@article{AmourMuttiChristetal.2013, author = {Amour, Frederic and Mutti, Maria and Christ, Nicolas and Immenhauser, Adrian and Benson, Gregory S. and Agar, Susan M. and Tomas, Sara and Kabiri, Lahcen}, title = {Outcrop analog for an oolitic carbonate ramp reservoir a scale-dependent geologic modeling approach based on stratigraphic hierarchy}, series = {AAPG bulletin}, volume = {97}, journal = {AAPG bulletin}, number = {5}, publisher = {American Association of Petroleum Geologists}, address = {Tulsa}, issn = {0149-1423}, doi = {10.1306/10231212039}, pages = {845 -- 871}, year = {2013}, abstract = {Considerable effort has been devoted to the development of simulation algorithms for facies modeling, whereas a discussion of how to combine those techniques has not existed. The integration of multiple geologic data into a three-dimensional model, which requires the combination of simulation techniques, is yet a current challenge for reservoir modeling. This article presents a thought process that guides the acquisition and modeling of geologic data at various scales. Our work is based on outcrop data collected from a Jurassic carbonate ramp located in the High Atlas mountain range of Morocco. The study window is 1 km (0.6 mi) wide and 100 m (328.1 ft) thick. We describe and model the spatial and hierarchical arrangement of carbonate bodies spanning from largest to smallest: (1) stacking pattern of high-frequency depositional sequences, (2) facies association, and (3) lithofacies. Five sequence boundaries were modeled using differential global position system mapping and light detection and ranging data. The surface-based model shows a low-angle profile with modest paleotopographic relief at the inner-to-middle ramp transition. Facies associations were populated using truncated Gaussian simulation to preserve ordered trends between the inner, middle, and outer ramps. At the lithofacies scale, field observations and statistical analysis show a mosaiclike distribution that was simulated using a fully stochastic approach with sequential indicator simulation. This study observes that the use of one single simulation technique is unlikely to correctly model the natural patterns and variability of carbonate rocks. The selection and implementation of different techniques customized for each level of the stratigraphic hierarchy will provide the essential computing flexibility to model carbonate settings. This study demonstrates that a scale-dependent modeling approach should be a common procedure when building subsurface and outcrop models.}, language = {en} } @phdthesis{Amour2013, author = {Amour, Fr{\´e}d{\´e}ric}, title = {3-D modeling of shallow-water carbonate systems : a scale-dependent approach based on quantitative outcrop studies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66621}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The study of outcrop modeling is located at the interface between two fields of expertise, Sedimentology and Computing Geoscience, which respectively investigates and simulates geological heterogeneity observed in the sedimentary record. During the last past years, modeling tools and techniques were constantly improved. In parallel, the study of Phanerozoic carbonate deposits emphasized the common occurrence of a random facies distribution along single depositional domain. Although both fields of expertise are intrinsically linked during outcrop simulation, their respective advances have not been combined in literature to enhance carbonate modeling studies. The present study re-examines the modeling strategy adapted to the simulation of shallow-water carbonate systems, based on a close relationship between field sedimentology and modeling capabilities. In the present study, the evaluation of three commonly used algorithms Truncated Gaussian Simulation (TGSim), Sequential Indicator Simulation (SISim), and Indicator Kriging (IK), were performed for the first time using visual and quantitative comparisons on an ideally suited carbonate outcrop. The results show that the heterogeneity of carbonate rocks cannot be fully simulated using one single algorithm. The operating mode of each algorithm involves capabilities as well as drawbacks that are not capable to match all field observations carried out across the modeling area. Two end members in the spectrum of carbonate depositional settings, a low-angle Jurassic ramp (High Atlas, Morocco) and a Triassic isolated platform (Dolomites, Italy), were investigated to obtain a complete overview of the geological heterogeneity in shallow-water carbonate systems. Field sedimentology and statistical analysis performed on the type, morphology, distribution, and association of carbonate bodies and combined with palaeodepositional reconstructions, emphasize similar results. At the basin scale (x 1 km), facies association, composed of facies recording similar depositional conditions, displays linear and ordered transitions between depositional domains. Contrarily, at the bedding scale (x 0.1 km), individual lithofacies type shows a mosaic-like distribution consisting of an arrangement of spatially independent lithofacies bodies along the depositional profile. The increase of spatial disorder from the basin to bedding scale results from the influence of autocyclic factors on the transport and deposition of carbonate sediments. Scale-dependent types of carbonate heterogeneity are linked with the evaluation of algorithms in order to establish a modeling strategy that considers both the sedimentary characteristics of the outcrop and the modeling capabilities. A surface-based modeling approach was used to model depositional sequences. Facies associations were populated using TGSim to preserve ordered trends between depositional domains. At the lithofacies scale, a fully stochastic approach with SISim was applied to simulate a mosaic-like lithofacies distribution. This new workflow is designed to improve the simulation of carbonate rocks, based on the modeling of each scale of heterogeneity individually. Contrarily to simulation methods applied in literature, the present study considers that the use of one single simulation technique is unlikely to correctly model the natural patterns and variability of carbonate rocks. The implementation of different techniques customized for each level of the stratigraphic hierarchy provides the essential computing flexibility to model carbonate systems. Closer feedback between advances carried out in the field of Sedimentology and Computing Geoscience should be promoted during future outcrop simulations for the enhancement of 3-D geological models.}, language = {en} } @article{AndermannCraveGloaguenetal.2012, author = {Andermann, Christoff and Crave, Alain and Gloaguen, Richard and Davy, Philippe and Bonnet, Stephane}, title = {Connecting source and transport: Suspended sediments in the Nepal Himalayas}, series = {Earth \& planetary science letters}, volume = {351}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2012.06.059}, pages = {158 -- 170}, year = {2012}, abstract = {Understanding the dynamics of sediment fluxes is a key issue to constrain modern erosion rates in mountain belts and determine the still debated level of control exerted by precipitation, topography and tectonics. The well defined monsoon seasonality in the Himalayas, together with active tectonics and strong relief provide an ideal environment to assess these possible interactions. For this purpose, we present a new compilation of daily suspended sediment data for 12 stations of the major rivers of the Nepal Himalayas. We analyze the relationships of sediment transport with daily river discharge and precipitation data as well as with morphometric parameters. We show that suspended sediment concentrations vary systematically through the seasons and asynchronously to river discharge displaying a hysteresis effect. This clockwise hysteresis effect disappears when suspended sediment fluxes are directly compared with direct storm discharge. Therefore we attribute the hysteresis effect to groundwater dilution rather than a sediment supply limitation. We infer a rating model to calculate erosion rates directly from long river discharge chronicles. We show that, when normalized by drainage area and mean sediment flux, all rivers exhibit the same trend. This similarity implies that all river basins have the same erosion behavior, independent of location, size and catchment characteristics. Erosion rates calculated from suspended sediment fluxes range between 0.1 and 2.8 mm/yr. The erosion rates of the three main basins of Nepal are in the range 0.9-1.5 mm/yr. Erosion rates in the Higher Himalayas are relatively low ( <0.5 mm/yr, except for Kali Gandaki), while in the Lesser Himalayas they range from 0.2 to 2 mm/yr. We propose that material transport in the rivers depends on hillslope sediment supply, which is, in turn, controlled by those rainfalls producing direct runoff. In other words, the rivers in the Nepal Himalayas are supply-limited and the hillsopes as a contributing source are transport-limited. We also show that erosion processes are not as much controlled by infrequently occurring extreme precipitation events, than by moderate ones with a high recurrence interval.}, language = {en} } @article{AndersenEgholmKnudsenetal.2015, author = {Andersen, Jane Lund and Egholm, D. L. and Knudsen, M. F. and Jansen, John D. and Nielsen, S. B.}, title = {The periglacial engine of mountain erosion - Part 1: Rates of frost cracking and frost creep}, series = {Earth surface dynamics}, volume = {3}, journal = {Earth surface dynamics}, number = {4}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-3-447-2015}, pages = {447 -- 462}, year = {2015}, abstract = {With accelerating climate cooling in the late Cenozoic, glacial and periglacial erosion became more widespread on the surface of the Earth. The resultant shift in erosion patterns significantly changed the large-scale morphology of many mountain ranges worldwide. Whereas the glacial fingerprint is easily distinguished by its characteristic fjords and U-shaped valleys, the periglacial fingerprint is more subtle but potentially prevails in some mid- to high-latitude landscapes. Previous models have advocated a frost-driven control on debris production at steep headwalls and glacial valley sides. Here we investigate the important role that periglacial processes also play in less steep parts of mountain landscapes. Understanding the influences of frost-driven processes in low-relief areas requires a focus on the consequences of an accreting soil mantle, which characterises such surfaces. We present a new model that quantifies two key physical processes: frost cracking and frost creep, as a function of both temperature and sediment thickness. Our results yield new insights into how climate and sediment transport properties combine to scale the intensity of periglacial processes. The thickness of the soil mantle strongly modulates the relation between climate and the intensity of mechanical weathering and sediment flux. Our results also point to an offset between the conditions that promote frost cracking and those that promote frost creep, indicating that a stable climate can provide optimal conditions for only one of those processes at a time. Finally, quantifying these relations also opens up the possibility of including periglacial processes in large-scale, long-term landscape evolution models, as demonstrated in a companion paper.}, language = {en} } @phdthesis{Angelopoulos2020, author = {Angelopoulos, Michael}, title = {Mechanisms of sub-aquatic permafrost evolution in Arctic coastal environments}, school = {Universit{\"a}t Potsdam}, pages = {165}, year = {2020}, abstract = {Subsea permafrost is perennially cryotic earth material that lies offshore. Most submarine permafrost is relict terrestrial permafrost beneath the Arctic shelf seas, was inundated after the last glaciation, and has been warming and thawing ever since. It is a reservoir and confining layer for gas hydrates and has the potential to release greenhouse gases and affect global climate change. Furthermore, subsea permafrost thaw destabilizes coastal infrastructure. While numerous studies focus on its distribution and rate of thaw over glacial timescales, these studies have not been brought together and examined in their entirety to assess rates of thaw beneath the Arctic Ocean. In addition, there is still a large gap in our understanding of sub-aquatic permafrost processes on finer spatial and temporal scales. The degradation rate of subsea permafrost is influenced by the initial conditions upon submergence. Terrestrial permafrost that has already undergone warming, partial thawing or loss of ground ice may react differently to inundation by seawater compared to previously undisturbed ice-rich permafrost. Heat conduction models are sufficient to model the thaw of thick subsea permafrost from the bottom, but few studies have included salt diffusion for top-down chemical degradation in shallow waters characterized by mean annual cryotic conditions on the seabed. Simulating salt transport is critical for assessing degradation rates for recently inundated permafrost, which may accelerate in response to warming shelf waters, a lengthening open water season, and faster coastal erosion rates. In the nearshore zone, degradation rates are also controlled by seasonal processes like bedfast ice, brine injection, seasonal freezing under floating ice conditions and warm freshwater discharge from large rivers. The interplay of all these variables is complex and needs further research. To fill this knowledge gap, this thesis investigates sub-aquatic permafrost along the southern coast of the Bykovsky Peninsula in eastern Siberia. Sediment cores and ground temperature profiles were collected at a freshwater thermokarst lake and two thermokarst lagoons in 2017. At this site, the coastline is retreating, and seawater is inundating various types of permafrost: sections of ice-rich Pleistocene permafrost (Yedoma) cliffs at the coastline alternate with lagoons and lower elevation previously thawed and refrozen permafrost basins (Alases). Electrical resistivity surveys with floating electrodes were carried out to map ice-bearing permafrost and taliks (unfrozen zones in the permafrost, usually formed beneath lakes) along the diverse coastline and in the lagoons. Combined with the borehole data, the electrical resistivity results permit estimation of contemporary ice-bearing permafrost characteristics, distribution, and occasionally, thickness. To conceptualize possible geomorphological and marine evolutionary pathways to the formation of the observed layering, numerical models were applied. The developed model incorporates salt diffusion and seasonal dynamics at the seabed, including bedfast ice. Even along coastlines with mean annual non-cryotic boundary conditions like the Bykovsky Peninsula, the modelling results show that salt diffusion minimizes seasonal freezing of the seabed, leading to faster degradation rates compared to models without salt diffusion. Seasonal processes are also important for thermokarst lake to lagoon transitions because lagoons can generate cold hypersaline conditions underneath the ice cover. My research suggests that ice-bearing permafrost can form in a coastal lagoon environment, even under floating ice. Alas basins, however, may degrade more than twice as fast as Yedoma permafrost in the first several decades of inundation. In addition to a lower ice content compared to Yedoma permafrost, Alas basins may be pre-conditioned with salt from adjacent lagoons. Considering the widespread distribution of thermokarst in the Arctic, its integration into geophysical models and offshore surveys is important to quantify and understand subsea permafrost degradation and aggradation. Through numerical modelling, fieldwork, and a circum-Arctic review of subsea permafrost literature, this thesis provides new insights into sub-aquatic permafrost evolution in saline coastal environments.}, language = {en} } @article{AngelopoulosOverduinWestermannetal.2020, author = {Angelopoulos, Michael and Overduin, Pier Paul and Westermann, Sebastian and Tronicke, Jens and Strauss, Jens and Schirrmeister, Lutz and Biskaborn, Boris and Liebner, Susanne and Maksimov, Georgii and Grigoriev, Mikhail N. and Grosse, Guido}, title = {Thermokarst lake to lagoon transitions in Eastern Siberia}, series = {Journal of geophysical research : Earth surface}, volume = {125}, journal = {Journal of geophysical research : Earth surface}, number = {10}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1029/2019JF005424}, pages = {21}, year = {2020}, abstract = {As the Arctic coast erodes, it drains thermokarst lakes, transforming them into lagoons, and, eventually, integrates them into subsea permafrost. Lagoons represent the first stage of a thermokarst lake transition to a marine setting and possibly more saline and colder upper boundary conditions. In this research, borehole data, electrical resistivity surveying, and modeling of heat and salt diffusion were carried out at Polar Fox Lagoon on the Bykovsky Peninsula, Siberia. Polar Fox Lagoon is a seasonally isolated water body connected to Tiksi Bay through a channel, leading to hypersaline waters under the ice cover. The boreholes in the center of the lagoon revealed floating ice and a saline cryotic bed underlain by a saline cryotic talik, a thin ice-bearing permafrost layer, and unfrozen ground. The bathymetry showed that most of the lagoon had bedfast ice in spring. In bedfast ice areas, the electrical resistivity profiles suggested that an unfrozen saline layer was underlain by a thick layer of refrozen talik. The modeling showed that thermokarst lake taliks can refreeze when submerged in saltwater with mean annual bottom water temperatures below or slightly above 0 degrees C. This occurs, because the top-down chemical degradation of newly formed ice-bearing permafrost is slower than the refreezing of the talik. Hence, lagoons may precondition taliks with a layer of ice-bearing permafrost before encroachment by the sea, and this frozen layer may act as a cap on gas migration out of the underlying talik.}, language = {en} } @article{AngelopoulosWestermannOverduinetal.2019, author = {Angelopoulos, Michael and Westermann, Sebastian and Overduin, Pier Paul and Faguet, Alexey and Olenchenko, Vladimir and Grosse, Guido and Grigoriev, Mikhail N.}, title = {Heat and salt flow in subsea permafrost modeled with CryoGRID2}, series = {Journal of geophysical research : Earth surface}, volume = {124}, journal = {Journal of geophysical research : Earth surface}, number = {4}, publisher = {American Geophysical Union}, address = {Hoboken}, issn = {2169-9003}, doi = {10.1029/2018JF004823}, pages = {920 -- 937}, year = {2019}, abstract = {Thawing of subsea permafrost can impact offshore infrastructure, affect coastal erosion, and release permafrost organic matter. Thawing is usually modeled as the result of heat transfer, although salt diffusion may play an important role in marine settings. To better quantify nearshore subsea permafrost thawing, we applied the CryoGRID2 heat diffusion model and coupled it to a salt diffusion model. We simulated coastline retreat and subsea permafrost evolution as it develops through successive stages of a thawing sequence at the Bykovsky Peninsula, Siberia. Sensitivity analyses for seawater salinity were performed to compare the results for the Bykovsky Peninsula with those of typical Arctic seawater. For the Bykovsky Peninsula, the modeled ice-bearing permafrost table (IBPT) for ice-rich sand and an erosion rate of 0.25m/year was 16.7 m below the seabed 350m offshore. The model outputs were compared to the IBPT depth estimated from coastline retreat and electrical resistivity surveys perpendicular to and crossing the shoreline of the Bykovsky Peninsula. The interpreted geoelectric data suggest that the IBPT dipped to 15-20m below the seabed at 350m offshore. Both results suggest that cold saline water forms beneath grounded ice and floating sea ice in shallow water, causing cryotic benthic temperatures. The freezing point depression produced by salt diffusion can delay or prevent ice formation in the sediment and enhance the IBPT degradation rate. Therefore, salt diffusion may facilitate the release of greenhouse gasses to the atmosphere and considerably affect the design of offshore and coastal infrastructure in subsea permafrost areas.}, language = {en} } @phdthesis{Angermann2018, author = {Angermann, Lisa}, title = {Hillslope-stream connectivity across scales}, doi = {10.25932/publishup-42454}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424542}, school = {Universit{\"a}t Potsdam}, pages = {xix, 193}, year = {2018}, abstract = {The concept of hydrologic connectivity summarizes all flow processes that link separate regions of a landscape. As such, it is a central theme in the field of catchment hydrology, with influence on neighboring disciplines such as ecology and geomorphology. It is widely acknowledged to be an important key in understanding the response behavior of a catchment and has at the same time inspired research on internal processes over a broad range of scales. From this process-hydrological point of view, hydrological connectivity is the conceptual framework to link local observations across space and scales. This is the context in which the four studies this thesis comprises of were conducted. The focus was on structures and their spatial organization as important control on preferential subsurface flow. Each experiment covered a part of the conceptualized flow path from hillslopes to the stream: soil profile, hillslope, riparian zone, and stream. For each study site, the most characteristic structures of the investigated domain and scale, such as slope deposits and peat layers were identified based on preliminary or previous investigations or literature reviews. Additionally, further structural data was collected and topographical analyses were carried out. Flow processes were observed either based on response observations (soil moisture changes or discharge patterns) or direct measurement (advective heat transport). Based on these data, the flow-relevance of the characteristic structures was evaluated, especially with regard to hillslope to stream connectivity. Results of the four studies revealed a clear relationship between characteristic spatial structures and the hydrological behavior of the catchment. Especially the spatial distribution of structures throughout the study domain and their interconnectedness were crucial for the establishment of preferential flow paths and their relevance for large-scale processes. Plot and hillslope-scale irrigation experiments showed that the macropores of a heterogeneous, skeletal soil enabled preferential flow paths at the scale of centimeters through the otherwise unsaturated soil. These flow paths connected throughout the soil column and across the hillslope and facilitated substantial amounts of vertical and lateral flow through periglacial slope deposits. In the riparian zone of the same headwater catchment, the connectivity between hillslopes and stream was controlled by topography and the dualism between characteristic subsurface structures and the geomorphological heterogeneity of the stream channel. At the small scale (1 m to 10 m) highest gains always occurred at steps along the longitudinal streambed profile, which also controlled discharge patterns at the large scale (100 m) during base flow conditions (number of steps per section). During medium and high flow conditions, however, the impact of topography and parafluvial flow through riparian zone structures prevailed and dominated the large-scale response patterns. In the streambed of a lowland river, low permeability peat layers affected the connectivity between surface water and groundwater, but also between surface water and the hyporheic zone. The crucial factor was not the permeability of the streambed itself, but rather the spatial arrangement of flow-impeding peat layers, causing increased vertical flow through narrow "windows" in contrast to predominantly lateral flow in extended areas of high hydraulic conductivity sediments. These results show that the spatial organization of structures was an important control for hydrological processes at all scales and study areas. In a final step, the observations from different scales and catchment elements were put in relation and compared. The main focus was on the theoretical analysis of the scale hierarchies of structures and processes and the direction of causal dependencies in this context. Based on the resulting hierarchical structure, a conceptual framework was developed which is capable of representing the system's complexity while allowing for adequate simplifications. The resulting concept of the parabolic scale series is based on the insight that flow processes in the terrestrial part of the catchment (soil and hillslopes) converge. This means that small-scale processes assemble and form large-scale processes and responses. Processes in the riparian zone and the streambed, however, are not well represented by the idea of convergence. Here, the large-scale catchment signal arrives and is modified by structures in the riparian zone, stream morphology, and the small-scale interactions between surface water and groundwater. Flow paths diverge and processes can better be represented by proceeding from large scales to smaller ones. The catchment-scale representation of processes and structures is thus the conceptual link between terrestrial hillslope processes and processes in the riparian corridor.}, language = {en} } @article{AngermannJackischAllroggenetal.2017, author = {Angermann, Lisa and Jackisch, Conrad and Allroggen, Niklas and Sprenger, Matthias and Zehe, Erwin and Tronicke, Jens and Weiler, Markus and Blume, Theresa}, title = {Form and function in hillslope hydrology: characterization of subsurface flow based on response observations}, series = {Hydrology and earth system sciences : HESS}, volume = {21}, journal = {Hydrology and earth system sciences : HESS}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-21-3727-2017}, pages = {3727 -- 3748}, year = {2017}, abstract = {The phrase form and function was established in architecture and biology and refers to the idea that form and functionality are closely correlated, influence each other, and co-evolve. We suggest transferring this idea to hydrological systems to separate and analyze their two main characteristics: their form, which is equivalent to the spatial structure and static properties, and their function, equivalent to internal responses and hydrological behavior. While this approach is not particularly new to hydrological field research, we want to employ this concept to explicitly pursue the question of what information is most advantageous to understand a hydrological system. We applied this concept to subsurface flow within a hillslope, with a methodological focus on function: we conducted observations during a natural storm event and followed this with a hillslope-scale irrigation experiment. The results are used to infer hydrological processes of the monitored system. Based on these findings, the explanatory power and conclusiveness of the data are discussed. The measurements included basic hydrological monitoring methods, like piezometers, soil moisture, and discharge measurements. These were accompanied by isotope sampling and a novel application of 2-D time-lapse GPR (ground-penetrating radar). The main finding regarding the processes in the hillslope was that preferential flow paths were established quickly, despite unsaturated conditions. These flow paths also caused a detectable signal in the catchment response following a natural rainfall event, showing that these processes are relevant also at the catchment scale. Thus, we conclude that response observations (dynamics and patterns, i.e., indicators of function) were well suited to describing processes at the observational scale. Especially the use of 2-D time-lapse GPR measurements, providing detailed subsurface response patterns, as well as the combination of stream-centered and hillslope-centered approaches, allowed us to link processes and put them in a larger context. Transfer to other scales beyond observational scale and generalizations, however, rely on the knowledge of structures (form) and remain speculative. The complementary approach with a methodological focus on form (i.e., structure exploration) is presented and discussed in the companion paper by Jackisch et al. (2017).}, language = {en} } @phdthesis{Anis2013, author = {Anis, Muhammad Rehan}, title = {Climate change effects on overland flow}, address = {Potsdam}, pages = {127 S.}, year = {2013}, language = {en} } @article{AnoopPrasadBasavaiahetal.2012, author = {Anoop, A. and Prasad, S. and Basavaiah, Nathani and Brauer, Achim and Shahzad, F. and Deenadayalan, K.}, title = {Tectonic versus climate influence on landscape evolution: A case study from the upper Spiti valley, NW Himalaya}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {145}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2011.10.028}, pages = {32 -- 44}, year = {2012}, abstract = {We have undertaken structural, geomorphological, and morphometric analyses to investigate the role of tectonism and climate in the landscape evolution in the upper Spiti valley, NW Himalayas. Geomorphometric analyses coupled with field investigations reveal active tectonic deformation in the Spiti region. The calculated geomorphic indices (steepness, concavity and Hack) demonstrate uplift/subsidence along the Kaurik-Chango fault, whereas transverse topographic index (T-index) reveals basin tilting associated with active faulting near Hansa and Lingti valley. Investigation of well-dated Mane palaeolake sediments also provides evidence of regional tectonic instability. Four episodes (ca. 7.8, 7.4, 6.5 and 6.1 cal ka) of neotectonic activity have been identified during the period of the lake's existence. We have also compiled data on the regional climate variability and compared it with the age of the Mane palaeo-landslide. Our results indicate that the landslide occurred towards the end of the early Holocene intensified monsoon phase and is located near an active fault. Our data on regional tectonic instability and the coincidences of modern and palaeo-landslides with zones of active deformation suggest that tectonism is an important factor governing landscape stability in the Spiti region.}, language = {en} } @article{AnoopPrasadPlessenetal.2013, author = {Anoop, Ambili and Prasad, S. and Plessen, Birgit and Basavaiah, Nathani and Gaye, B. and Naumann, R. and Menzel, P. and Weise, S. and Brauer, Achim}, title = {Palaeoenvironmental implications of evaporative gaylussite crystals from Lonar Lake, central India}, series = {Journal of quaternary science}, volume = {28}, journal = {Journal of quaternary science}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0267-8179}, doi = {10.1002/jqs.2625}, pages = {349 -- 359}, year = {2013}, abstract = {We have undertaken petrographic, mineralogical, geochemical and isotopic investigations on carbonate minerals found within a 10-m-long core from Lonar Lake, central India, with the aim of evaluating their potential as palaeoenvironmental proxies. The core encompasses the entire Holocene and is the first well-dated high-resolution record from central India. While calcite and/or aragonite were found throughout the core, the mineral gaylussite was found only in two specific intervals (46303890 and 2040560 cal a BP). Hydrochemical and isotope data from inflowing streams and lake waters indicate that evaporitic processes play a dominant role in the precipitation of carbonates within this lake. Isotopic (18O and 13C) studies on the evaporative gaylussite crystals and residual bulk carbonates (calcite) from the long core show that evaporation is the major control on 18O enrichment in both the minerals. However, in case of 13C additional mechanisms, for example methanogenesis (gaylussite) and phytoplankton productivity (calcium carbonate), play an additional important role in some intervals. We also discuss the relevance of our investigation for palaeoclimate reconstruction and late Holocene monsoon variability.}, language = {en} } @article{AnoopPrasadKrishnanetal.2013, author = {Anoop, Ambili and Prasad, Sushma and Krishnan, R. and Naumann, Rudolf and Dulski, Peter}, title = {Intensified monsoon and spatiotemporal changes in precipitation patterns in the NW Himalaya during the early-mid holocene}, series = {Quaternary international : the journal of the International Union for Quaternary Research}, volume = {313}, journal = {Quaternary international : the journal of the International Union for Quaternary Research}, publisher = {Elsevier}, address = {Oxford}, issn = {1040-6182}, doi = {10.1016/j.quaint.2013.08.014}, pages = {74 -- 84}, year = {2013}, abstract = {We have undertaken a high resolution palaeoclimate reconstruction on radiocarbon dated palaeolake sediments from the Spiti valley, NW Himalaya. This site lies in the climatically sensitive winter westerlies and Indian Summer Monsoon (ISM) transitional regime and provides an opportunity to reconstruct the precipitation seasonality, and extreme precipitation events that are characterised by intensified erosion. The lake sediments reveal distinct lithofacies that provide evidence of changes in depositional environment and climate during early to mid Holocene (8.7-6.1 cal ka BP). We have identified three stages during the period of lake's existence: the Stage I (8.7-7.6 cal ka BP) is marked by lake establishment; Stage II (similar to 7.6-6.8 cal ka BP) by sustained cooler periods and weakened summer monsoon, and Stage III (similar to 6.8-6.1 cal ka BP) by a shift from colder to warmer climate with stronger ISM. We have identified several short term cooler periods at ca. 8.7, 8.5, 8.3 and 7.2-6.9 cal ka BP. Based on an overview of regional climate records we show that there is an abrupt switch in precipitation seasonality ca. 6.8 cal ka BP that is followed by the onset of the intensified monsoon in the NW Himalaya. (C) 2013 Elsevier Ltd and INQUA. All rights reserved.}, language = {en} } @phdthesis{Antonoglou2024, author = {Antonoglou, Nikolaos}, title = {GNSS-based remote sensing: Innovative observation of key hydrological parameters in the Central Andes}, doi = {10.25932/publishup-62825}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-628256}, school = {Universit{\"a}t Potsdam}, pages = {xxii, 116}, year = {2024}, abstract = {The Central Andean region is characterized by diverse climate zones with sharp transitions between them. In this work, the area of interest is the South-Central Andes in northwestern Argentina that borders with Bolivia and Chile. The focus is the observation of soil moisture and water vapour with Global Navigation Satellite System (GNSS) remote-sensing methodologies. Because of the rapid temporal and spatial variations of water vapour and moisture circulations, monitoring this part of the hydrological cycle is crucial for understanding the mechanisms that control the local climate. Moreover, GNSS-based techniques have previously shown high potential and are appropriate for further investigation. This study includes both logistic-organization effort and data analysis. As for the prior, three GNSS ground stations were installed in remote locations in northwestern Argentina to acquire observations, where there was no availability of third-party data. The methodological development for the observation of the climate variables of soil moisture and water vapour is independent and relies on different approaches. The soil-moisture estimation with GNSS reflectometry is an approximation that has demonstrated promising results, but it has yet to be operationally employed. Thus, a more advanced algorithm that exploits more observations from multiple satellite constellations was developed using data from two pilot stations in Germany. Additionally, this algorithm was slightly modified and used in a sea-level measurement campaign. Although the objective of this application is not related to monitoring hydrological parameters, its methodology is based on the same principles and helps to evaluate the core algorithm. On the other hand, water-vapour monitoring with GNSS observations is a well-established technique that is utilized operationally. Hence, the scope of this study is conducting a meteorological analysis by examining the along-the-zenith air-moisture levels and introducing indices related to the azimuthal gradient. The results of the experiments indicate higher-quality soil moisture observations with the new algorithm. Furthermore, the analysis using the stations in northwestern Argentina illustrates the limits of this technology because of varying soil conditions and shows future research directions. The water-vapour analysis points out the strong influence of the topography on atmospheric moisture circulation and rainfall generation. Moreover, the GNSS time series allows for the identification of seasonal signatures, and the azimuthal-gradient indices permit the detection of main circulation pathways.}, language = {en} } @article{ApaesteguiCruzVuilleetal.2018, author = {Apaestegui, James and Cruz, Francisco William and Vuille, Mathias and Fohlmeister, Jens Bernd and Carlo Espinoza, Jhan and Sifeddine, Abdelfettah and Strikis, Nicolas and Guyot, Jean Loup and Ventura, Roberto and Cheng, Hai and Edwards, R. Lawrence}, title = {Precipitation changes over the eastern Bolivian Andes inferred from speleothem (delta O-18) records for the last 1400 years}, series = {Earth \& planetary science letters}, volume = {494}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2018.04.048}, pages = {124 -- 134}, year = {2018}, abstract = {Here we present high-resolution delta O-18 records obtained from speleothems collected in the eastern Bolivian Andes. The stable isotope records are related to the regional- to large-scale atmospheric circulation over South America and allow interpreting changes in delta O-18 during the last 1400 yr as a function of changes in precipitation regimes over the southern tropical Andes. Two distinct phases with more negative delta O-18 values, interpreted as periods of increased convective activity over the eastern Andean Cordillera in Bolivia are observed concomitantly with periods of global climate anomalies during the last millennium, such as the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) respectively. Changes in the Bolivian delta O-18 record during the LIA are apparently related to a southward displacement of the Intertropical Convergence Zone (ITCZ), which acts as a main moisture driver to intensify convection over the tropical continent. During the MCA, however, the increased convective activity observed in the Bolivian record is likely the result of a different mechanism, which implies moisture sourced mainly from the southern tropical Atlantic. This interpretation is consistent with paleoclimate records further to the north in the tropical Andes that show progressively drier conditions during this time period, indicating a more northerly position of the ITCZ. The transition period between the MCA and the LIA shows a slight tendency toward increased delta O-18 values, indicating weakened convective activity. Our results also reveal a non-stationary anti-phased behavior between the delta O-18 reconstructions from Bolivia and northeastern Brazil that confirms a continental-scale east-west teleconnection across South America during the LIA.}, language = {en} } @article{AramayoGuzmanHongnetal.2017, author = {Aramayo, Alejandro and Guzman, Silvina and Hongn, Fernando D. and del Papa, Cecilia and Montero-Lopez, Carolina and Sudo, Masafumi}, title = {A Middle Miocene (13.5-12 Ma) deformational event constrained by volcanism along the Puna-Eastern Cordillera border, NW Argentina}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {703}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2017.02.018}, pages = {9 -- 22}, year = {2017}, abstract = {The features of Middle Miocene deposits in the Puna-Eastern Cordillera transition (Valles Calchaquies) indicate that Cenozoic deformation, sedimentation and volcanism follow a complex spatiotemporal relationship. The intense volcanic activity recorded in the eastern Puna border between 14 and 11.5 Ma coincides with the occurrence of one of the most important deformation events of the Neogene tectonic evolution in the region. Studies performed across the Puna-Eastern Cordillera transition show different relationships between volcanic deposits of ca. 13.5-12.1 Ma and the Oligocene-Miocene Angastaco Formation. In this paper we describe the ash-flow tuff deposits which are the first of this type found concordant in the sedimentary fill of Valles Calchaquies. Several analyses performed on these pyroclastic deposits allow a correlation to be made with the Alto de Las Lagunas Ignimbrite (ca. 13.5 Ma) of the Pucarilla-Cerro Tipillas Volcanic Complex located in the Puna. Outcrops of the ca. 13.5 Ma pyroclastic deposits are recognised within the Puna and the Valle Calchaqui. However, in the southern prolongation of the Valle de Hualfin (Tiopampa-Pucarilla depression) that separates the Puna from the Valle Calchaqui at these latitudes, these deposits are partially eroded and buried, and thus their occurrence is recorded only by abundant volcanic clasts included in conglomerates of the Angastaco Formation. The sedimentation of the Angastaco Formation was aborted at ca. 12 Ma in the Tiopampa-Pucarilla depression by the Pucarilla Ignimbrite, which unconformably covers the synorogenic units. On the contrary, in the Valle Calchaqui the sedimentation of the Angastaco Formation continued until the Late Miocene. The different relationships between the Miocene Angastaco Formation and the ignimbrites with ages of ca. 13.5 and ca. 12 Ma reveal that in this short period (-1.5 m.y.) a significant deformation event took place and resulted in marked palaeogeographic changes, as evidenced by stratigraphic-sedimentological and chronological records in the Angastaco Formation. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @article{ArayaVargasMeqbelRitteretal.2019, author = {Araya Vargas, Jaime Andr{\´e}s and Meqbel, Naser M. and Ritter, Oliver and Brasse, H. and Weckmann, Ute and Yanez, Gonzalo and Godoy, B.}, title = {Fluid Distribution in the Central Andes Subduction Zone Imaged With Magnetotellurics}, series = {Journal of geophysical research : Solid earth}, volume = {124}, journal = {Journal of geophysical research : Solid earth}, number = {4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2018JB016933}, pages = {4017 -- 4034}, year = {2019}, abstract = {We present a model of the electrical resistivity structure of the lithosphere in the Central Andes between 20 degrees and 24 degrees S from 3-D inversion of 56 long-period magnetotelluric sites. Our model shows a complex resistivity structure with significant variability parallel and perpendicular to the trench direction. The continental forearc is characterized mainly by high electrical resistivity (>1,000m), suggesting overall low volumes of fluids. However, low resistivity zones (LRZs, <5m) were found in the continental forearc below areas where major trench-parallel faults systems intersect NW-SE transverse faults. Forearc LRZs indicate circulation and accumulation of fluids in highly permeable fault zones. The continental crust along the arc shows three distinctive resistivity domains, which coincide with segmentation in the distribution of volcanoes. The northern domain (20 degrees-20.5 degrees S) is characterized by resistivities >1,000m and the absence of active volcanism, suggesting the presence of a low-permeability block in the continental crust. The central domain (20.5 degrees-23 degrees S) exhibits a number of LRZs at varying depths, indicating different levels of a magmatic plumbing system. The southern domain (23 degrees-24 degrees S) is characterized by resistivities >1,000m, suggesting the absence of large magma reservoirs below the volcanic chain at crustal depths. Magma reservoirs located below the base of the crust or in the backarc may fed active volcanism in the southern domain. In the subcontinental mantle, the model exhibits LRZs in the forearc mantle wedge and above clusters of intermediate-depth seismicity, likely related to fluids produced by serpentinization of the mantle and eclogitization of the slab, respectively.}, language = {en} } @phdthesis{ArboledaZapata2023, author = {Arboleda Zapata, Mauricio}, title = {Adapted inversion strategies for electrical resistivity data to explore layered near-surface environments}, doi = {10.25932/publishup-58135}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-581357}, school = {Universit{\"a}t Potsdam}, pages = {115}, year = {2023}, abstract = {The electrical resistivity tomography (ERT) method is widely used to investigate geological, geotechnical, and hydrogeological problems in inland and aquatic environments (i.e., lakes, rivers, and seas). The objective of the ERT method is to obtain reliable resistivity models of the subsurface that can be interpreted in terms of the subsurface structure and petrophysical properties. The reliability of the resulting resistivity models depends not only on the quality of the acquired data, but also on the employed inversion strategy. Inversion of ERT data results in multiple solutions that explain the measured data equally well. Typical inversion approaches rely on different deterministic (local) strategies that consider different smoothing and damping strategies to stabilize the inversion. However, such strategies suffer from the trade-off of smearing possible sharp subsurface interfaces separating layers with resistivity contrasts of up to several orders of magnitude. When prior information (e.g., from outcrops, boreholes, or other geophysical surveys) suggests sharp resistivity variations, it might be advantageous to adapt the parameterization and inversion strategies to obtain more stable and geologically reliable model solutions. Adaptations to traditional local inversions, for example, by using different structural and/or geostatistical constraints, may help to retrieve sharper model solutions. In addition, layer-based model parameterization in combination with local or global inversion approaches can be used to obtain models with sharp boundaries. In this thesis, I study three typical layered near-surface environments in which prior information is used to adapt 2D inversion strategies to favor layered model solutions. In cooperation with the coauthors of Chapters 2-4, I consider two general strategies. Our first approach uses a layer-based model parameterization and a well-established global inversion strategy to generate ensembles of model solutions and assess uncertainties related to the non-uniqueness of the inverse problem. We apply this method to invert ERT data sets collected in an inland coastal area of northern France (Chapter~2) and offshore of two Arctic regions (Chapter~3). Our second approach consists of using geostatistical regularizations with different correlation lengths. We apply this strategy to a more complex subsurface scenario on a local intermountain alluvial fan in southwestern Germany (Chapter~4). Overall, our inversion approaches allow us to obtain resistivity models that agree with the general geological understanding of the studied field sites. These strategies are rather general and can be applied to various geological environments where a layered subsurface structure is expected. The flexibility of our strategies allows adaptations to invert other kinds of geophysical data sets such as seismic refraction or electromagnetic induction methods, and could be considered for joint inversion approaches.}, language = {en} } @misc{ArboledaZapataAngelopoulosOverduinetal.2022, author = {Arboleda-Zapata, Mauricio and Angelopoulos, Michael and Overduin, Pier Paul and Grosse, Guido and Jones, Benjamin M. and Tronicke, Jens}, title = {Exploring the capabilities of electrical resistivity tomography to study subsea permafrost}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1285}, issn = {1866-8372}, doi = {10.25932/publishup-57123}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571234}, pages = {4423 -- 4445}, year = {2022}, abstract = {Sea level rise and coastal erosion have inundated large areas of Arctic permafrost. Submergence by warm and saline waters increases the rate of inundated permafrost thaw compared to sub-aerial thawing on land. Studying the contact between the unfrozen and frozen sediments below the seabed, also known as the ice-bearing permafrost table (IBPT), provides valuable information to understand the evolution of sub-aquatic permafrost, which is key to improving and understanding coastal erosion prediction models and potential greenhouse gas emissions. In this study, we use data from 2D electrical resistivity tomography (ERT) collected in the nearshore coastal zone of two Arctic regions that differ in their environmental conditions (e.g., seawater depth and resistivity) to image and study the subsea permafrost. The inversion of 2D ERT data sets is commonly performed using deterministic approaches that favor smoothed solutions, which are typically interpreted using a user-specified resistivity threshold to identify the IBPT position. In contrast, to target the IBPT position directly during inversion, we use a layer-based model parameterization and a global optimization approach to invert our ERT data. This approach results in ensembles of layered 2D model solutions, which we use to identify the IBPT and estimate the resistivity of the unfrozen and frozen sediments, including estimates of uncertainties. Additionally, we globally invert 1D synthetic resistivity data and perform sensitivity analyses to study, in a simpler way, the correlations and influences of our model parameters. The set of methods provided in this study may help to further exploit ERT data collected in such permafrost environments as well as for the design of future field experiments.}, language = {en} } @article{ArboledaZapataAngelopoulosOverduinetal.2022, author = {Arboleda-Zapata, Mauricio and Angelopoulos, Michael and Overduin, Pier Paul and Grosse, Guido and Jones, Benjamin M. and Tronicke, Jens}, title = {Exploring the capabilities of electrical resistivity tomography to study subsea permafrost}, series = {The Cryosphere}, volume = {16}, journal = {The Cryosphere}, publisher = {Copernicus}, address = {Katlenburg-Lindau}, issn = {1994-0424}, doi = {10.5194/tc-16-4423-2022}, pages = {4423 -- 4445}, year = {2022}, abstract = {Sea level rise and coastal erosion have inundated large areas of Arctic permafrost. Submergence by warm and saline waters increases the rate of inundated permafrost thaw compared to sub-aerial thawing on land. Studying the contact between the unfrozen and frozen sediments below the seabed, also known as the ice-bearing permafrost table (IBPT), provides valuable information to understand the evolution of sub-aquatic permafrost, which is key to improving and understanding coastal erosion prediction models and potential greenhouse gas emissions. In this study, we use data from 2D electrical resistivity tomography (ERT) collected in the nearshore coastal zone of two Arctic regions that differ in their environmental conditions (e.g., seawater depth and resistivity) to image and study the subsea permafrost. The inversion of 2D ERT data sets is commonly performed using deterministic approaches that favor smoothed solutions, which are typically interpreted using a user-specified resistivity threshold to identify the IBPT position. In contrast, to target the IBPT position directly during inversion, we use a layer-based model parameterization and a global optimization approach to invert our ERT data. This approach results in ensembles of layered 2D model solutions, which we use to identify the IBPT and estimate the resistivity of the unfrozen and frozen sediments, including estimates of uncertainties. Additionally, we globally invert 1D synthetic resistivity data and perform sensitivity analyses to study, in a simpler way, the correlations and influences of our model parameters. The set of methods provided in this study may help to further exploit ERT data collected in such permafrost environments as well as for the design of future field experiments.}, language = {en} } @article{ArboledaZapataGuillemoteauTronicke2022, author = {Arboleda-Zapata, Mauricio and Guillemoteau, Julien and Tronicke, Jens}, title = {A comprehensive workflow to analyze ensembles of globally inverted 2D electrical resistivity models}, series = {Journal of applied geophysics}, volume = {196}, journal = {Journal of applied geophysics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0926-9851}, doi = {10.1016/j.jappgeo.2021.104512}, pages = {12}, year = {2022}, abstract = {Electrical resistivity tomography (ERT) aims at imaging the subsurface resistivity distribution and provides valuable information for different geological, engineering, and hydrological applications. To obtain a subsurface resistivity model from measured apparent resistivities, stochastic or deterministic inversion procedures may be employed. Typically, the inversion of ERT data results in non-unique solutions; i.e., an ensemble of different models explains the measured data equally well. In this study, we perform inference analysis of model ensembles generated using a well-established global inversion approach to assess uncertainties related to the nonuniqueness of the inverse problem. Our interpretation strategy starts by establishing model selection criteria based on different statistical descriptors calculated from the data residuals. Then, we perform cluster analysis considering the inverted resistivity models and the corresponding data residuals. Finally, we evaluate model uncertainties and residual distributions for each cluster. To illustrate the potential of our approach, we use a particle swarm optimization (PSO) algorithm to obtain an ensemble of 2D layer-based resistivity models from a synthetic data example and a field data set collected in Loon-Plage, France. Our strategy performs well for both synthetic and field data and allows us to extract different plausible model scenarios with their associated uncertainties and data residual distributions. Although we demonstrate our workflow using 2D ERT data and a PSObased inversion approach, the proposed strategy is general and can be adapted to analyze model ensembles generated from other kinds of geophysical data and using different global inversion approaches.}, language = {en} } @article{ArcayDoinTricetal.2006, author = {Arcay, Diane and Doin, Marie Pierre and Tric, Emmanuel and Bousquet, Romain and de Capitani, Christian}, title = {Overriding plate thinning in subduction zones : localized convection induced by slab dehydration}, issn = {1525-2027}, doi = {10.1029/2005gc001061}, year = {2006}, abstract = {In subduction zones, many observations indicate that the backarc thermal state is particularly hot and that the upper lithosphere is thin, even if no recent extension episode has occurred. This might result from free thermal convection favored by low viscosities in the hydrated mantle wedge. We perform 2-D numerical experiments of the convective mantle wedge interaction with both the downgoing slab and the overriding plate to test this hypothesis, explore its physical mechanism, and assess its dependencies on some relevant rock properties. Water transfers across the subducting plate and the mantle wedge are explicitly modeled by including in the calculation realistic hydration/ dehydration reaction boundaries for a water-saturated mantle and oceanic crust. The rheology is non-Newtonian and temperature-, pressure-, and water content-dependent. For low strength reduction associated to water content, the upper plate is locally thinned by an enhanced corner flow. For larger strength reductions, small convection cells rapidly thin the upper plate ( in less than 15 Myr) over the area in the overriding lithosphere hydrated by slab-derived water fluxes. As a result, the thinned region location depends on the subducting plate thermal state, and it increases with high convergence rates and low subduction dip angles. Other simulations are performed to test the sole effect of hydrous rock weakening on the upper plate/mantle convective interaction. They show that the thinning process is not influenced by the corner flow, but develops at the favor of a decoupling level induced by the formation of hydroxylated minerals inside the hydrated lithosphere. The erosion mechanism identified in these simulations allows us to explain the characteristic duration of erosion as a function of the hydrous strength reduction. We find that the presence of amphibole in the upper lithosphere in significant proportions is required down to a temperature of about 980 degrees C, corresponding to an initial depth of similar to 70 km, to strongly decrease the strength of the base of the lithosphere and trigger a rapid erosion (< 15 Myr).}, language = {en} } @article{AriagnoLeBouteillervanderBeeketal.2022, author = {Ariagno, Coline and Le Bouteiller, Caroline and van der Beek, Pieter A. and Klotz, S{\´e}bastien}, title = {Sediment export in marly badland catchments modulated by frost-cracking intensity, Draix-Bl{\´e}one Critical Zone Observatory, SE France}, series = {Earth surface dynamics : ESURF ; an interactive open access journal of the European Geosciences Union}, volume = {10}, journal = {Earth surface dynamics : ESURF ; an interactive open access journal of the European Geosciences Union}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-10-81-2022}, pages = {81 -- 96}, year = {2022}, abstract = {At the interface between the lithosphere and the atmosphere, the critical zone records the complex interactions between erosion, climate, geologic substrate, and life and can be directly monitored. Long data records (30 consecutive years for sediment yields) collected in the sparsely vegetated, steep, and small marly badland catchments of the Draix-Bleone Critical Zone Observatory (CZO), SE France, allow analyzing potential climatic controls on regolith dynamics and sediment export. Although widely accepted as a first-order control, rainfall variability does not fully explain the observed interannual variability in sediment export. Previous studies in this area have suggested that frost-weathering processes could drive regolith production and potentially modulate the observed pattern of sediment export. Here, we define sediment export anomalies as the residuals from a predictive model with annual rainfall intensity above a threshold as the control. We then use continuous soil temperature data recorded at different locations over multiple years to highlight the role of different frost-weathering processes (i.e., ice segregation versus volumetric expansion) in regolith production. Several proxies for different frost-weathering processes have been calculated from these data and compared to the sediment export anomalies, with careful consideration of field data quality. Our results suggest that frost-cracking intensity (linked to ice segregation) can explain about half (47 \%-64 \%) of the sediment export anomalies. In contrast, the number of freeze-thaw cycles (linked to volumetric expansion) has only a minor impact on catchment sediment response. The time spent below 0 degrees C also correlates well with the sediment export anomalies and requires fewer field data to be calculated than the frost-cracking intensity. Thus, frost-weathering processes modulate sediment export by controlling regolith production in these catchments and should be taken into account when building predictive models of sediment export from these badlands under a changing climate.}, language = {en} } @article{ArmbrusterBermanceZebecetal.1998, author = {Armbruster, Thomas and Bermance, V. and Zebec, M. and Oberh{\"a}nsli, Roland}, title = {Titanium and iron poor zincoh{\"o}gbomite-16H, Zn14(al,Fe3+,Ti,Mg)8Al24O62(OH)2, from Nezilovo, Macedonia: occurrence and crystal structure of a new polysome}, year = {1998}, language = {en} } @article{ArmstrongRadouskyAustinetal.2022, author = {Armstrong, Michael R. and Radousky, Harry B. and Austin, Ryan A. and Tschauner, Oliver and Brown, Shaughnessy and Gleason, Arianna E. and Goldman, Nir and Granados, Eduardo and Grivickas, Paulius and Holtgrewe, Nicholas and Kroonblawd, Matthew P. and Lee, Hae Ja and Lobanov, Sergey and Nagler, Bob and Nam, Inhyuk and Prakapenka, Vitali and Prescher, Clemens and Reed, Evan J. and Stavrou, Elissaios and Walter, Peter and Goncharov, Alexander F. and Belof, Jonathan L.}, title = {Highly ordered graphite (HOPG) to hexagonal diamond (lonsdaleite) phase transition observed on picosecond time scales using ultrafast x-ray diffraction}, series = {Journal of applied physics}, volume = {132}, journal = {Journal of applied physics}, number = {5}, publisher = {AIP Publishing}, address = {Melville}, issn = {0021-8979}, doi = {10.1063/5.0085297}, pages = {10}, year = {2022}, abstract = {The response of rapidly compressed highly oriented pyrolytic graphite (HOPG) normal to its basal plane was investigated at a pressure of \& SIM;80 GPa. Ultrafast x-ray diffraction using \& SIM;100 fs pulses at the Materials Under Extreme Conditions sector of the Linac Coherent Light Source was used to probe the changes in crystal structure resulting from picosecond timescale compression at laser drive energies ranging from 2.5 to 250 mJ. A phase transformation from HOPG to a highly textured hexagonal diamond structure is observed at the highest energy, followed by relaxation to a still highly oriented, but distorted graphite structure following release. We observe the formation of a highly oriented lonsdaleite within 20 ps, subsequent to compression. This suggests that a diffusionless martensitic mechanism may play a fundamental role in phase transition, as speculated in an early work on this system, and more recent static studies of diamonds formed in impact events. Published by AIP Publishing.}, language = {en} } @article{ArnousZeckraVenerdinietal.2020, author = {Arnous, Ahmad and Zeckra, Martin and Venerdini, Agostina and Alvarado, Patricia and Arrowsmith, Ram{\´o}n and Guillemoteau, Julien and Landgraf, Angela and Guti{\´e}rrez, Adolfo Antonio and Strecker, Manfred}, title = {Neotectonic Activity in the Low-Strain Broken Foreland (Santa B{\´a}rbara System) of the North-Western Argentinean Andes (26°S)}, series = {Lithosphere}, volume = {2020}, journal = {Lithosphere}, number = {1}, publisher = {GSA}, address = {Boulder, Colo.}, issn = {1947-4253}, doi = {10.2113/2020/8888588}, pages = {1 -- 25}, year = {2020}, abstract = {Uplift in the broken Andean foreland of the Argentine Santa B{\´a}rbara System (SBS) is associated with the contractional reactivation of basement anisotropies, similar to those reported from the thick-skinned Cretaceous-Eocene Laramide province of North America. Fault scarps, deformed Quaternary deposits and landforms, disrupted drainage patterns, and medium-sized earthquakes within the SBS suggest that movement along these structures may be a recurring phenomenon, with yet to be defined repeat intervals and rupture lengths. In contrast to the Subandes thrust belt farther north, where eastward-migrating deformation has generated a well-defined thrust front, the SBS records spatiotemporally disparate deformation along structures that are only known to the first order. We present herein the results of geomorphic desktop analyses, structural field observations, and 2D electrical resistivity tomography and seismic-refraction tomography surveys and an interpretation of seismic reflection profiles across suspected fault scarps in the sedimentary basins adjacent to the Candelaria Range (CR) basement uplift, in the south-central part of the SBS. Our analysis in the CR piedmont areas reveals consistency between the results of near-surface electrical resistivity and seismic-refraction tomography surveys, the locations of prominent fault scarps, and structural geometries at greater depth imaged by seismic reflection data. We suggest that this deformation is driven by deep-seated blind thrusting beneath the CR and associated regional warping, while shortening involving Mesozoic and Cenozoic sedimentary strata in the adjacent basins was accommodated by layer-parallel folding and flexural-slip faults that cut through Quaternary landforms and deposits at the surface.}, language = {en} } @misc{ArnousZeckraVenerdinietal.2020, author = {Arnous, Ahmad and Zeckra, Martin and Venerdini, Agostina and Alvarado, Patricia and Arrowsmith, Ram{\´o}n and Guillemoteau, Julien and Landgraf, Angela and Guti{\´e}rrez, Adolfo Antonio and Strecker, Manfred}, title = {Neotectonic Activity in the Low-Strain Broken Foreland (Santa B{\´a}rbara System) of the North-Western Argentinean Andes (26°S)}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {1008}, issn = {1866-8372}, doi = {10.25932/publishup-48018}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-480183}, pages = {1 -- 25}, year = {2020}, abstract = {Uplift in the broken Andean foreland of the Argentine Santa B{\´a}rbara System (SBS) is associated with the contractional reactivation of basement anisotropies, similar to those reported from the thick-skinned Cretaceous-Eocene Laramide province of North America. Fault scarps, deformed Quaternary deposits and landforms, disrupted drainage patterns, and medium-sized earthquakes within the SBS suggest that movement along these structures may be a recurring phenomenon, with yet to be defined repeat intervals and rupture lengths. In contrast to the Subandes thrust belt farther north, where eastward-migrating deformation has generated a well-defined thrust front, the SBS records spatiotemporally disparate deformation along structures that are only known to the first order. We present herein the results of geomorphic desktop analyses, structural field observations, and 2D electrical resistivity tomography and seismic-refraction tomography surveys and an interpretation of seismic reflection profiles across suspected fault scarps in the sedimentary basins adjacent to the Candelaria Range (CR) basement uplift, in the south-central part of the SBS. Our analysis in the CR piedmont areas reveals consistency between the results of near-surface electrical resistivity and seismic-refraction tomography surveys, the locations of prominent fault scarps, and structural geometries at greater depth imaged by seismic reflection data. We suggest that this deformation is driven by deep-seated blind thrusting beneath the CR and associated regional warping, while shortening involving Mesozoic and Cenozoic sedimentary strata in the adjacent basins was accommodated by layer-parallel folding and flexural-slip faults that cut through Quaternary landforms and deposits at the surface.}, language = {en} } @misc{AroduduHelmingWiggeringetal.2017, author = {Arodudu, Oludunsin Tunrayo and Helming, Katharina and Wiggering, Hubert and Voinov, Alexey}, title = {Bioenergy from low-intensity agricultural systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400403}, pages = {18}, year = {2017}, abstract = {In light of possible future restrictions on the use of fossil fuel, due to climate change obligations and continuous depletion of global fossil fuel reserves, the search for alternative renewable energy sources is expected to be an issue of great concern for policy stakeholders. This study assessed the feasibility of bioenergy production under relatively low-intensity conservative, eco-agricultural settings (as opposed to those produced under high-intensity, fossil fuel based industrialized agriculture). Estimates of the net energy gain (NEG) and the energy return on energy invested (EROEI) obtained from a life cycle inventory of the energy inputs and outputs involved reveal that the energy efficiency of bioenergy produced in low-intensity eco-agricultural systems could be as much as much as 448.5-488.3 GJ·ha-1 of NEG and an EROEI of 5.4-5.9 for maize ethanol production systems, and as much as 155.0-283.9 GJ·ha-1 of NEG and an EROEI of 14.7-22.4 for maize biogas production systems. This is substantially higher than for industrialized agriculture with a NEG of 2.8-52.5 GJ·ha-1 and an EROEI of 1.2-1.7 for maize ethanol production systems, as well as a NEG of 59.3-188.7 GJ·ha-1 and an EROEI of 2.2-10.2 for maize biogas production systems. Bioenergy produced in low-intensity eco-agricultural systems could therefore be an important source of energy with immense net benefits for local and regional end-users, provided a more efficient use of the co-products is ensured.}, language = {en} } @article{ArrowsmithCrosbyKorzhenkovetal.2017, author = {Arrowsmith, J. Ramon and Crosby, Christopher J. and Korzhenkov, Andrey M. and Mamyrov, Ernest and Povolotskaya, Irina and Guralnik, Benny and Landgraf, Angela}, title = {Surface rupture of the 1911 Kebin (Chon-Kemin) earthquake, Northern Tien Shan, Kyrgyzstan}, series = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, volume = {432}, journal = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, publisher = {The Geological Society}, address = {London}, isbn = {978-1-86239-745-3}, issn = {0305-8719}, doi = {10.1144/SP432.10}, pages = {233 -- 253}, year = {2017}, abstract = {The 1911 Chon-Kemin (Kebin) earthquake culminated c. 30 years of remarkable earthquakes in the northern Tien Shan (Kyrgyzstan and Kazakhstan). Building on prior mapping of the event, we traced its rupture in the field and measured more than 50 offset landforms. Cumulative fault rupture length is >155-195 km along 13 fault patches comprising six sections. The patches are separated by changes of dip magnitude or dip direction, or by 4-10 km-wide stepovers. One <40 km section overlaps and is parallel to the main north-dipping rupture but is 7 km north and dips opposite (south). Both ends of the rupture are along mountain front thrust faults demonstrating late Quaternary activity. We computed the moment from each fault patch using the surface fault traces, dip inferred from the traces, 20 km seismogenic thickness, rigidity of 3.3 x 10(10) N m(-2) and dip slip converted from our observations of the largely reverse sense of motion vertical offsets. The discontinuous patches with c. 3-4 m average slip and peak slip of <14 m yield a seismic moment of 4.6 x 10(20) Nm (M-w 7.78) to 7.4 x 10(20) Nm (M-w 7.91). The majority of moment was released along the inner eastern rupture segments. This geological moment is lower by a factor of 1.5 from that determined from teleseismic data.}, language = {en} } @article{ArrowsmithStrecker1999, author = {Arrowsmith, J. Ram{\´o}n and Strecker, Manfred}, title = {Seismotectonic range-front segmentation and mountain-belt growth in the Pamir-Alai region, Kyrgyzstan (India- Eurasia collision zone)}, year = {1999}, language = {en} } @article{AsariWardinski2018, author = {Asari, Seiki and Wardinski, Ingo}, title = {Interannual fluctuations of the core angular momentum inferred from geomagnetic field models}, series = {Magnetic Fields in the Solar System : Planets, Moons and Solar Wind Interactions}, volume = {448}, journal = {Magnetic Fields in the Solar System : Planets, Moons and Solar Wind Interactions}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-3-319-64292-5}, issn = {0067-0057}, doi = {10.1007/978-3-319-64292-5_4}, pages = {111 -- 123}, year = {2018}, language = {en} } @article{AseevShpritsWangetal.2019, author = {Aseev, Nikita and Shprits, Yuri Y. and Wang, Dedong and Wygant, John and Drozdov, Alexander and Kellerman, Adam C. and Reeves, Geoffrey D.}, title = {Transport and loss of ring current electrons inside geosynchronous orbit during the 17 March 2013 storm}, series = {Journal of geophysical research : Space physics}, volume = {124}, journal = {Journal of geophysical research : Space physics}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2018JA026031}, pages = {915 -- 933}, year = {2019}, abstract = {Ring current electrons (1-100 keV) have received significant attention in recent decades, but many questions regarding their major transport and loss mechanisms remain open. In this study, we use the four-dimensional Versatile Electron Radiation Belt code to model the enhancement of phase space density that occurred during the 17 March 2013 storm. Our model includes global convection, radial diffusion, and scattering into the Earth's atmosphere driven by whistler-mode hiss and chorus waves. We study the sensitivity of the model to the boundary conditions, global electric field, the electric field associated with subauroral polarization streams, electron loss rates, and radial diffusion coefficients. The results of the code are almost insensitive to the model parameters above 4.5 RERE, which indicates that the general dynamics of the electrons between 4.5 RE and the geostationary orbit can be explained by global convection. We found that the major discrepancies between the model and data can stem from the inaccurate electric field model and uncertainties in lifetimes. We show that additional mechanisms that are responsible for radial transport are required to explain the dynamics of ≥40-keV electrons, and the inclusion of the radial diffusion rates that are typically assumed in radiation belt studies leads to a better agreement with the data. The overall effect of subauroral polarization streams on the electron phase space density profiles seems to be smaller than the uncertainties in other input parameters. This study is an initial step toward understanding the dynamics of these particles inside the geostationary orbit.}, language = {en} } @article{AsgarimehrWickertReich2018, author = {Asgarimehr, Milad and Wickert, Jens and Reich, Sebastian}, title = {TDS-1 GNSS Reflectometry}, series = {IEEE journal of selected topics in applied earth observations and remote sensing}, volume = {11}, journal = {IEEE journal of selected topics in applied earth observations and remote sensing}, number = {11}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1939-1404}, doi = {10.1109/JSTARS.2018.2873241}, pages = {4534 -- 4541}, year = {2018}, abstract = {This study presents the development and a systematic evaluation study of GNSS reflectometry wind speeds. After establishing a wind speed retrieval algorithm, UK TechDemoSat-1 (TDS-1) derived winds, from May 2015 to July 2017, are compared to the Advanced Scatterometer (ASCAT). ERA-Interim wind fields of the European Centre for Medium-range Weather Forecasts (ECMWF) and in situ observation from Tropical Atmosphere Ocean buoy array in the Pacific are taken as reference. One-year averaged TDS-1 global winds demonstrate small differences with ECMWF in a majority of areas as well as discuss under- and overestimations. The pioneering TDS-1 winds demonstrate a root-mean-squared error (RMSE) and bias of 2.77 and -0.33 m/s, which are comparable to the RMSE and bias derived by ASCAT winds, as large as 2.31 and 0.25 m/s, respectively. Using buoys measurements as reference, RMSE and bias of 2.23 and -0.03 m/s for TDS-1 as well as 1.40 and -0.68 m/s for ASCAT are obtained. Utilizing rain microwave-infrared estimates of the Tropical Rainfall Measuring Mission, rain-affected observation of both ASCAT and TDS-1 are collected and evaluated. Although ASCAT winds show a significant performance degradation resulting in an RMSE and bias of 3.16 and 1.03 m/s, respectively, during rain condition, TDS-1 shows a more reliable performance with an RMSE and bias of 2.94 and -0.21 m/s, respectively, which indicates the promising capability of GNSS forward scattering for wind retrievals during rain. A decrease in TDS-1-derived bistatic radar cross sections during rain events, at weak winds, is also demonstrated.}, language = {en} } @article{AsgarimehrWickertReich2019, author = {Asgarimehr, Milad and Wickert, Jens and Reich, Sebastian}, title = {Evaluating impact of rain attenuation on space-borne GNSS reflectometry wind speeds}, series = {Remote Sensing}, volume = {11}, journal = {Remote Sensing}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs11091048}, pages = {18}, year = {2019}, abstract = {The novel space-borne Global Navigation Satellite System Reflectometry (GNSS-R) technique has recently shown promise in monitoring the ocean state and surface wind speed with high spatial coverage and unprecedented sampling rate. The L-band signals of GNSS are structurally able to provide a higher quality of observations from areas covered by dense clouds and under intense precipitation, compared to those signals at higher frequencies from conventional ocean scatterometers. As a result, studying the inner core of cyclones and improvement of severe weather forecasting and cyclone tracking have turned into the main objectives of GNSS-R satellite missions such as Cyclone Global Navigation Satellite System (CYGNSS). Nevertheless, the rain attenuation impact on GNSS-R wind speed products is not yet well documented. Evaluating the rain attenuation effects on this technique is significant since a small change in the GNSS-R can potentially cause a considerable bias in the resultant wind products at intense wind speeds. Based on both empirical evidence and theory, wind speed is inversely proportional to derived bistatic radar cross section with a natural logarithmic relation, which introduces high condition numbers (similar to ill-posed conditions) at the inversions to high wind speeds. This paper presents an evaluation of the rain signal attenuation impact on the bistatic radar cross section and the derived wind speed. This study is conducted simulating GNSS-R delay-Doppler maps at different rain rates and reflection geometries, considering that an empirical data analysis at extreme wind intensities and rain rates is impossible due to the insufficient number of observations from these severe conditions. Finally, the study demonstrates that at a wind speed of 30 m/s and incidence angle of 30 degrees, rain at rates of 10, 15, and 20 mm/h might cause overestimation as large as approximate to 0.65 m/s (2\%), 1.00 m/s (3\%), and 1.3 m/s (4\%), respectively, which are still smaller than the CYGNSS required uncertainty threshold. The simulations are conducted in a pessimistic condition (severe continuous rainfall below the freezing height and over the entire glistening zone) and the bias is expected to be smaller in size in real environments.}, language = {en} } @article{AsgarimehrZavorotnyWickertetal.2018, author = {Asgarimehr, Milad and Zavorotny, Valery and Wickert, Jens and Reich, Sebastian}, title = {Can GNSS Reflectometry Detect Precipitation Over Oceans?}, series = {Geophysical research letters}, volume = {45}, journal = {Geophysical research letters}, number = {22}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2018GL079708}, pages = {12585 -- 12592}, year = {2018}, abstract = {For the first time, a rain signature in Global Navigation Satellite System Reflectometry (GNSS-R) observations is demonstrated. Based on the argument that the forward quasi-specular scattering relies upon surface gravity waves with lengths larger than several wavelengths of the reflected signal, a commonly made conclusion is that the scatterometric GNSS-R measurements are not sensitive to the surface small-scale roughness generated by raindrops impinging on the ocean surface. On the contrary, this study presents an evidence that the bistatic radar cross section sigma(0) derived from TechDemoSat-1 data is reduced due to rain at weak winds, lower than approximate to 6 m/s. The decrease is as large as approximate to 0.7 dB at the wind speed of 3 m/s due to a precipitation of 0-2 mm/hr. The simulations based on the recently published scattering theory provide a plausible explanation for this phenomenon which potentially enables the GNSS-R technique to detect precipitation over oceans at low winds.}, language = {en} } @article{AshastinaKuzminaRudayaetal.2018, author = {Ashastina, Kseniia and Kuzmina, Svetlana and Rudaya, Natalia and Troeva, Elena I. and Schoch, Werner H. and Roemermann, Christine and Reinecke, Jennifer and Otte, Volker and Savvinov, Grigoriy and Wesche, Karsten and Kienast, Frank}, title = {Woodlands and steppes}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {196}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2018.07.032}, pages = {38 -- 61}, year = {2018}, abstract = {Based on fossil organism remains including plant macrofossils, charcoal, pollen, and invertebrates preserved in syngenetic deposits of the Batagay permafrost sequence in the Siberian Yana Highlands, we reconstructed the environmental history during marine isotope stages (MIS) 6 to 2. Two fossil assemblages, exceptionally rich in plant remains, allowed for a detailed description of the palaeo-vegetation during two climate extremes of the Late Pleistocene, the onset of the last glacial maximum (LGM) and the last interglacial. In addition, altogether 41 assemblages were used to outline the vegetation history since the penultimate cold stage of MIS 6. Accordingly, meadow steppes analogue to modern communities of the phytosociological order Festucetalia lenensis formed the primary vegetation during the Saalian and Weichselian cold stages. Cold-resistant tundra-steppe communities (Carici rupestris-Kobresietea bellardii) as they occur above the treeline today were, in contrast to more northern locations, mostly lacking. During the last interglacial, open coniferous woodland similar to modern larch taiga was the primary vegetation at the site. Abundant charcoal indicates wildfire events during the last interglacial. Zoogenic disturbances of the local vegetation were indicated by the presence of ruderal plants, especially by abundant Urtica dioica, suggesting that the area was an interglacial refugium for large herbivores. Meadow steppes, which formed the primary vegetation during cold stages and provided potentially suitable pastures for herbivores, were a significant constituent of the plant cover in the Yana Highlands also under the full warm stage conditions of the last interglacial. Consequently, meadow steppes occurred in the Yana Highlands during the entire investigated timespan from MIS 6 to MIS 2 documenting a remarkable environmental stability. Thus, the proportion of meadow steppe vegetation merely shifted in response to the respectively prevailing climatic conditions. Their persistence indicates low precipitation and a relatively warm growing season throughout and beyond the late Pleistocene. The studied fossil record also proves that modern steppe occurrences in the Yana Highlands did not establish as late as in the Holocene but instead are relicts of a formerly continuous steppe belt extending from Central Siberia to Northeast Yakutia during the Pleistocene. The persistence of plants and invertebrates characteristic of meadow steppe vegetation in interior Yakutia throughout the late Quaternary indicates climatic continuity and documents the suitability of this region as a refugium also for other organisms of the Pleistocene mammoth steppe including the iconic large herbivores. (C)2018 Elsevier Ltd. All rights reserved.}, language = {en} } @article{AstudilloSotomayorJaraMunozMelnicketal.2021, author = {Astudillo-Sotomayor, Luis and Jara Mu{\~n}oz, Julius and Melnick, Daniel and Cort{\´e}s-Aranda, Joaqu{\´i}n and Tassara, Andr{\´e}s and Strecker, Manfred}, title = {Fast Holocene slip and localized strain along the Liqui{\~n}e-Ofqui strike-slip fault system, Chile}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-021-85036-5}, pages = {10}, year = {2021}, abstract = {In active tectonic settings dominated by strike-slip kinematics, slip partitioning across subparallel faults is a common feature; therefore, assessing the degree of partitioning and strain localization is paramount for seismic hazard assessments. Here, we estimate a slip rate of 18.8 +/- 2.0 mm/year over the past 9.0 +/- 0.1 ka for a single strand of the Liquirie-Ofqui Fault System, which straddles the Main Cordillera in Southern Chile. This Holocene rate accounts for similar to 82\% of the trench-parallel component of oblique plate convergence and is similar to million-year estimates integrated over the entire fault system. Our results imply that strain localizes on a single fault at millennial time scale but over longer time scales strain localization is not sustained. The fast millennial slip rate in the absence of historical Mw> 6.5 earthquakes along the Liquine-Ofqui Fault System implies either a component of aseismic slip or Mw similar to 7 earthquakes involving multi-trace ruptures and > 150-year repeat times. Our results have implications for the understanding of strike-slip fault system dynamics within volcanic arcs and seismic hazard assessments.}, language = {en} } @misc{AtmaniBookhagenSmith2022, author = {Atmani, Farid and Bookhagen, Bodo and Smith, Taylor}, title = {Measuring Vegetation Heights and Their Seasonal Changes in the Western Namibian Savanna Using Spaceborne Lidars}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1275}, issn = {1866-8372}, doi = {10.25932/publishup-56991}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-569915}, pages = {20}, year = {2022}, abstract = {The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) with its land and vegetation height data product (ATL08), and Global Ecosystem Dynamics Investigation (GEDI) with its terrain elevation and height metrics data product (GEDI Level 2A) missions have great potential to globally map ground and canopy heights. Canopy height is a key factor in estimating above-ground biomass and its seasonal changes; these satellite missions can also improve estimated above-ground carbon stocks. This study presents a novel Sparse Vegetation Detection Algorithm (SVDA) which uses ICESat-2 (ATL03, geolocated photons) data to map tree and vegetation heights in a sparsely vegetated savanna ecosystem. The SVDA consists of three main steps: First, noise photons are filtered using the signal confidence flag from ATL03 data and local point statistics. Second, we classify ground photons based on photon height percentiles. Third, tree and grass photons are classified based on the number of neighbors. We validated tree heights with field measurements (n = 55), finding a root-mean-square error (RMSE) of 1.82 m using SVDA, GEDI Level 2A (Geolocated Elevation and Height Metrics product): 1.33 m, and ATL08: 5.59 m. Our results indicate that the SVDA is effective in identifying canopy photons in savanna ecosystems, where ATL08 performs poorly. We further identify seasonal vegetation height changes with an emphasis on vegetation below 3 m; widespread height changes in this class from two wet-dry cycles show maximum seasonal changes of 1 m, possibly related to seasonal grass-height differences. Our study shows the difficulties of vegetation measurements in savanna ecosystems but provides the first estimates of seasonal biomass changes.}, language = {en} } @article{AtmaniBookhagenSmith2022, author = {Atmani, Farid and Bookhagen, Bodo and Smith, Taylor}, title = {Measuring vegetation heights and their seasonal changes in the Western Namibian Savanna using spaceborne lidars}, series = {Remote sensing / Molecular Diversity Preservation International (MDPI)}, volume = {14}, journal = {Remote sensing / Molecular Diversity Preservation International (MDPI)}, number = {12}, edition = {12}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2072-4292}, doi = {10.3390/rs14122928}, pages = {1 -- 20}, year = {2022}, abstract = {The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) with its land and vegetation height data product (ATL08), and Global Ecosystem Dynamics Investigation (GEDI) with its terrain elevation and height metrics data product (GEDI Level 2A) missions have great potential to globally map ground and canopy heights. Canopy height is a key factor in estimating above-ground biomass and its seasonal changes; these satellite missions can also improve estimated above-ground carbon stocks. This study presents a novel Sparse Vegetation Detection Algorithm (SVDA) which uses ICESat-2 (ATL03, geolocated photons) data to map tree and vegetation heights in a sparsely vegetated savanna ecosystem. The SVDA consists of three main steps: First, noise photons are filtered using the signal confidence flag from ATL03 data and local point statistics. Second, we classify ground photons based on photon height percentiles. Third, tree and grass photons are classified based on the number of neighbors. We validated tree heights with field measurements (n = 55), finding a root-mean-square error (RMSE) of 1.82 m using SVDA, GEDI Level 2A (Geolocated Elevation and Height Metrics product): 1.33 m, and ATL08: 5.59 m. Our results indicate that the SVDA is effective in identifying canopy photons in savanna ecosystems, where ATL08 performs poorly. We further identify seasonal vegetation height changes with an emphasis on vegetation below 3 m; widespread height changes in this class from two wet-dry cycles show maximum seasonal changes of 1 m, possibly related to seasonal grass-height differences. Our study shows the difficulties of vegetation measurements in savanna ecosystems but provides the first estimates of seasonal biomass changes.}, language = {en} } @article{AtsawawaranuntComasBruMozhdehietal.2018, author = {Atsawawaranunt, Kamolphat and Comas-Bru, Laia and Mozhdehi, Sahar Amirnezhad and Deininger, Michael and Harrison, Sandy P. and Baker, Andy and Boyd, Meighan and Kaushal, Nikita and Ahmad, Syed Masood and Brahim, Yassine Ait and Arienzo, Monica and Bajo, Petra and Braun, Kerstin and Burstyn, Yuval and Chawchai, Sakonvan and Duan, Wuhui and Hatvani, Istvan Gabor and Hu, Jun and Kern, Zoltan and Labuhn, Inga and Lachniet, Matthew and Lechleitner, Franziska A. and Lorrey, Andrew and Perez-Mejias, Carlos and Pickering, Robyn and Scroxton, Nick and Atkinson, Tim and Ayalon, Avner and Baldini, James and Bar-Matthews, Miriam and Pablo Bernal, Juan and Breitenbach, Sebastian Franz Martin and Boch, Ronny and Borsato, Andrea and Cai, Yanjun and Carolin, Stacy and Cheng, Hai and Columbu, Andrea and Couchoud, Isabelle and Cruz, Francisco and Demeny, Attila and Dominguez-Villar, David and Dragusin, Virgil and Drysdale, Russell and Ersek, Vasile and Finne, Martin and Fleitmann, Dominik and Fohlmeister, Jens Bernd and Frappier, Amy and Genty, Dominique and Holzkamper, Steffen and Hopley, Philip and Kathayat, Gayatri and Keenan-Jones, Duncan and Koltai, Gabriella and Luetscher, Marc and Li, Ting-Yong and Lone, Mahjoor Ahmad and Markowska, Monika and Mattey, Dave and McDermott, Frank and Moreno, Ana and Moseley, Gina and Nehme, Carole and Novello, Valdir F. and Psomiadis, David and Rehfeld, Kira and Ruan, Jiaoyang and Sekhon, Natasha and Sha, Lijuan and Sholz, Denis and Shopov, Yavor and Smith, Andrew and Strikis, Nicolas and Treble, Pauline and Unal-Imer, Ezgi and Vaks, Anton and Vansteenberge, Stef and Veiga-Pires, Cristina and Voarintsoa, Ny Riavo and Wang, Xianfeng and Wong, Corinne and Wortham, Barbara and Wurtzel, Jennifer and Zong, Baoyun}, title = {The SISAL database}, series = {Earth System Science Data}, volume = {10}, journal = {Earth System Science Data}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, organization = {SISAL Working Grp Members}, issn = {1866-3508}, doi = {10.5194/essd-10-1687-2018}, pages = {1687 -- 1713}, year = {2018}, abstract = {Stable isotope records from speleothems provide information on past climate changes, most particularly information that can be used to reconstruct past changes in precipitation and atmospheric circulation. These records are increasingly being used to provide "out-of-sample" evaluations of isotope-enabled climate models. SISAL (Speleothem Isotope Synthesis and Analysis) is an international working group of the Past Global Changes (PAGES) project. The working group aims to provide a comprehensive compilation of speleothem isotope records for climate reconstruction and model evaluation. The SISAL database contains data for individual speleothems, grouped by cave system. Stable isotopes of oxygen and carbon (delta O-18, delta C-13) measurements are referenced by distance from the top or bottom of the speleothem. Additional tables provide information on dating, including information on the dates used to construct the original age model and sufficient information to assess the quality of each data set and to erect a standardized chronology across different speleothems. The metadata table provides location information, information on the full range of measurements carried out on each speleothem and information on the cave system that is relevant to the interpretation of the records, as well as citations for both publications and archived data.}, language = {en} } @article{AwaisAhmadKhanetal.2018, author = {Awais, Muhammad and Ahmad, Rafiq and Khan, Nadeem and Garapati, Prashanth and Shahzad, Muhammad and Afroz, Amber and Rashid, Umer and Khan, Sabaz Ali}, title = {Transformation of tomato variety rio grande with drought resistant transcription factor gene ATAF1 and its molecular analysis}, series = {Pakistan Journal of Botany}, volume = {50}, journal = {Pakistan Journal of Botany}, number = {5}, publisher = {Pakistan botanic soc}, address = {Karachi}, issn = {0556-3321}, pages = {1811 -- 1820}, year = {2018}, abstract = {Tomato (Solanum lycopersicum L.) being an important vegetable is cultivated and used throughout the world. It not only contributes in fulfilling the basic nutritional requirements of the human body but also has many health benefits due to its rich biochemical composition. However, its production at large scale is hampered by many limiting factors such as biotic and abiotic stresses. Among the different abiotic stresses, drought poses drastic impact on tomato yield. Drought stress is genetically regulated by many transcription factors that not only regulate the stress responsive mechanism but also facilitate the growth and development of tomato plants. NAC is an important stress related transcription factor genes family, and the ATAF1 gene, a member of this family, is involved in ABA signaling and stress response. In this study, tomato variety Rio Drande was transformed with drought resistant ATAF1 gene via Agrobacterium mediated gene transformation method. The ATAF1 gene was first cloned in the pK7WFG2 vector having kanamycin selectable marker and then it was introduced in the Agrobacterium tumefaciens strain GV3101 through heat shock method. The tomato cotyledon and hypocotyl ex-plants of variety "Rio Ggrande" were cultured on callus induction medium (MS + 2.5 mg/L IAA + 2 mg/L BAP). The calli were then infected with Agrobacterium tumefaciens strain GV3101 containing ATAF1 gene and selection was carried out on the kanamycin selectable medium (MS + 100 mg/L Kan), and were regenerated on MS medium with 1 mg/L IAA + 1 mg/L BAP. Out of 216 putative transformed calli, 13 calli were able to regenerate on the selection medium. Of the 13 calli, three transgenic tomato plantlets were recovered, and these were confirmed through PCR analysis for the presence of 432 bp fragment of ATAF1 gene. The transformation protocol reported here can be used to generate drought resistant tomato plants in future.}, language = {en} } @phdthesis{Ayguel2015, author = {Ayg{\"u}l, Mesut}, title = {Pre-collisional accretion and exhumation along the southern Laurasian active margin, Central Pontides, Turkey}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-416769}, school = {Universit{\"a}t Potsdam}, pages = {xxxiv, 206}, year = {2015}, abstract = {The Central Pontides is an accretionary-type orogenic area within the Alpine-Himalayan orogenic belt characterized by pre-collisional tectonic continental growth. The region comprises Mesozoic subduction-accretionary complexes and an accreted intra-oceanic arc that are sandwiched between the Laurasian active continental margin and Gondwana-derived the K{\i}r{\c{s}}ehir Block. The subduction-accretion complexes mainly consist of an Albian-Turonian accretionary wedge representing the Laurasian active continental margin. To the north, the wedge consists of slate/phyllite and metasandstone intercalation with recrystallized limestone, Na-amphibole-bearing metabasite (PT= 7-12 kbar and 400 ± 70 ºC) and tectonic slices of serpentinite representing accreted distal part of a large Lower Cretaceous submarine turbidite fan deposited on the Laurasian active continental margin that was subsequently accreted and metamorphosed. Raman spectra of carbonaceous material (RSCM) of the metapelitic rocks revealed that the metaflysch sequence consists of metamorphic packets with distinct peak metamorphic temperatures. The majority of the metapelites are low-temperature (ca. 330 °C) slates characterized by lack of differentiation of the graphite (G) and D2 defect bands. They possibly represent offscraped distal turbidites along the toe of the Albian accretionary wedge. The rest are phyllites that are characterized by slightly pronounced G band with D2 defect band occurring on its shoulder. Peak metamorphic temperatures of these phyllites are constrained to 370-385 °C. The phyllites are associated with a strip of incipient blueschist facies metabasites which are found as slivers within the offscraped distal turbidites. They possibly represent underplated continental metasediments together with oceanic crustal basalt along the basal d{\´e}collement. Tectonic emplacement of the underplated rocks into the offscraped distal turbidites was possibly achieved by out-of-sequence thrusting causing tectonic thickening and uplift of the wedge. 40Ar/39Ar phengite ages from the phyllites are ca. 100 Ma, indicating Albian subduction and regional HP metamorphism. The accreted continental metasediments are underlain by HP/LT metamorphic rocks of oceanic origin along an extensional shear zone. The oceanic metamorphic sequence mainly comprises tectonically thickened deep-seated eclogite to blueschist facies metabasites and micaschists. In the studied area, metabasites are epidote-blueschists locally with garnet (PT= 17 ± 1 kbar and 500 ± 40 °C). Lawsonite-blueschists are exposed as blocks along the extensional shear zone (PT= 14 ± 2 kbar and 370-440 °C). They are possibly associated with low shear stress regime of the initial stage of convergence. Close to the shear zone, the footwall micaschists consist of quartz, phengite, paragonite, chlorite, rutile with syn-kinematic albite porphyroblast formed by pervasive shearing during exhumation. These types of micaschists are tourmaline-bearing and their retrograde nature suggests high-fluid flux along shear zones. Peak metamorphic mineral assemblages are partly preserved in the chloritoid-micaschist farther away from the shear zone representing the zero strain domains during exhumation. Three peak metamorphic assemblages are identified and their PT conditions are constrained by pseudosections produced by Theriak-Domino and by Raman spectra of carbonaceous material: 1) garnet-chloritoid-glaucophane with lawsonite pseudomorphs (P= 17.5 ± 1 kbar, T: 390-450 °C) 2) chloritoid with glaucophane pseudomorphs (P= 16-18 kbar, T: 475 ± 40 °C) and 3) relatively high-Mg chloritoid (17\%) with jadeite pseudomorphs (P= 22-25 kbar; T: 440 ± 30 °C) in addition to phengite, paragonite, quartz, chlorite, rutile and apatite. The last mineral assemblage is interpreted as transformation of the chloritoid + glaucophane assemblage to chloritoid + jadeite paragenesis with increasing pressure. Absence of tourmaline suggests that the chloritoid-micaschist did not interact with B-rich fluids during zero strain exhumation. 40Ar/39Ar phengite age of a pervasively sheared footwall micaschist is constrained to 100.6 ± 1.3 Ma and that of a chloritoid-micaschist is constrained to 91.8 ± 1.8 Ma suggesting exhumation during on-going subduction with a southward younging of the basal accretion and the regional metamorphism. To the south, accretionary wedge consists of blueschist and greenschist facies metabasite, marble and volcanogenic metasediment intercalation. 40Ar/39Ar phengite dating reveals that this part of the wedge is of Middle Jurassic age partly overprinted during the Albian. Emplacement of the Middle Jurassic subduction-accretion complexes is possibly associated with obliquity of the Albian convergence. Peak metamorphic assemblages and PT estimates of the deep-seated oceanic metamorphic sequence suggest tectonic stacking within wedge with different depths of burial. Coupling and exhumation of the distinct metamorphic slices are controlled by decompression of the wedge possibly along a retreating slab. Structurally, decompression of the wedge is evident by an extensional shear zone and the footwall micaschists with syn-kinematic albite porphyroblasts. Post-kinematic garnets with increasing grossular content and pseudomorphing minerals within the chloritoid-micaschists also support decompression model without an extra heating. Thickening of subduction-accretionary complexes is attributed to i) significant amount of clastic sediment supply from the overriding continental domain and ii) deep level basal underplating by propagation of the d{\´e}collement along a retreating slab. Underplating by basal d{\´e}collement propagation and subsequent exhumation of the deep-seated subduction-accretion complexes are connected and controlled by slab rollback creating a necessary space for progressive basal accretion along the plate interface and extension of the wedge above for exhumation of the tectonically thickened metamorphic sequences. This might be the most common mechanism of the tectonic thickening and subsequent exhumation of deep-seated HP/LT subduction-accretion complexes. To the south, the Albian-Turonian accretionary wedge structurally overlies a low-grade volcanic arc sequence consisting of low-grade metavolcanic rocks and overlying metasedimentary succession is exposed north of the İzmir-Ankara-Erzincan suture (İAES), separating Laurasia from Gondwana-derived terranes. The metavolcanic rocks mainly consist of basaltic andesite/andesite and mafic cognate xenolith-bearing rhyolite with their pyroclastic equivalents, which are interbedded with recrystallized pelagic limestone and chert. The metavolcanic rocks are stratigraphically overlain by recrystallized micritic limestone with rare volcanogenic metaclastic rocks. Two groups can be identified based on trace and rare earth element characteristics. The first group consists of basaltic andesite/andesite (BA1) and rhyolite with abundant cognate gabbroic xenoliths. It is characterized by relative enrichment of LREE with respect to HREE. The rocks are enriched in fluid mobile LILE, and strongly depleted in Ti and P reflecting fractionation of Fe-Ti oxides and apatite, which are found in the mafic cognate xenoliths. Abundant cognate gabbroic xenoliths and identical trace and rare earth elements compositions suggest that rhyolites and basaltic andesites/andesites (BA1) are cogenetic and felsic rocks were derived from a common mafic parental magma by fractional crystallization and accumulation processes. The second group consists only of basaltic andesites (BA2) with flat REE pattern resembling island arc tholeiites. Although enriched in LILE, this group is not depleted in Ti or P. Geochemistry of the metavolcanic rocks indicates supra-subduction volcanism evidenced by depletion of HFSE and enrichment of LILE. The arc sequence is sandwiched between an Albian-Turonian subduction-accretionary complex representing the Laurasian active margin and an ophiolitic m{\´e}lange. Absence of continent derived detritus in the arc sequence and its tectonic setting in a wide Cretaceous accretionary complex suggest that the K{\"o}sdağ Arc was intra-oceanic. This is in accordance with basaltic andesites (BA2) with island arc tholeiite REE pattern. Zircons from two metarhyolite samples give Late Cretaceous (93.8 ± 1.9 and 94.4 ± 1.9 Ma) U/Pb ages. Low-grade regional metamorphism of the intra-oceanic arc sequence is constrained 69.9 ± 0.4 Ma by 40Ar/39Ar dating on metamorphic muscovite from a metarhyolite indicating that the arc sequence became part of a wide Tethyan Cretaceous accretionary complex by the latest Cretaceous. The youngest 40Ar/39Ar phengite age from the overlying subduction-accretion complexes is 92 Ma confirming southward younging of an accretionary-type orogenic belt. Hence, the arc sequence represents an intra-oceanic paleo-arc that formed above the sinking Tethyan slab and finally accreted to Laurasian active continental margin. Abrupt non-collisional termination of arc volcanism was possibly associated with southward migration of the arc volcanism similar to the Izu-Bonin-Mariana arc system. The intra-oceanic K{\"o}sdağ Arc is coeval with the obducted supra-subduction ophiolites in NW Turkey suggesting that it represents part of the presumed but missing incipient intra-oceanic arc associated with the generation of the regional supra-subduction ophiolites. Remnants of a Late Cretaceous intra-oceanic paleo-arc and supra-subduction ophiolites can be traced eastward within the Alp-Himalayan orogenic belt. This reveals that Late Cretaceous intra-oceanic subduction occurred as connected event above the sinking Tethyan slab. It resulted as arc accretion to Laurasian active margin and supra-subduction ophiolite obduction on Gondwana-derived terranes.}, language = {en} } @article{AyguelOberhaensli2017, author = {Ayg{\"u}l, Mesut and Oberh{\"a}nsli, Roland}, title = {Tectonic Stacking of HP/LT Metamorphic Rocks in Accretionary Wedges and the Role of Shallowing Slab-Mantle Decoupling}, series = {Tectonics}, volume = {36}, journal = {Tectonics}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/2017TC004689}, pages = {2332 -- 2346}, year = {2017}, abstract = {High-pressure/low-temperature (HP/LT) chloritoid-bearing micaschists crop out widely in the central part of northern Turkey and represent deep-seated subduction-accretionary complexes. Three peak metamorphic assemblages are identified in the area studied: (1) garnet-chloritoid-glaucophane with pseudomorphs after lawsonite; (2) chloritoid with pseudomorphs after glaucophane; and (3) chloritoid with pseudomorphs after jadeite in addition to phengite, paragonite, quartz, chlorite, rutile, and apatite. The latter is interpreted as transformation of a chloritoid + glaucophane assemblage to chloritoid + jadeite with increasing pressure; PT modeling indicates similar to 17 and 22-25 kbars for the two peak parageneses. The diversity of peak metamorphic assemblages and the PT estimates suggest that basal accretion occurred at different depths within the wedge. The depth of the basal accretion is possibly controlled by the slab-mantle decoupling depth. Stretching and thinning of the lithospheric fore arc induced by the slab rollback possibly caused shallowing of the slab-mantle decoupling depth which limited depth of the basal accretion from 70-80km to similar to 55km within the subduction channel. A slab-mantle coupling depth-controlled basal accretion may also explain the scarcity of eclogite and high-grade blueschist facies metamorphic rocks in active intraoceanic subduction zones. Because the overriding plate is young and hot in intraoceanic subductions, the slab and mantle are coupled at a relatively shallow depth before eclogitization of the oceanic crust. This prevents accretion and exhumation of eclogite along the subduction channel.}, language = {en} } @article{AyguelOkayOberhaenslietal.2015, author = {Ayg{\"u}l, Mesut and Okay, Aral I. and Oberh{\"a}nsli, Roland and Schmidt, Alexander and Sudo, Masafumi}, title = {Late Cretaceous infant intra-oceanic arc volcanism, the Central Pontides, Turkey: Petrogenetic and tectonic implications}, series = {Journal of Asian earth sciences}, volume = {111}, journal = {Journal of Asian earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {1367-9120}, doi = {10.1016/j.jseaes.2015.07.005}, pages = {312 -- 327}, year = {2015}, abstract = {A tectonic slice of an arc sequence consisting of low-grade metavolcanic rocks and overlying metasedimentary succession is exposed in the Central Pontides north of the Izmir-Ankara-Erzincan suture separating Laurasia from Gondwana-derived terranes. The metavolcanic rocks mainly consist of basaltic andesite/andesite and mafic cognate xenolith-bearing rhyolite with their pyroclastic equivalents, which are interbedded with recrystallized pelagic limestone and chert. The metasedimentary succession comprises recrystallized micritic limestone with rare volcanogenic metaclastic rocks and stratigraphically overlies the metavolcanic rocks. The geochemistry of the metavolcanic rocks indicates an arc setting evidenced by depletion of HFSE (Ti, P and Nb) and enrichment of fluid mobile LILE. Identical trace and rare earth elements compositions of basaltic andesites/andesites and rhyolites suggest that they are cogenetic and derived from a common parental magma. The arc sequence crops out between an Albian-Turonian subduction-accretionary complex representing the Laurasian active margin and an ophiolitic melange. Absence of continent derived detritus in the arc sequence and its tectonic setting in a wide Cretaceous accretionary complex suggest that the Kosdag Arc was intra-oceanic. Zircons from two metarhyolite samples give Late Cretaceous (93.8 +/- 1.9 and 94.4 +/- 1.9 Ma) U/Pb ages. These ages are the same as the age of the supra-subduction ophiolites in western Turkey, which implies that that the Kosdag Arc may represent part of the incipient arc formed during the generation of the supra-subduction ophiolites. The low-grade regional metamorphism in the Kosdag Arc is constrained to 69.9 +/- 0.4 Ma by Ar-40/Ar-39 muscovite dating indicating that the arc sequence became part of a wide Tethyan Cretaceous accretionary complex by the latest Cretaceous. Non-collisional cessation of the arc volcanism is possibly associated with southward migration of the magmatism as in the Izu-Bonin-Mariana arc system. (c) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{AyguelOkayOberhaenslietal.2015, author = {Ayg{\"u}l, Mesut and Okay, Aral I. and Oberh{\"a}nsli, Roland and Ziemann, Martin Andreas}, title = {Thermal structure of low-grade accreted Lower Cretaceous distal turbidites, the Central Pontides, Turkey: insights for tectonic thickening of an accretionary wedge}, series = {Turkish journal of earth sciences = T{\"u}rk yerbilimleri dergisi}, volume = {24}, journal = {Turkish journal of earth sciences = T{\"u}rk yerbilimleri dergisi}, number = {5}, publisher = {T{\"u}bitak}, address = {Ankara}, issn = {1300-0985}, doi = {10.3906/yer-1504-4}, pages = {461 -- 474}, year = {2015}, abstract = {Albian-Turonian subduction-accretionary complexes are exposed widely in the Central Pontides. A major portion of the accretionary complexes is made up of a metaflysch sequence consisting of slate/phyllite and metasandstone intercalation with blocks of marble, Na-amphibole bearing metabasite, and serpentinite. The metaflysch sequence represents distal parts of a large Lower Cretaceous submarine turbidite fan deposited on the Laurasian active continental margin that was subsequently accreted and metamorphosed during the Albian. Raman spectra of carbonaceous material of the metapelitic rocks revealed that the metaflysch consists of metamorphic packets with distinct peak metamorphic temperatures. The majority of the metapelites are low-temperature (ca. 330 degrees C) slates characterized by lack of differentiation of the graphite (G) and D2 defect bands. They possibly represent offscraped distal turbidites along the toe of the Albian accretionary wedge. Other phyllites are characterized by a slightly pronounced G band with a D2 defect band occurring on its shoulder. Peak metamorphic temperatures of these phyllites are constrained to 370-385 degrees C. The phyllites are associated with a strip of incipient blueschist facies metabasites and are found as a sliver within the offscraped distal turbidites. We interpret the phyllites as underplated continental sediments together with oceanic crustal basalt along the basal decollement. Tectonic emplacement of the underplated rocks into the offscraped distal turbidites was possibly achieved by out-of-sequence thrusting causing tectonic thickening and uplift of the wedge.}, language = {en} } @misc{AyllonGrimmAttingeretal.2018, author = {Ayllon, Daniel and Grimm, Volker and Attinger, Sabine and Hauhs, Michael and Simmer, Clemens and Vereecken, Harry and Lischeid, Gunnar}, title = {Cross-disciplinary links in environmental systems science}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {622}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2017.12.007}, pages = {954 -- 973}, year = {2018}, abstract = {Terrestrial environmental systems are characterised by numerous feedback links between their different compartments. However, scientific research is organized into disciplines that focus on processes within the respective compartments rather than on interdisciplinary links. Major feedback mechanisms between compartments might therefore have been systematically overlooked so far. Without identifying these gaps, initiatives on future comprehensive environmental monitoring schemes and experimental platforms might fail. We performed a comprehensive overview of feedbacks between compartments currently represented in environmental sciences and explores to what degree missing links have already been acknowledged in the literature. We focused on process models as they can be regarded as repositories of scientific knowledge that compile findings of numerous single studies. In total, 118 simulation models from 23 model types were analysed. Missing processes linking different environmental compartments were identified based on a meta-review of 346 published reviews, model inter-comparison studies, and model descriptions. Eight disciplines of environmental sciences were considered and 396 linking processes were identified and ascribed to the physical, chemical or biological domain. There were significant differences between model types and scientific disciplines regarding implemented interdisciplinary links. The most wide-spread interdisciplinary links were between physical processes in meteorology, hydrology and soil science that drive or set the boundary conditions for other processes (e.g., ecological processes). In contrast, most chemical and biological processes were restricted to links within the same compartment. Integration of multiple environmental compartments and interdisciplinary knowledge was scarce in most model types. There was a strong bias of suggested future research foci and model extensions towards reinforcing existing interdisciplinary knowledge rather than to open up new interdisciplinary pathways. No clear pattern across disciplines exists with respect to suggested future research efforts. There is no evidence that environmental research would clearly converge towards more integrated approaches or towards an overarching environmental systems theory. (c) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @misc{AyzelIzhitskiy2018, author = {Ayzel, Georgy and Izhitskiy, Alexander}, title = {Coupling physically based and data-driven models for assessing freshwater inflow into the Small Aral Sea}, series = {Innovative Water Resources Management in a Changing Environment - Understanding and Balancing Interactions between Humankind and Nature}, volume = {379}, journal = {Innovative Water Resources Management in a Changing Environment - Understanding and Balancing Interactions between Humankind and Nature}, editor = {Xu, Z Peng}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2199-899X}, doi = {10.5194/piahs-379-151-2018}, pages = {151 -- 158}, year = {2018}, abstract = {The Aral Sea desiccation and related changes in hydroclimatic conditions on a regional level is a hot topic for past decades. The key problem of scientific research projects devoted to an investigation of modern Aral Sea basin hydrological regime is its discontinuous nature - the only limited amount of papers takes into account the complex runoff formation system entirely. Addressing this challenge we have developed a continuous prediction system for assessing freshwater inflow into the Small Aral Sea based on coupling stack of hydrological and data-driven models. Results show a good prediction skill and approve the possibility to develop a valuable water assessment tool which utilizes the power of classical physically based and modern machine learning models both for territories with complex water management system and strong water-related data scarcity. The source code and data of the proposed system is available on a Github page (https://github.com/SMASHIproject/IWRM2018).}, language = {en} } @misc{AyzelSchefferHeistermann2020, author = {Ayzel, Georgy and Scheffer, Tobias and Heistermann, Maik}, title = {RainNet v1.0}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {964}, issn = {1866-8372}, doi = {10.25932/publishup-47294}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472942}, pages = {16}, year = {2020}, abstract = {In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting. Its design was inspired by the U-Net and SegNet families of deep learning models, which were originally designed for binary segmentation tasks. RainNet was trained to predict continuous precipitation intensities at a lead time of 5min, using several years of quality-controlled weather radar composites provided by the German Weather Service (DWD). That data set covers Germany with a spatial domain of 900km × 900km and has a resolution of 1km in space and 5min in time. Independent verification experiments were carried out on 11 summer precipitation events from 2016 to 2017. In order to achieve a lead time of 1h, a recursive approach was implemented by using RainNet predictions at 5min lead times as model inputs for longer lead times. In the verification experiments, trivial Eulerian persistence and a conventional model based on optical flow served as benchmarks. The latter is available in the rainymotion library and had previously been shown to outperform DWD's operational nowcasting model for the same set of verification events. RainNet significantly outperforms the benchmark models at all lead times up to 60min for the routine verification metrics mean absolute error (MAE) and the critical success index (CSI) at intensity thresholds of 0.125, 1, and 5mm h⁻¹. However, rainymotion turned out to be superior in predicting the exceedance of higher intensity thresholds (here 10 and 15mm h⁻¹). The limited ability of RainNet to predict heavy rainfall intensities is an undesirable property which we attribute to a high level of spatial smoothing introduced by the model. At a lead time of 5min, an analysis of power spectral density confirmed a significant loss of spectral power at length scales of 16km and below. Obviously, RainNet had learned an optimal level of smoothing to produce a nowcast at 5min lead time. In that sense, the loss of spectral power at small scales is informative, too, as it reflects the limits of predictability as a function of spatial scale. Beyond the lead time of 5min, however, the increasing level of smoothing is a mere artifact - an analogue to numerical diffusion - that is not a property of RainNet itself but of its recursive application. In the context of early warning, the smoothing is particularly unfavorable since pronounced features of intense precipitation tend to get lost over longer lead times. Hence, we propose several options to address this issue in prospective research, including an adjustment of the loss function for model training, model training for longer lead times, and the prediction of threshold exceedance in terms of a binary segmentation task. Furthermore, we suggest additional input data that could help to better identify situations with imminent precipitation dynamics. The model code, pretrained weights, and training data are provided in open repositories as an input for such future studies.}, language = {en} } @article{AyzelSchefferHeistermann2020, author = {Ayzel, Georgy and Scheffer, Tobias and Heistermann, Maik}, title = {RainNet v1.0}, series = {Geoscientific Model Development}, volume = {13}, journal = {Geoscientific Model Development}, number = {6}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {1991-959X}, doi = {10.5194/gmd-13-2631-2020}, pages = {2631 -- 2644}, year = {2020}, abstract = {In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting. Its design was inspired by the U-Net and SegNet families of deep learning models, which were originally designed for binary segmentation tasks. RainNet was trained to predict continuous precipitation intensities at a lead time of 5min, using several years of quality-controlled weather radar composites provided by the German Weather Service (DWD). That data set covers Germany with a spatial domain of 900km × 900km and has a resolution of 1km in space and 5min in time. Independent verification experiments were carried out on 11 summer precipitation events from 2016 to 2017. In order to achieve a lead time of 1h, a recursive approach was implemented by using RainNet predictions at 5min lead times as model inputs for longer lead times. In the verification experiments, trivial Eulerian persistence and a conventional model based on optical flow served as benchmarks. The latter is available in the rainymotion library and had previously been shown to outperform DWD's operational nowcasting model for the same set of verification events. RainNet significantly outperforms the benchmark models at all lead times up to 60min for the routine verification metrics mean absolute error (MAE) and the critical success index (CSI) at intensity thresholds of 0.125, 1, and 5mm h⁻¹. However, rainymotion turned out to be superior in predicting the exceedance of higher intensity thresholds (here 10 and 15mm h⁻¹). The limited ability of RainNet to predict heavy rainfall intensities is an undesirable property which we attribute to a high level of spatial smoothing introduced by the model. At a lead time of 5min, an analysis of power spectral density confirmed a significant loss of spectral power at length scales of 16km and below. Obviously, RainNet had learned an optimal level of smoothing to produce a nowcast at 5min lead time. In that sense, the loss of spectral power at small scales is informative, too, as it reflects the limits of predictability as a function of spatial scale. Beyond the lead time of 5min, however, the increasing level of smoothing is a mere artifact - an analogue to numerical diffusion - that is not a property of RainNet itself but of its recursive application. In the context of early warning, the smoothing is particularly unfavorable since pronounced features of intense precipitation tend to get lost over longer lead times. Hence, we propose several options to address this issue in prospective research, including an adjustment of the loss function for model training, model training for longer lead times, and the prediction of threshold exceedance in terms of a binary segmentation task. Furthermore, we suggest additional input data that could help to better identify situations with imminent precipitation dynamics. The model code, pretrained weights, and training data are provided in open repositories as an input for such future studies.}, language = {en} } @article{Ayzel2018, author = {Ayzel, Georgy V.}, title = {Runoff predictions in ungauged arctic basins using conceptual models forced by reanalysis data}, series = {Water Resources}, volume = {45}, journal = {Water Resources}, publisher = {Pleiades Publ.}, address = {New York}, issn = {0097-8078}, doi = {10.1134/S0097807818060180}, pages = {S1 -- S7}, year = {2018}, abstract = {Due to global warming, the problem of assessing water resources and their vulnerability to climate drivers in the Arctic region has become a focus in the recent years. This study is aimed at investigating three lumped hydrological models to predict daily runoff of large-scale Arctic basins in the case of substantial data scarcity. All models were driven only by meteorological forcing reanalysis dataset without any additional information about landscape, soil, or vegetation cover properties of the studied basins. Model parameter regionalization based on transferring the whole parameter set showed good efficiency for predictions in ungauged basins. We run a blind test of the proposed methodology for ensemble runoff predictions on five sub-basins, for which only monthly observations were available, and obtained promising results for current water resources assessment for a broad domain of ungauged basins in the Russian Arctic.}, language = {en} }