NGB is significant (1.8\%-6.4\% per year) and the longevity of the system is affected as a result; this is especially true for deeper reservoirs (3000 m). In contrast, simulations of URG sites indicate a minor role of barite (< 0.1\%-1.2\% injectivity loss per year). The key differences between the investigated regions are reservoir thicknesses and the presence of fractures in the rock, as well as the ionic strength of the fluids. The URG generally has fractured-porous reservoirs with much higher thicknesses, resulting in a greater distribution of precipitates in the subsurface. Furthermore, ionic strengths are higher in the NGB, which accelerates barite precipitation, causing it to occur more concentrated around the wellbore. The more concentrated the precipitates occur around the wellbore, the higher the injectivity loss. In this work, a workflow was developed within which numerical and analytical models can be used to estimate and quantify the risk of barite precipitation within the reservoir of geothermal systems. A key element is a newly developed analytical scaling score that provides a reliable estimate of induced injectivity loss. The key advantage of the presented approach compared to fully coupled reservoir simulations is its simplicity, which makes it more accessible to plant operators and decision makers. Thus, in particular, the scaling score can find wide application within geothermal energy, e.g., in the search for potential plant sites and the estimation of long-term efficiency.}, language = {en} } @article{ToumoulinTardifBecquetDonnadieuetal.2022, author = {Toumoulin, Agathe and Tardif-Becquet, Delphine and Donnadieu, Yannick and Licht, Alexis and Ladant, Jean-Baptiste and Kunzmann, Lutz and Dupont-Nivet, Guillaume}, title = {Evolution of continental temperature seasonality from the Eocene greenhouse to the Oligocene icehouse}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {18}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1814-9324}, doi = {10.5194/cp-18-341-2022}, pages = {341 -- 362}, year = {2022}, abstract = {At the junction of greenhouse and icehouse climate states, the Eocene-Oligocene Transition (EOT) is a key moment in Cenozoic climate history. While it is associated with severe extinctions and biodiversity turnovers on land, the role of terrestrial climate evolution remains poorly resolved, especially the associated changes in seasonality. Some paleobotanical and geochemical continental records in parts of the Northern Hemisphere suggest the EOT is associated with a marked cooling in winter, leading to the development of more pronounced seasons (i.e., an increase in the mean annual range of temperature, MATR). However, the MATR increase has been barely studied by climate models and large uncertainties remain on its origin, geographical extent and impact. In order to better understand and describe temperature seasonality changes between the middle Eocene and the early Oligocene, we use the Earth system model IPSL-CM5A2 and a set of simulations reconstructing the EOT through three major climate forcings: pCO(2) decrease (1120, 840 and 560 ppm), the Antarctic ice-sheet (AIS) formation and the associated sea-level decrease. Our simulations suggest that pCO(2) lowering alone is not sufficient to explain the seasonality evolution described by the data through the EOT but rather that the combined effects of pCO(2) , AIS formation and increased continentality provide the best data-model agreement.pCO(2) decrease induces a zonal pattern with alternating increasing and decreasing seasonality bands particularly strong in the northern high latitudes (up to 8 degrees C MATR increase) due to sea-ice and surface albedo feedback. Conversely, the onset of the AIS is responsible for a more constant surface albedo yearly, which leads to a strong decrease in seasonality in the southern midlatitudes to high latitudes (> 40 degrees S). Finally, continental areas that emerged due to the sea-level lowering cause the largest increase in seasonality and explain most of the global heterogeneity in MATR changes (1MATR) patterns. The Delta MATR patterns we reconstruct are generally consistent with the variability of the EOT biotic crisis intensity across the Northern Hemisphere and provide insights on their underlying mechanisms.}, language = {en} } @article{TofeldeBufeTurowski2022, author = {Tofelde, Stefanie and Bufe, Aaron and Turowski, Jens M.}, title = {Hillslope Sediment Supply Limits Alluvial Valley Width}, series = {AGU Advances}, journal = {AGU Advances}, publisher = {American Geophysical Union (AGU); Wiley}, address = {Hoboken, New Jersey, USA}, issn = {2576-604X}, doi = {10.1029/2021AV000641}, pages = {20}, year = {2022}, abstract = {River-valley morphology preserves information on tectonic and climatic conditions that shape landscapes. Observations suggest that river discharge and valley-wall lithology are the main controls on valley width. Yet, current models based on these observations fail to explain the full range of cross-sectional valley shapes in nature, suggesting hitherto unquantified controls on valley width. In particular, current models cannot explain the existence of paired terrace sequences that form under cyclic climate forcing. Paired river terraces are staircases of abandoned floodplains on both valley sides, and hence preserve past valley widths. Their formation requires alternating phases of predominantly river incision and predominantly lateral planation, plus progressive valley narrowing. While cyclic Quaternary climate changes can explain shifts between incision and lateral erosion, the driving mechanism of valley narrowing is unknown. Here, we extract valley geometries from climatically formed, alluvial river-terrace sequences and show that across our dataset, the total cumulative terrace height (here: total valley height) explains 90\%-99\% of the variance in valley width at the terrace sites. This finding suggests that valley height, or a parameter that scales linearly with valley height, controls valley width in addition to river discharge and lithology. To explain this valley-width-height relationship, we reformulate existing valley-width models and suggest that, when adjusting to new boundary conditions, alluvial valleys evolve to a width at which sediment removal from valley walls matches lateral sediment supply from hillslope erosion. Such a hillslope-channel coupling is not captured in current valley-evolution models. Our model can explain the existence of paired terrace sequences under cyclic climate forcing and relates valley width to measurable field parameters. Therefore, it facilitates the reconstruction of past climatic and tectonic conditions from valley topography.}, language = {en} } @misc{TofeldeBufeTurowski2022, author = {Tofelde, Stefanie and Bufe, Aaron and Turowski, Jens M.}, title = {Hillslope Sediment Supply Limits Alluvial Valley Width}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1289}, issn = {1866-8372}, doi = {10.25932/publishup-57287}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-572879}, pages = {20}, year = {2022}, abstract = {River-valley morphology preserves information on tectonic and climatic conditions that shape landscapes. Observations suggest that river discharge and valley-wall lithology are the main controls on valley width. Yet, current models based on these observations fail to explain the full range of cross-sectional valley shapes in nature, suggesting hitherto unquantified controls on valley width. In particular, current models cannot explain the existence of paired terrace sequences that form under cyclic climate forcing. Paired river terraces are staircases of abandoned floodplains on both valley sides, and hence preserve past valley widths. Their formation requires alternating phases of predominantly river incision and predominantly lateral planation, plus progressive valley narrowing. While cyclic Quaternary climate changes can explain shifts between incision and lateral erosion, the driving mechanism of valley narrowing is unknown. Here, we extract valley geometries from climatically formed, alluvial river-terrace sequences and show that across our dataset, the total cumulative terrace height (here: total valley height) explains 90\%-99\% of the variance in valley width at the terrace sites. This finding suggests that valley height, or a parameter that scales linearly with valley height, controls valley width in addition to river discharge and lithology. To explain this valley-width-height relationship, we reformulate existing valley-width models and suggest that, when adjusting to new boundary conditions, alluvial valleys evolve to a width at which sediment removal from valley walls matches lateral sediment supply from hillslope erosion. Such a hillslope-channel coupling is not captured in current valley-evolution models. Our model can explain the existence of paired terrace sequences under cyclic climate forcing and relates valley width to measurable field parameters. Therefore, it facilitates the reconstruction of past climatic and tectonic conditions from valley topography.}, language = {en} } @article{TellaWinterleitnerMutti2022, author = {Tella, Timothy Oluwatobi and Winterleitner, Gerd and Mutti, Maria}, title = {Investigating the role of differential biotic production on carbonate geometries through stratigraphic forward modelling and sensitivity analysis}, series = {Petroleum geoscience}, volume = {28}, journal = {Petroleum geoscience}, number = {2}, publisher = {Geological Soc. Publ. House}, address = {Bath}, issn = {1354-0793}, doi = {10.1144/petgeo2021-053}, pages = {20}, year = {2022}, abstract = {The geometry of carbonate platforms reflects the interaction of several factors. However, the impact of carbonate-producing organisms has been poorly investigated so far. This study applies stratigraphic forward modelling (SFM) and sensitivity analysis to examine, referenced to the Miocene Llucmajor Platform, the effect of changes of dominant biotic production in the oligophotic and euphotic zones on platform geometry. Our results show that the complex interplay of carbonate production rates, bathymetry and variations in accommodation space control the platform geometry. The main driver of progradation is the oligophotic production of rhodalgal sediments during the lowstands. This study demonstrates that platform geometry and internal architecture varies significantly according to the interaction of the predominant carbonate-producing biotas. The input parameters for this study are based on well-understood Miocene carbonate biotas with characteristic euphotic, oligophotic and photo-independent carbonate production in which it is crucial that each carbonate-producing class is modelled explicitly within the simulation run and not averaged with a single carbonate production-depth profile. This is important in subsurface exploration studies based on stratigraphic forward models where the overall platform geometry may be approximated through calibration runs, and constrained by seismic surveys and wellbores. However, the internal architecture is likely to be oversimplified without an in-depth understanding of the target carbonate system and a transfer to forward modelling parameters.}, language = {en} } @article{TawfikOndrakWinterleitneretal.2022, author = {Tawfik, Ahmed Y. and Ondrak, Robert and Winterleitner, Gerd and Mutti, Maria}, title = {Source rock evaluation and petroleum system modeling of the East Beni Suef Basin, north Eastern Desert, Egypt}, series = {Journal of African earth sciences}, volume = {193}, journal = {Journal of African earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {1464-343X}, doi = {10.1016/j.jafrearsci.2022.104575}, pages = {21}, year = {2022}, abstract = {This study deals with the East Beni Suef Basin (Eastern Desert, Egypt) and aims to evaluate the source-generative potential, reconstruct the burial and thermal history, examine the most influential parameters on thermal maturity modeling, and improve on the models already published for the West Beni Suef to ultimately formulate a complete picture of the whole basin evolution. Source rock evaluation was carried out based on TOC, Rock-Eval pyrolysis, and visual kerogen petrography analyses. Three kerogen types (II, II/III, and III) are distinguished in the East Beni Suef Basin, where the Abu Roash "F" Member acts as the main source rock with good to excellent source potential, oil-prone mainly type II kerogen, and immature to marginal maturity levels. The burial history shows four depositional and erosional phases linked with the tectonic evolution of the basin. A hiatus (due to erosion or non-deposition) has occurred during the Late Eocene-Oligocene in the East Beni Suef Basin, while the West Beni Suef Basin has continued subsiding. Sedimentation began later (Middle to Late Albian) with lower rates in the East Beni Suef Basin compared with the West Beni Suef Basin (Early Albian). The Abu Roash "F" source rock exists in the early oil window with a present-day transformation ratio of about 19\% and 21\% in the East and West Beni Suef Basin, respectively, while the Lower Kharita source rock, which is only recorded in the West Beni Suef Basin, has reached the late oil window with a present-day transformation ratio of about 70\%. The magnitude of erosion and heat flow have proportional and mutual effects on thermal maturity. We present three possible scenarios of basin modeling in the East Beni Suef Basin concerning the erosion from the Apollonia and Dabaa formations. Results of this work can serve as a basis for subsequent 2D and/or 3D basin modeling, which are highly recommended to further investigate the petroleum system evolution of the Beni Suef Basin.}, language = {en} } @article{SvennevigHermannsKeidingetal.2022, author = {Svennevig, Kristian and Hermanns, Reginald L. and Keiding, Marie and Binder, Daniel and Citterio, Michele and Dahl-Jensen, Trine and Mertl, Stefan and S{\o}rensen, Erik Vest and Voss, Peter Henrik}, title = {A large frozen debris avalanche entraining warming permafrost ground-the June 2021 Assapaat landslibe, West Greenland}, series = {Landslides}, volume = {19}, journal = {Landslides}, publisher = {Springer}, address = {Heidelberg}, issn = {1612-510X}, doi = {10.1007/s10346-022-01922-7}, pages = {2549 -- 2567}, year = {2022}, abstract = {A large landslide (frozen debris avalanche) occurred at Assapaat on the south coast of the Nuussuaq Peninsula in Central West Greenland on June 13, 2021, at 04:04 local time. We present a compilation of available data from field observations, photos, remote sensing, and seismic monitoring to describe the event. Analysis of these data in combination with an analysis of pre- and post-failure digital elevation models results in the first description of this type of landslide. The frozen debris avalanche initiated as a 6.9 * 10(6) m(3) failure of permafrozen talus slope and underlying colluvium and till at 600-880 m elevation. It entrained a large volume of permafrozen colluvium along its 2.4 km path in two subsequent entrainment phases accumulating a total volume between 18.3 * 10(6) and 25.9 * 10(6) m(3). About 3.9 * 10(6) m(3) is estimated to have entered the Vaigat strait; however, no tsunami was reported, or is evident in the field. This is probably because the second stage of entrainment along with a flattening of slope angle reduced the mobility of the frozen debris avalanche. We hypothesise that the initial talus slope failure is dynamically conditioned by warming of the ice matrix that binds the permafrozen talus slope. When the slope ice temperature rises to a critical level, its shear resistance is reduced, resulting in an unstable talus slope prone to failure. Likewise, we attribute the large-scale entrainment to increasing slope temperature and take the frozen debris avalanche as a strong sign that the permafrost in this region is increasingly at a critical state. Global warming is enhanced in the Arctic and frequent landslide events in the past decade in Western Greenland let us hypothesise that continued warming will lead to an increase in the frequency and magnitude of these types of landslides. Essential data for critical arctic slopes such as precipitation, snowmelt, and ground and surface temperature are still missing to further test this hypothesis. It is thus strongly required that research funds are made available to better predict the change of landslide threat in the Arctic.}, language = {en} } @article{SudibyoEiblHainzletal.2022, author = {Sudibyo, Maria R. P. and Eibl, Eva P. S. and Hainzl, Sebastian and Hersir, Gylfi P{\´a}ll}, title = {Eruption Forecasting of Strokkur Geyser, Iceland, Using Permutation Entropy}, series = {Journal of geophysical research : Solid earth}, volume = {127}, journal = {Journal of geophysical research : Solid earth}, number = {10}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2022JB024840}, pages = {15}, year = {2022}, abstract = {A volcanic eruption is usually preceded by seismic precursors, but their interpretation and use for forecasting the eruption onset time remain a challenge. A part of the eruptive processes in open conduits of volcanoes may be similar to those encountered in geysers. Since geysers erupt more often, they are useful sites for testing new forecasting methods. We tested the application of Permutation Entropy (PE) as a robust method to assess the complexity in seismic recordings of the Strokkur geyser, Iceland. Strokkur features several minute-long eruptive cycles, enabling us to verify in 63 recorded cycles whether PE behaves consistently from one eruption to the next one. We performed synthetic tests to understand the effect of different parameter settings in the PE calculation. Our application to Strokkur shows a distinct, repeating PE pattern consistent with previously identified phases in the eruptive cycle. We find a systematic increase in PE within the last 15 s before the eruption, indicating that an eruption will occur. We quantified the predictive power of PE, showing that PE performs better than seismic signal strength or quiescence when it comes to forecasting eruptions.}, language = {en} } @article{StuenziKruseBoikeetal.2022, author = {Stuenzi, Simone Maria and Kruse, Stefan and Boike, Julia and Herzschuh, Ulrike and Oehme, Alexander and Pestryakova, Luidmila A. and Westermann, Sebastian and Langer, Moritz}, title = {Thermohydrological impact of forest disturbances on ecosystem-protected permafrost}, series = {Journal of geophysical research : Biogeosciences}, volume = {127}, journal = {Journal of geophysical research : Biogeosciences}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-8953}, doi = {10.1029/2021JG006630}, pages = {24}, year = {2022}, abstract = {Boreal forests cover over half of the global permafrost area and protect underlying permafrost. Boreal forest development, therefore, has an impact on permafrost evolution, especially under a warming climate. Forest disturbances and changing climate conditions cause vegetation shifts and potentially destabilize the carbon stored within the vegetation and permafrost. Disturbed permafrost-forest ecosystems can develop into a dry or swampy bush- or grasslands, shift toward broadleaf- or evergreen needleleaf-dominated forests, or recover to the pre-disturbance state. An increase in the number and intensity of fires, as well as intensified logging activities, could lead to a partial or complete ecosystem and permafrost degradation. We study the impact of forest disturbances (logging, surface, and canopy fires) on the thermal and hydrological permafrost conditions and ecosystem resilience. We use a dynamic multilayer canopy-permafrost model to simulate different scenarios at a study site in eastern Siberia. We implement expected mortality, defoliation, and ground surface changes and analyze the interplay between forest recovery and permafrost. We find that forest loss induces soil drying of up to 44\%, leading to lower active layer thicknesses and abrupt or steady decline of a larch forest, depending on disturbance intensity. Only after surface fires, the most common disturbances, inducing low mortality rates, forests can recover and overpass pre-disturbance leaf area index values. We find that the trajectory of larch forests after surface fires is dependent on the precipitation conditions in the years after the disturbance. Dryer years can drastically change the direction of the larch forest development within the studied period.}, language = {en} } @article{StoltnowLuedersGraafetal.2022, author = {Stoltnow, Malte and L{\"u}ders, Volker and Graaf, Stefan de and Niedermann, Samuel}, title = {A geochemical study of the Sweet Home mine, Colorado Mineral Belt, USA}, series = {Mineralium deposita : international journal for geology, mineralogy and geochemistry of mineral deposits}, volume = {57}, journal = {Mineralium deposita : international journal for geology, mineralogy and geochemistry of mineral deposits}, number = {5}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {0026-4598}, doi = {10.1007/s00126-022-01102-6}, pages = {801 -- 825}, year = {2022}, abstract = {Deep hydrothermal Mo, W, and base metal mineralization at the Sweet Home mine (Detroit City portal) formed in response to magmatic activity during the Oligocene. Microthermometric data of fluid inclusions trapped in greisen quartz and fluorite suggest that the early-stage mineralization at the Sweet Home mine precipitated from low- to medium-salinity (1.5-11.5 wt\% equiv. NaCl), CO2-bearing fluids at temperatures between 360 and 415 degrees C and at depths of at least 3.5 km. Stable isotope and noble gas isotope data indicate that greisen formation and base metal mineralization at the Sweet Home mine was related to fluids of different origins. Early magmatic fluids were the principal source for mantle-derived volatiles (CO2, H2S/SO2, noble gases), which subsequently mixed with significant amounts of heated meteoric water. Mixing of magmatic fluids with meteoric water is constrained by delta H-2(w)-delta O-18(w) relationships of fluid inclusions. The deep hydrothermal mineralization at the Sweet Home mine shows features similar to deep hydrothermal vein mineralization at Climax-type Mo deposits or on their periphery. This suggests that fluid migration and the deposition of ore and gangue minerals in the Sweet Home mine was triggered by a deep-seated magmatic intrusion. The findings of this study are in good agreement with the results of previous fluid inclusion studies of the mineralization of the Sweet Home mine and from Climax-type Mo porphyry deposits in the Colorado Mineral Belt.}, language = {en} } @article{StolpmannMollenhauerMorgensternetal.2022, author = {Stolpmann, Lydia and Mollenhauer, Gesine and Morgenstern, Anne and Hammes, Jens S. and Boike, Julia and Overduin, Pier Paul and Grosse, Guido}, title = {Origin and pathways of dissolved organic carbon in a small catchment in the Lena River Delta}, series = {Frontiers in Earth Science}, volume = {9}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2021.759085}, pages = {15}, year = {2022}, abstract = {The Arctic is rich in aquatic systems and experiences rapid warming due to climate change. The accelerated warming causes permafrost thaw and the mobilization of organic carbon. When dissolved organic carbon is mobilized, this DOC can be transported to aquatic systems and degraded in the water bodies and further downstream. Here, we analyze the influence of different landscape components on DOC concentrations and export in a small (6.45 km(2)) stream catchment in the Lena River Delta. The catchment includes lakes and ponds, with the flow path from Pleistocene yedoma deposits across Holocene non-yedoma deposits to the river outlet. In addition to DOC concentrations, we use radiocarbon dating of DOC as well as stable oxygen and hydrogen isotopes (delta O-18 and delta D) to assess the origin of DOC. We find significantly higher DOC concentrations in the Pleistocene yedoma area of the catchment compared to the Holocene non-yedoma area with medians of 5 and 4.5 mg L-1 (p < 0.05), respectively. When yedoma thaw streams with high DOC concentration reach a large yedoma thermokarst lake, we observe an abrupt decrease in DOC concentration, which we attribute to dilution and lake processes such as mineralization. The DOC ages in the large thermokarst lake (between 3,428 and 3,637 C-14 y BP) can be attributed to a mixing of mobilized old yedoma and Holocene carbon. Further downstream after the large thermokarst lake, we find progressively younger DOC ages in the stream water to its mouth, paired with decreasing DOC concentrations. This process could result from dilution with leaching water from Holocene deposits and/or emission of ancient yedoma carbon to the atmosphere. Our study shows that thermokarst lakes and ponds may act as DOC filters, predominantly by diluting incoming waters of higher DOC concentrations or by re-mineralizing DOC to CO2 and CH4. Nevertheless, our results also confirm that the small catchment still contributes DOC on the order of 1.2 kg km(-2) per day from a permafrost landscape with ice-rich yedoma deposits to the Lena River.}, language = {en} } @article{StevanatoBaroniOswaldetal.2022, author = {Stevanato, Luca and Baroni, Gabriele and Oswald, Sascha and Lunardon, Marcello and Mareš, Vratislav and Marinello, Francesco and Moretto, Sandra and Polo, Matteo and Sartori, Paolo and Schattan, Paul and R{\"u}hm, Werner}, title = {An alternative incoming correction for cosmic-ray neutron sensing observations using local muon measurement}, series = {Geophysical research letters}, volume = {49}, journal = {Geophysical research letters}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2021GL095383}, pages = {9}, year = {2022}, abstract = {Measuring the variability of incoming neutrons locally would be usefull for the cosmic-ray neutron sensing (CRNS) method. As the measurement of high energy neutrons is not so easy, alternative particles can be considered for such purpose. Among them, muons are particles created from the same cascade of primary cosmic-ray fluxes that generate neutrons at the ground. In addition, they can be easily detected by small and relatively inexpensive detectors. For these reasons they could provide a suitable local alternative to incoming corrections based on remote neutron monitor data. The reported measurements demonstrated that muon detection system can detect incoming cosmic-ray variations locally. Furthermore the precision of this measurement technique is considered adequate for many CRNS applications.}, language = {en} } @article{SteirouGerlitzSunetal.2022, author = {Steirou, Eva and Gerlitz, Lars and Sun, Xun and Apel, Heiko and Agarwal, Ankit and Totz, Sonja Juliana and Merz, Bruno}, title = {Towards seasonal forecasting of flood probabilities in Europe using climate and catchment information}, series = {Scientific reports}, volume = {12}, journal = {Scientific reports}, number = {1}, publisher = {Nature portfolio}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-022-16633-1}, pages = {10}, year = {2022}, abstract = {We investigate whether the distribution of maximum seasonal streamflow is significantly affected by catchment or climate state of the season/month ahead. We fit the Generalized Extreme Value (GEV) distribution to extreme seasonal streamflow for around 600 stations across Europe by conditioning the GEV location and scale parameters on 14 indices, which represent the season-ahead climate or catchment state. The comparison of these climate-informed models with the classical GEV distribution, with time-constant parameters, suggests that there is a substantial potential for seasonal forecasting of flood probabilities. The potential varies between seasons and regions. Overall, the season-ahead catchment wetness shows the highest potential, although climate indices based on large-scale atmospheric circulation, sea surface temperature or sea ice concentration also show some skill for certain regions and seasons. Spatially coherent patterns and a substantial fraction of climate-informed models are promising signs towards early alerts to increase flood preparedness already a season ahead.}, language = {en} } @phdthesis{Steding2022, author = {Steding, Svenja}, title = {Geochemical and Hydraulic Modeling of Cavernous Structures in Potash Seams}, doi = {10.25932/publishup-54818}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548182}, school = {Universit{\"a}t Potsdam}, pages = {IX, 104}, year = {2022}, abstract = {Salt deposits offer a variety of usage types. These include the mining of rock salt and potash salt as important raw materials, the storage of energy in man-made underground caverns, and the disposal of hazardous substances in former mines. The most serious risk with any of these usage types comes from the contact with groundwater or surface water. It causes an uncontrolled dissolution of salt rock, which in the worst case can result in the flooding or collapse of underground facilities. Especially along potash seams, cavernous structures can spread quickly, because potash salts show a much higher solubility than rock salt. However, as their chemical behavior is quite complex, previous models do not account for these highly soluble interlayers. Therefore, the objective of the present thesis is to describe the evolution of cavernous structures along potash seams in space and time in order to improve hazard mitigation during the utilization of salt deposits. The formation of cavernous structures represents an interplay of chemical and hydraulic processes. Hence, the first step is to systematically investigate the dissolution and precipitation reactions that occur when water and potash salt come into contact. For this purpose, a geochemical reaction model is used. The results show that the minerals are only partially dissolved, resulting in a porous sponge like structure. With the saturation of the solution increasing, various secondary minerals are formed, whose number and type depend on the original rock composition. Field data confirm a correlation between the degree of saturation and the distance from the center of the cavern, where solution is entering. Subsequently, the reaction model is coupled with a flow and transport code and supplemented by a novel approach called 'interchange'. The latter enables the exchange of solution and rock between areas of different porosity and mineralogy, and thus ultimately the growth of the cavernous structure. By means of several scenario analyses, cavern shape, growth rate and mineralogy are systematically investigated, taking also heterogeneous potash seams into account. The results show that basically four different cases can be distinguished, with mixed forms being a frequent occurrence in nature. The classification scheme is based on the dimensionless numbers P{\´e}clet and Damk{\"o}hler, and allows for a first assessment of the hazard potential. In future, the model can be applied to any field case, using measurement data for calibration. The presented research work provides a reactive transport model that is able to spatially and temporally characterize the propagation of cavernous structures along potash seams for the first time. Furthermore, it allows to determine thickness and composition of transition zones between cavern center and unaffected salt rock. The latter is particularly important in potash mining, so that natural cavernous structures can be located at an early stage and the risk of mine flooding can thus be reduced. The models may also contribute to an improved hazard prevention in the construction of storage caverns and the disposal of hazardous waste in salt deposits. Predictions regarding the characteristics and evolution of cavernous structures enable a better assessment of potential hazards, such as integrity or stability loss, as well as of suitable mitigation measures.}, language = {en} } @article{SpallanzaniKogaCichyetal.2022, author = {Spallanzani, Roberta and Koga, Kenneth T. and Cichy, Sarah B. and Wiedenbeck, Michael and Schmidt, Burkhard C. and Oelze, Marcus and Wilke, Max}, title = {Lithium and boron diffusivity and isotopic fractionation in hydrated rhyolitic melts}, series = {Contributions to mineralogy and petrology}, volume = {177}, journal = {Contributions to mineralogy and petrology}, number = {8}, publisher = {Springer}, address = {New York}, issn = {0010-7999}, doi = {10.1007/s00410-022-01937-2}, pages = {17}, year = {2022}, abstract = {Lithium and boron are trace components of magmas, released during exsolution of a gas phase during volcanic activity. In this study, we determine the diffusivity and isotopic fractionation of Li and B in hydrous silicate melts. Two glasses were synthesized with the same rhyolitic composition (4.2 wt\% water), having different Li and B contents; these were studied in diffusion-couple experiments that were performed using an internally heated pressure vessel, operated at 300 MPa in the temperature range 700-1250 degrees C for durations from 0 s to 24 h. From this we determined activation energies for Li and B diffusion of 57 +/- 4 kJ/mol and 152 +/- 15 kJ/mol with pre-exponential factors of 1.53 x 10(-7) m(2)/s and 3.80 x 10(-8) m(2)/s, respectively. Lithium isotopic fractionation during diffusion gave beta values between 0.15 and 0.20, whereas B showed no clear isotopic fractionation. Our Li diffusivities and isotopic fractionation results differ somewhat from earlier published values, but overall confirm that Li diffusivity increases with water content. Our results on B diffusion show that similarly to Li, B mobility increases in the presence of water. By applying the Eyring relation, we confirm that B diffusivity is limited by viscous flow in silicate melts. Our results on Li and B diffusion present a new tool for understanding degassing-related processes, offering a potential geospeedometer to measure volcanic ascent rates.}, language = {en} } @phdthesis{Spallanzani2022, author = {Spallanzani, Roberta}, title = {Li and B in ascending magmas: an experimental study on their mobility and isotopic fractionation}, doi = {10.25932/publishup-56061}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-560619}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 131}, year = {2022}, abstract = {This research study focuses on the behaviour of Li and B during magmatic ascent, and decompression-driven degassing related to volcanic systems. The main objective of this dissertation is to determine whether it is possible to use the diffusion properties of the two trace elements as a tool to trace magmatic ascent rate. With this objective, diffusion-couple and decompression experiments have been performed in order to study Li and B mobility in intra-melt conditions first, and then in an evolving system during decompression-driven degassing. Synthetic glasses were prepared with rhyolitic composition and an initial water content of 4.2 wt\%, and all the experiments were performed using an internally heated pressure vessel, in order to ensure a precise control on the experimental parameters such as temperature and pressure. Diffusion-couple experiments were performed with a fix pressure 300 MPa. The temperature was varied in the range of 700-1250 °C with durations between 0 seconds and 24 hours. The diffusion-couple results show that Li diffusivity is very fast and starts already at very low temperature. Significant isotopic fractionation occurs due to the faster mobility of 6Li compared to 7Li. Boron diffusion is also accelerated by the presence of water, but the results of the isotopic ratios are unclear, and further investigation would be necessary to well constrain the isotopic fractionation process of boron in hydrous silicate melts. The isotopic ratios results show that boron isotopic fractionation might be affected by the speciation of boron in the silicate melt structure, as 10B and 11B tend to have tetrahedral and trigonal coordination, respectively. Several decompression experiments were performed at 900 °C and 1000 °C, with pressures going from 300 MPa to 71-77 MPa and durations of 30 minutes, two, five and ten hours, in order to trigger water exsolution and the formation of vesicles in the sample. Textural observations and the calculation of the bubble number density confirmed that the bubble size and distribution after decompression is directly proportional to the decompression rate. The overall SIMS results of Li and B show that the two trace elements tend to progressively decrease their concentration with decreasing decompression rates. This is explained because for longer decompression times, the diffusion of Li and B into the bubbles has more time to progress and the melt continuously loses volatiles as the bubbles expand their volumes. For fast decompression, Li and B results show a concentration increase with a δ7Li and δ11B decrease close to the bubble interface, related to the sudden formation of the gas bubble, and the occurrence of a diffusion process in the opposite direction, from the bubble meniscus to the unaltered melt. When the bubble growth becomes dominant and Li and B start to exsolve into the gas phase, the silicate melt close to the bubble gets depleted in Li and B, because of a stronger diffusion of the trace elements into the bubble. Our data are being applied to different models, aiming to combine the dynamics of bubble nucleation and growth with the evolution of trace elements concentration and isotopic ratios. Here, first considerations on these models will be presented, giving concluding remarks on this research study. All in all, the final remarks constitute a good starting point for further investigations. These results are a promising base to continue to study this process, and Li and B can indeed show clear dependences on decompression-related magma ascent rates in volcanic systems.}, language = {en} } @article{SongJieGaoetal.2022, author = {Song, Lina and Jie, Dongmei and Gao, Guizai and Liu, Lidan and Liu, Hongyan and Li, Dehui and Liu, Ying}, title = {Application of a topsoil phytolith dataset to quantitative paleoclimate reconstruction in Northeast China}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {601}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2022.111108}, pages = {12}, year = {2022}, abstract = {Although phytoliths are recognized as an important proxy for paleoenvironmental reconstruction, the quantitative relationship between phytoliths and climate is still debated. In order to provide an improved basis for phytolith-based paleoclimate reconstructions, a representative modern phytolith dataset is essential. Here, we synthesize a modern topsoil phytolith dataset for Northeast China, analyze its climatic significance, and apply it to a fossil phytolith series from the Hani peat core in Northeast China. The dataset comprises 660 topsoil phytolith assemblages from 289 sample sites. We compiled modern meteorological data to assess the quantitative relationship between the phytolith assemblages and climatic variables. Detrended correspondence analysis (DCA) and Redundancy analysis (RDA) were used to determine the dominant climatic variable influencing the phytolith distributions. The results showed that mean annual temperature (MAT) is the dominant variable controlling the spatial distribution of phytoliths, accounting for 8.91\% of the total variance. Transfer function based on inverse deshrinking locally-weighted weighted averaging (LWWA_Inv) was developed for MAT (R-_boot(2) = 0.86, RMSEP = 1.02 degrees C). Applying the LWWA_Inv transfer function to fossil phytolith records from the Hani peat core enables quantitative inferences to be made about Holocene climate changes in Northeast China. Overall, combined with the LWWA_Inv method, the topsoil phytolith dataset of Northeast China can be used for reliable quantitative MAT reconstruction.}, language = {en} } @article{SmithTraxlBoers2022, author = {Smith, Taylor and Traxl, Dominik and Boers, Niklas}, title = {Empirical evidence for recent global shifts in vegetation resilience}, series = {Nature climate change}, volume = {12}, journal = {Nature climate change}, number = {5}, publisher = {Nature Publ. Group}, address = {London}, issn = {1758-678X}, doi = {10.1038/s41558-022-01352-2}, pages = {477 -- 484}, year = {2022}, abstract = {The authors demonstrate that a vegetation system's ability to recover from disturbances-its resilience-can be estimated from its natural variability. Global patterns of resilience loss and gains since the early 1990s reveal shifts towards widespread resilience loss since the early 2000s. The character and health of ecosystems worldwide is tightly coupled to changes in Earth's climate. Theory suggests that ecosystem resilience-the ability of ecosystems to resist and recover from external shocks such as droughts and fires-can be inferred from their natural variability. Here, we quantify vegetation resilience globally with complementary metrics based on two independent long-term satellite records. We first empirically confirm that the recovery rates from large perturbations can be closely approximated from internal vegetation variability across vegetation types and climate zones. On the basis of this empirical relationship, we quantify vegetation resilience continuously and globally from 1992 to 2017. Long-term vegetation resilience trends are spatially heterogeneous, with overall increasing resilience in the tropics and decreasing resilience at higher latitudes. Shorter-term trends, however, reveal a marked shift towards a global decline in vegetation resilience since the early 2000s, particularly in the equatorial rainforest belt.}, language = {en} } @article{SinghSinhaMishraetal.2022, author = {Singh, Manudeo and Sinha, Rajiv and Mishra, Arjit and Babu, Suresh}, title = {Wetlandscape (dis)connectivity and fragmentation in a large wetland (Haiderpur) in west Ganga plains, India}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {47}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {7}, publisher = {Wiley}, address = {New York, NY [u.a.]}, issn = {0197-9337}, doi = {10.1002/esp.5352}, pages = {1872 -- 1887}, year = {2022}, abstract = {Wetlands are dynamic ecosystems that require continuous monitoring and assessment of degradation status to design strategies for their sustainable management. While hydrology provides the primary functional control for the wetland ecosystem, the loss of landscape connectivity influences wetland degradation in a major way as it leads to fragmentation. This article aims to integrate hydrogeomorphic and ecological concepts for the assessment of degradation status and its causal factors for a large wetland in the western Ganga plains, India, the Haiderpur, using a wetlandscape approach. We have used a remote-sensing-based approach, which offers a powerful tool for assessing and linking cross-scale structures, functions, and controls in a wetlandscape. The Haiderpur, a Ramsar site since December 2021, is an artificial wetland located on the right bank of the Ganga River wherein the inflows are controlled by a barrage constructed on the Ganga River apart from smaller tributaries flowing in from the north. A novel aspect of this work is the integration of river dynamics and its connectivity to the wetlandscape to understand the spatiotemporal variability in the waterspread area in the wetland. In this work, we have developed an integrated wetlandscape assessment approach by evaluating wetland's geomorphic and hydrological connectivity status for the period 1993-2019 (25 years) across three different spatial scales - regional, catchment, and wetland. We have highlighted the ecological implications of connectivity and patch dynamics for developing sustainable wetland management plans.}, language = {en} } @article{SiegmundFunkSommeretal.2022, author = {Siegmund, Nicole and Funk, Roger and Sommer, Michael and Avecilla, Fernando and Esteban Panebianco, Juan and Iturri, Laura Antonela and Buschiazzo, Daniel}, title = {Horizontal and vertical fluxes of particulate matter during wind erosion on arable land in the province La Pampa, Argentina}, series = {International journal of sediment research}, volume = {37}, journal = {International journal of sediment research}, number = {5}, publisher = {IRTCES}, address = {Beijing}, issn = {1001-6279}, doi = {10.1016/j.ijsrc.2022.01.004}, pages = {539 -- 552}, year = {2022}, abstract = {A detailed analysis of horizontal and vertical particulate matter (PM) fluxes during wind erosion has been done, based on measurements of PM smaller than 10, 2.5, and 1.0 mu mm, at windward and leeward positions on a measuring field. The three fractions of PM measurement are differently influenced by the increasing wind and shear velocities of the wind. The measured concentrations of the coarser fractions of the fine dust, PM10, and PM2.5, increase with wind and shear velocity, whereas the PM1.0 concentrations show no clear correlation to the shear velocity. The share of PM2.5 on PM10 depends on the measurement height and wind speed and varies between 4 and 12 m/s at the 1 m height ranging from 25\% to 7\% (average 10\%), and at the 4 m height from 39\% to 23\% (average 30\%). Although general relationships between wind speed, PM concentration, and horizontal and vertical fluxes could be found, the contribution of the measuring field was very low, as balances of incoming and outgoing fluxes show. Consequently, the measured PM concentrations are determined from a variety of sources, such as traffic on unpaved roads, cattle drives, tillage operations, and wind erosion, and thus, represent all components of land use and landscape structure in the near and far surroundings of the measuring field. The current results may reflect factors from the landscape scale rather than the influence of field-related variables. The measuring devices used to monitor PM concentrations showed differences of up to 20\%, which led to considerable deviations when determining total balances. Differences up to 67\% between the calculated fluxes prove the necessity of a previous calibration of the devices used. (c) 2022 International Research and Training Centre on Erosion and Sedimentation/the World Association for Sedimentation and Erosion Research.}, language = {en} } @phdthesis{Siegmund2022, author = {Siegmund, Nicole}, title = {Wind driven soil particle uptake Quantifying drivers of wind erosion across the particle size spectrum}, doi = {10.25932/publishup-57489}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-574897}, school = {Universit{\"a}t Potsdam}, pages = {ix, 56}, year = {2022}, abstract = {Among the multitude of geomorphological processes, aeolian shaping processes are of special character, Pedogenic dust is one of the most important sources of atmospheric aerosols and therefore regarded as a key player for atmospheric processes. Soil dust emissions, being complex in composition and properties, influence atmospheric processes and air quality and has impacts on other ecosystems. In this because even though their immediate impact can be considered low (exceptions exist), their constant and large-scale force makes them a powerful player in the earth system. dissertation, we unravel a novel scientific understanding of this complex system based on a holistic dataset acquired during a series of field experiments on arable land in La Pampa, Argentina. The field experiments as well as the generated data provide information about topography, various soil parameters, the atmospheric dynamics in the very lower atmosphere (4m height) as well as measurements regarding aeolian particle movement across a wide range of particle size classes between 0.2μm up to the coarse sand. The investigations focus on three topics: (a) the effects of low-scale landscape structures on aeolian transport processes of the coarse particle fraction, (b) the horizontal and vertical fluxes of the very fine particles and (c) the impact of wind gusts on particle emissions. Among other considerations presented in this thesis, it could in particular be shown, that even though the small-scale topology does have a clear impact on erosion and deposition patterns, also physical soil parameters need to be taken into account for a robust statistical modelling of the latter. Furthermore, specifically the vertical fluxes of particulate matter have different characteristics for the particle size classes. Finally, a novel statistical measure was introduced to quantify the impact of wind gusts on the particle uptake and its application on the provided data set. The aforementioned measure shows significantly increased particle concentrations during points in time defined as gust event. With its holistic approach, this thesis further contributes to the fundamental understanding of how atmosphere and pedosphere are intertwined and affect each other.}, language = {en} } @article{SieberYaxleyHermann2022, author = {Sieber, Melanie Jutta and Yaxley, Greg and Hermann, J{\"o}rg}, title = {COH-fluid induced metasomatism of peridotites in the forearc mantle}, series = {Contributions to Mineralogy and Petrology}, volume = {177}, journal = {Contributions to Mineralogy and Petrology}, number = {4}, publisher = {Springer}, address = {New York}, issn = {0010-7999}, doi = {10.1007/s00410-022-01905-w}, pages = {22}, year = {2022}, abstract = {Devolatilization of subducting lithologies liberates COH-fluids. These may become partially sequestered in peridotites in the slab and the overlying forearc mantle, affecting the cycling of volatiles and fluid mobile elements in subduction zones. Here we assess the magnitudes, timescales and mechanism of channelized injection of COH-fluids doped with Ca-aq(2+), Sr-aq(2+) and Ba-aq(2+) into the dry forearc mantle by performing piston cylinder experiments between 1-2.5 GPa and 600-700 degrees C. Cylindrical cores of natural spinel-bearing harzburgites were used as starting materials. Based on mineral assemblage and composition three reaction zones are distinguishable from the rim towards the core of primary olivine and orthopyroxene grains. Zone 1 contains carbonates + quartz +/- kyanite and zone 2 contains carbonates + talc +/- chlorite. Olivine is further replaced in zone 3 by either antigorite+ magnesite or magnesite +talc within or above antigorite stability, respectively. Orthopyroxene is replaced in zone 3 by talc + chlorite. Mineral assemblages and the compositions of secondary minerals depend on fluid composition and the replaced primary silicate. The extent of alteration depends on fluid CO2 content and fluid/rock-ratio, and is further promoted by fluid permeable reaction zones and reaction driven cracking. Our results show that COH-fluid induced metasomatism of the forearc mantle is self-perpetuating and efficient at sequestering Ca-aq(2+), Sr-aq(2+), Ba-aq(2+) and CO2aq into newly formed carbonates. This process is fast with 90\% of the available C sequestered and nearly 50\% of the initial minerals altered at 650 degrees C, 2 GPa within 55 h. The dissolution of primary silicates under high COH-fluid/rock-ratios, as in channelized fluid flow, enriches SiO2aq in the fluid, while CO2aq is sequestered into carbonates. In an open system, the remaining CO2-depleted, Si-enriched aqueous fluid may cause Si-metasomatism in the forearc further away from the injection of the COH-fluid into peridotite.}, language = {en} } @article{ShpritsAllisonWangetal.2022, author = {Shprits, Yuri Y. and Allison, Hayley J. and Wang, Dedong and Drozdov, Alexander and Szabo-Roberts, Matyas and Zhelavskaya, Irina and Vasile, Ruggero}, title = {A new population of ultra-relativistic electrons in the outer radiation zone}, series = {Journal of geophysical research : Space physics}, volume = {127}, journal = {Journal of geophysical research : Space physics}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2021JA030214}, pages = {34}, year = {2022}, abstract = {Van Allen Probes measurements revealed the presence of the most unusual structures in the ultra-relativistic radiation belts. Detailed modeling, analysis of pitch angle distributions, analysis of the difference between relativistic and ultra-realistic electron evolution, along with theoretical studies of the scattering and wave growth, all indicate that electromagnetic ion cyclotron (EMIC) waves can produce a very efficient loss of the ultra-relativistic electrons in the heart of the radiation belts. Moreover, a detailed analysis of the profiles of phase space densities provides direct evidence for localized loss by EMIC waves. The evolution of multi-MeV fluxes shows dramatic and very sudden enhancements of electrons for selected storms. Analysis of phase space density profiles reveals that growing peaks at different values of the first invariant are formed at approximately the same radial distance from the Earth and show the sequential formation of the peaks from lower to higher energies, indicating that local energy diffusion is the dominant source of the acceleration from MeV to multi-MeV energies. Further simultaneous analysis of the background density and ultra-relativistic electron fluxes shows that the acceleration to multi-MeV energies only occurs when plasma density is significantly depleted outside of the plasmasphere, which is consistent with the modeling of acceleration due to chorus waves.}, language = {en} } @phdthesis{Schoenfeldt2022, author = {Sch{\"o}nfeldt, Elisabeth}, title = {Giant landslides in Patagonia, Argentina}, pages = {XXII, 156}, year = {2022}, language = {en} } @phdthesis{Schuster2022, author = {Schuster, Valerian}, title = {Mechanical and hydraulic properties of Opalinus Clay}, doi = {10.25932/publishup-56678}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-566786}, school = {Universit{\"a}t Potsdam}, year = {2022}, abstract = {Deep geological repositories represent a promising solution for the final disposal of nuclear waste. Due to its low permeability, high sorption capacity and self-sealing potential, Opalinus Clay (OPA) is considered a suitable host rock formation for the long-term storage of nuclear waste in Switzerland and Germany. However, the clay formation is characterized by compositional and structural variabilities including the occurrence of carbonate- and quartz-rich layers, pronounced bedding planes as well as tectonic elements such as pre-existing fault zones and fractures, suggesting heterogeneous rock mass properties. Characterizing the heterogeneity of host rock properties is therefore essential for safety predictions of future repositories. This includes a detailed understanding of the mechanical and hydraulic properties, deformation behavior and the underlying deformation processes for an improved assessment of the sealing integrity and long-term safety of a deep repository in OPA. Against this background, this thesis presents the results of deformation experiments performed on intact and artificially fractured specimens of the quartz-rich, sandy and clay-rich, shaly facies of OPA. The experiments focus on the influence of mineralogical composition on the deformation behavior as well as the reactivation and sealing properties of pre-existing faults and fractures at different boundary conditions (e.g., pressure, temperature, strain rate). The anisotropic mechanical properties of the sandy facies of OPA are presented in the first section, which were determined from triaxial deformation experiments using dried and resaturated samples loaded at 0°, 45° and 90° to the bedding plane orientation. A Paterson-type deformation apparatus was used that allowed to investigate how the deformation behavior is influenced by the variation of confining pressure (50 - 100 MPa), temperature (25 - 200 °C), and strain rate (1 × 10-3 - 5 × 10-6 s-1). Constant strain rate experiments revealed brittle to semi-brittle deformation behavior of the sandy facies at the applied conditions. Deformation behavior showed a strong dependence on confining pressure, degree of water saturation as well as bedding orientation, whereas the variation of temperature and strain rate had no significant effect on deformation. Furthermore, the sandy facies displays higher strength and stiffness compared to the clay-rich shaly facies deformed at similar conditions by N{\"u}esch (1991). From the obtained results it can be concluded that cataclastic mechanisms dominate the short-term deformation behavior of dried samples from both facies up to elevated pressure (<200 MPa) and temperature (<200 °C) conditions. The second part presents triaxial deformation tests that were performed to investigate how structural discontinuities affect the deformation behavior of OPA and how the reactivation of preexisting faults is influenced by mineral composition and confining pressure. To this end, dried cylindrical samples of the sandy and shaly facies of OPA were used, which contained a saw-cut fracture oriented at 30° to the long axis. After hydrostatic pre-compaction at 50 MPa, constant strain rate deformation tests were performed at confining pressures of 5, 20 or 35 MPa. With increasing confinement, a gradual transition from brittle, highly localized fault slip including a stress drop at fault reactivation to semi-brittle deformation behavior, characterized by increasing delocalization and non-linear strain hardening without dynamic fault reactivation, can be observed. Brittle localization was limited by the confining pressure at which the fault strength exceeded the matrix yield strength, above which strain partitioning between localized fault slip and distributed matrix deformation occurred. The sandy facies displayed a slightly higher friction coefficient (≈0.48) compared to the shaly facies (≈0.4). In addition, slide-hold-slide tests were conducted, revealing negative or negligible frictional strengthening, which suggests stable creep and long-term weakness of faults in both facies of OPA. The conducted experiments demonstrate that dilatant brittle fault reactivation in OPA may be favored at high overconsolidation ratios and shallow depths, increasing the risk of seismic hazard and the creation of fluid pathways. The final section illustrates how the sealing capacity of fractures in OPA is affected by mineral composition. Triaxial flow-through experiments using Argon-gas were performed with dried samples from the sandy and shaly facies of OPA containing a roughened, artificial fracture. Slate, graywacke, quartzite, natural fault gouge, and granite samples were also tested to highlight the influence of normal stress, mineralogy and diagenesis on the sustainability of fracture transmissivity. With increasing normal stress, a non-linear decrease of fracture transmissivity can be observed that resulted in a permanent reduction of transmissivity after stress release. The transmissivity of rocks with a high portion of strong minerals (e.g., quartz) and high unconfined compressive strength was less sensitive to stress changes. In accordance with this, the sandy facies of OPA displayed a higher initial transmissivity that was less sensitive to stress changes compared to the shaly facies. However, transmissivity of rigid slate was less sensitive to stress changes than the sandy facies of OPA, although the slate is characterized by a higher phyllosilicate content. This demonstrates that in addition to mineral composition, other factors such as the degree of metamorphism, cementation and consolidation have to be considered when evaluating the sealing capacity of phyllosilicate-rich rocks. The results of this thesis highlighted the role of confining pressure on the failure behavior of intact and artificially fractured OPA. Although the quartz-rich sandy facies may be considered as being more favorable for underground constructions due to its higher shear strength and stiffness than the shaly facies, the results indicate that when fractures develop in the sandy facies, they are more conductive and remain more permeable compared to fractures in the clay-dominated shaly facies at a given stress. The results may provide the basis for constitutive models to predict the integrity and evolution of a future repository. Clearly, the influence of composition and consolidation, e.g., by geological burial and uplift, on the mechanical sealing behavior of OPA highlights the need for a detailed site-specific material characterization for a future repository.}, language = {en} } @article{ScholzVoigt2022, author = {Scholz, Carolin and Voigt, Christian C.}, title = {Diet analysis of bats killed at wind turbines suggests large-scale losses of trophic interactions}, series = {Conservation science and practice}, volume = {4}, journal = {Conservation science and practice}, number = {7}, publisher = {Wiley}, address = {Hoboken}, issn = {2578-4854}, doi = {10.1111/csp2.12744}, pages = {12}, year = {2022}, abstract = {Agricultural practice has led to landscape simplification and biodiversity decline, yet recently, energy-producing infrastructures, such as wind turbines, have been added to these simplified agroecosystems, turning them into multi-functional energy-agroecosystems. Here, we studied the trophic interactions of bats killed at wind turbines using a DNA metabarcoding approach to shed light on how turbine-related bat fatalities may possibly affect local habitats. Specifically, we identified insect DNA in the stomachs of common noctule bats (Nyctalus noctula) killed by wind turbines in Germany to infer in which habitats these bats hunted. Common noctule bats consumed a wide variety of insects from different habitats, ranging from aquatic to terrestrial ecosystems (e.g., wetlands, farmland, forests, and grasslands). Agricultural and silvicultural pest insects made up about 20\% of insect species consumed by the studied bats. Our study suggests that the potential damage of wind energy production goes beyond the loss of bats and the decline of bat populations. Bat fatalities at wind turbines may lead to the loss of trophic interactions and ecosystem services provided by bats, which may add to the functional simplification and impaired crop production, respectively, in multi-functional ecosystems.}, language = {en} } @misc{ScholzVoigt2022, author = {Scholz, Carolin and Voigt, Christian C.}, title = {Diet analysis of bats killed at wind turbines suggests large-scale losses of trophic interactions}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {7}, issn = {1866-8372}, doi = {10.25932/publishup-59156}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-591568}, pages = {14}, year = {2022}, abstract = {Agricultural practice has led to landscape simplification and biodiversity decline, yet recently, energy-producing infrastructures, such as wind turbines, have been added to these simplified agroecosystems, turning them into multi-functional energy-agroecosystems. Here, we studied the trophic interactions of bats killed at wind turbines using a DNA metabarcoding approach to shed light on how turbine-related bat fatalities may possibly affect local habitats. Specifically, we identified insect DNA in the stomachs of common noctule bats (Nyctalus noctula) killed by wind turbines in Germany to infer in which habitats these bats hunted. Common noctule bats consumed a wide variety of insects from different habitats, ranging from aquatic to terrestrial ecosystems (e.g., wetlands, farmland, forests, and grasslands). Agricultural and silvicultural pest insects made up about 20\% of insect species consumed by the studied bats. Our study suggests that the potential damage of wind energy production goes beyond the loss of bats and the decline of bat populations. Bat fatalities at wind turbines may lead to the loss of trophic interactions and ecosystem services provided by bats, which may add to the functional simplification and impaired crop production, respectively, in multi-functional ecosystems.}, language = {en} } @misc{SchmidtFranckeRottleretal.2022, author = {Schmidt, Lena Katharina and Francke, Till and Rottler, Erwin and Blume, Theresa and Sch{\"o}ber, Johannes}, title = {Suspended sediment and discharge dynamics in a glaciated alpine environment: identifying crucial areas and time periods on several spatial and temporal scales in the {\"O}tztal, Austria}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1296}, issn = {1866-8372}, doi = {10.25932/publishup-57656}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-576564}, pages = {653 -- 669}, year = {2022}, abstract = {Glaciated high-alpine areas are fundamentally altered by climate change, with well-known implications for hydrology, e.g., due to glacier retreat, longer snow-free periods, and more frequent and intense summer rainstorms. While knowledge on how these hydrological changes will propagate to suspended sediment dynamics is still scarce, it is needed to inform mitigation and adaptation strategies. To understand the processes and source areas most relevant to sediment dynamics, we analyzed discharge and sediment dynamics in high temporal resolution as well as their patterns on several spatial scales, which to date few studies have done. We used a nested catchment setup in the Upper {\"O}tztal in Tyrol, Austria, where high-resolution (15 min) time series of discharge and suspended sediment concentrations are available for up to 15 years (2006-2020). The catchments of the gauges in Vent, S{\"o}lden and Tumpen range from 100 to almost 800 km2 with 10 \% to 30 \% glacier cover and span an elevation range of 930 to 3772 m a.s.l. We analyzed discharge and suspended sediment yields (SSY), their distribution in space, their seasonality and spatial differences therein, and the relative importance of short-term events. We complemented our analysis by linking the observations to satellite-based snow cover maps, glacier inventories, mass balances and precipitation data. Our results indicate that the areas above 2500 m a.s.l., characterized by glacier tongues and the most recently deglaciated areas, are crucial for sediment generation in all sub-catchments. This notion is supported by the synchronous spring onset of sediment export at the three gauges, which coincides with snowmelt above 2500 m but lags behind spring discharge onsets. This points at a limitation of suspended sediment supply as long as the areas above 2500 m are snow-covered. The positive correlation of annual SSY with glacier cover (among catchments) and glacier mass balances (within a catchment) further supports the importance of the glacier-dominated areas. The analysis of short-term events showed that summer precipitation events were associated with peak sediment concentrations and yields but on average accounted for only 21 \% of the annual SSY in the headwaters. These results indicate that under current conditions, thermally induced sediment export (through snow and glacier melt) is dominant in the study area. Our results extend the scientific knowledge on current hydro-sedimentological conditions in glaciated high-alpine areas and provide a baseline for studies on projected future changes in hydro-sedimentological system dynamics.}, language = {en} } @article{SchmidPetersenHooftetal.2022, author = {Schmid, Florian and Petersen, Gesa M. and Hooft, Emilie E. E. and Paulatto, Michele and Chrapkiewicz, Kajetan and Hensch, Martin and Dahm, Torsten}, title = {Heralds of future volcanism: Swarms of microseismicity beneath the submarine Kolumbo volcano indicate opening of near-vertical fractures exploited by ascending melts}, series = {Geochemistry, geophysics, geosystems}, volume = {23}, journal = {Geochemistry, geophysics, geosystems}, number = {7}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2022GC010420}, pages = {21}, year = {2022}, abstract = {The Kolumbo submarine volcano in the southern Aegean (Greece) is associated with repeated seismic unrest since at least two decades and the causes of this unrest are poorly understood. We present a ten-month long microseismicity data set for the period 2006-2007. The majority of earthquakes cluster in a cone-shaped portion of the crust below Kolumbo. The tip of this cone coincides with a low Vp-anomaly at 2-4 km depth, which is interpreted as a crustal melt reservoir. Our data set includes several earthquake swarms, of which we analyze the four with the highest events numbers in detail. Together the swarms form a zone of fracturing elongated in the SW-NE direction, parallel to major regional faults. All four swarms show a general upward migration of hypocenters and the cracking front propagates unusually fast, compared to swarms in other volcanic areas. We conclude that the swarm seismicity is most likely triggered by a combination of pore-pressure perturbations and the re-distribution of elastic stresses. Fluid pressure perturbations are induced likely by obstructions in the melt conduits in a rheologically strong layer between 6 and 9 km depth. We conclude that the zone of fractures below Kolumbo is exploited by melts ascending from the mantle and filling the crustal melt reservoir. Together with the recurring seismic unrest, our study suggests that a future eruption is probable and monitoring of the Kolumbo volcanic system is highly advisable.}, language = {en} } @article{SchildgenvanderBeekD'Arcyetal.2022, author = {Schildgen, Taylor F. and van der Beek, Pieter A. and D'Arcy, Mitch and Roda-Boluda, Duna N. and Orr, Elizabeth N. and Wittmann, Hella}, title = {Quantifying drainage-divide migration from orographic rainfall over geologic timescales}, series = {Earth \& planetary science letters}, volume = {579}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2021.117345}, pages = {13}, year = {2022}, abstract = {Drainage-divide migration, controlled by rock-uplift and rainfall patterns, may play a major role in the geomorphic evolution of mountain ranges. However, divide-migration rates over geologic timescales have only been estimated by theoretical studies and remain empirically poorly constrained. Geomorphological evidence suggests that the Sierra de Aconquija, on the eastern side of the southern Central Andes, northwest Argentina, is undergoing active westward drainage-divide migration. The mountain range has been subjected to steep rock trajectories and pronounced orographic rainfall for the last several million years, presenting an ideal setting for using low-temperature thermochronometric data to explore its topographic evolution. We perform three-dimensional thermal-kinematic modeling of previously published thermochronometric data spanning the windward and leeward sides of the range to explore the most likely structural and topographic evolution of the range. We find that the data can be explained by scenarios involving drainage-divide migration alone, or by scenarios that also involve changes in the structures that have accommodated deformation through time. By combining new Be-10-derived catchment-average denudation rates with geomorphic constraints on probable fault activity, we conclude that the evolution of the range was likely dominated by west-vergent faulting on a high-angle reverse fault underlying the range, together with westward drainage-divide migration at a rate of several km per million years. Our findings place new constraints on the magnitudes and rates of drainage-divide migration in real landscapes, quantify the effects of orographic rainfall and erosion on the topographic evolution of a mountain range, and highlight the importance of considering drainage-divide migration when interpreting thermochronometer age patterns.}, language = {en} } @article{SchifferleLobanov2022, author = {Schifferle, Lukas and Lobanov, Sergey S.}, title = {Evolution of chemical bonding and spin-pairing energy in ferropericlase across Its spin transition}, series = {ACS Earth and Space Chemistry}, volume = {6}, journal = {ACS Earth and Space Chemistry}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {2472-3452}, doi = {10.1021/acsearthspacechem.2c00014}, pages = {788 -- 799}, year = {2022}, abstract = {The evolution of chemical bonding in ferropericlase, (Mg,Fe)O, with pressure may affect the physical and chemical properties of the Earth's lower mantle. Here, we report high-pressure optical absorption spectra of single-crystalline ferropericlase ((Mg0.87Fe0.13)O) up to 135 GPa. Combined with a re-evaluation of published partial fluorescence yield X-ray absorption spectroscopy data, we show that the covalency of the Fe-O bond increases with pressure, but the iron spin transition at 57-76.5 GPa reverses this trend. The qualitative crossover in chemical bonding suggests that the spin-pairing transition weakens the Fe-O bond in ferropericlase. We find, that the spin transition in ferropericlase is caused by both the increase of the ligand field-splitting energy and the decrease in the spin-pairing energy of high-spin Fe2+.}, language = {en} }