@article{BaumbachSiegmundMittermeieretal.2017, author = {Baumbach, Lukas and Siegmund, Jonatan F. and Mittermeier, Magdalena and Donner, Reik Volker}, title = {Impacts of temperature extremes on European vegetation during the growing season}, series = {Biogeosciences}, volume = {14}, journal = {Biogeosciences}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-14-4891-2017}, pages = {4891 -- 4903}, year = {2017}, abstract = {Temperature is a key factor controlling plant growth and vitality in the temperate climates of the mid-latitudes like in vast parts of the European continent. Beyond the effect of average conditions, the timings and magnitudes of temperature extremes play a particularly crucial role, which needs to be better understood in the context of projected future rises in the frequency and/or intensity of such events. In this work, we employ event coincidence analysis (ECA) to quantify the likelihood of simultaneous occurrences of extremes in daytime land surface temperature anomalies (LSTAD) and the normalized difference vegetation index (NDVI). We perform this analysis for entire Europe based upon remote sensing data, differentiating between three periods corresponding to different stages of plant development during the growing season. In addition, we analyze the typical elevation and land cover type of the regions showing significantly large event coincidences rates to identify the most severely affected vegetation types. Our results reveal distinct spatio-temporal impact patterns in terms of extraordinarily large co-occurrence rates between several combinations of temperature and NDVI extremes. Croplands are among the most frequently affected land cover types, while elevation is found to have only a minor effect on the spatial distribution of corresponding extreme weather impacts. These findings provide important insights into the vulnerability of European terrestrial ecosystems to extreme temperature events and demonstrate how event-based statistics like ECA can provide a valuable perspective on environmental nexuses.}, language = {en} } @phdthesis{Bayer2013, author = {Bayer, Anita}, title = {Methodological developments for mapping soil constituents using imaging spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64399}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Climatic variations and human activity now and increasingly in the future cause land cover changes and introduce perturbations in the terrestrial carbon reservoirs in vegetation, soil and detritus. Optical remote sensing and in particular Imaging Spectroscopy has shown the potential to quantify land surface parameters over large areas, which is accomplished by taking advantage of the characteristic interactions of incident radiation and the physico-chemical properties of a material. The objective of this thesis is to quantify key soil parameters, including soil organic carbon, using field and Imaging Spectroscopy. Organic carbon, iron oxides and clay content are selected to be analyzed to provide indicators for ecosystem function in relation to land degradation, and additionally to facilitate a quantification of carbon inventories in semiarid soils. The semiarid Albany Thicket Biome in the Eastern Cape Province of South Africa is chosen as study site. It provides a regional example for a semiarid ecosystem that currently undergoes land changes due to unadapted management practices and furthermore has to face climate change induced land changes in the future. The thesis is divided in three methodical steps. Based on reflectance spectra measured in the field and chemically determined constituents of the upper topsoil, physically based models are developed to quantify soil organic carbon, iron oxides and clay content. Taking account of the benefits limitations of existing methods, the approach is based on the direct application of known diagnostic spectral features and their combination with multivariate statistical approaches. It benefits from the collinearity of several diagnostic features and a number of their properties to reduce signal disturbances by influences of other spectral features. In a following step, the acquired hyperspectral image data are prepared for an analysis of soil constituents. The data show a large spatial heterogeneity that is caused by the patchiness of the natural vegetation in the study area that is inherent to most semiarid landscapes. Spectral mixture analysis is performed and used to deconvolve non-homogenous pixels into their constituent components. For soil dominated pixels, the subpixel information is used to remove the spectral influence of vegetation and to approximate the pure spectral signature coming from the soil. This step is an integral part when working in natural non-agricultural areas where pure bare soil pixels are rare. It is identified as the largest benefit within the multi-stage methodology, providing the basis for a successful and unbiased prediction of soil constituents from hyperspectral imagery. With the proposed approach it is possible (1) to significantly increase the spatial extent of derived information of soil constituents to areas with about 40 \% vegetation coverage and (2) to reduce the influence of materials such as vegetation on the quantification of soil constituents to a minimum. Subsequently, soil parameter quantities are predicted by the application of the feature-based soil prediction models to the maps of locally approximated soil signatures. Thematic maps showing the spatial distribution of the three considered soil parameters in October 2009 are produced for the Albany Thicket Biome of South Africa. The maps are evaluated for their potential to detect erosion affected areas as effects of land changes and to identify degradation hot spots in regard to support local restoration efforts. A regional validation, carried out using available ground truth sites, suggests remaining factors disturbing the correlation of spectral characteristics and chemical soil constituents. The approach is developed for semiarid areas in general and not adapted to specific conditions in the study area. All processing steps of the developed methodology are implemented in software modules, where crucial steps of the workflow are fully automated. The transferability of the methodology is shown for simulated data of the future EnMAP hyperspectral satellite. Soil parameters are successfully predicted from these data despite intense spectral mixing within the lower spatial resolution EnMAP pixels. This study shows an innovative approach to use Imaging Spectroscopy for mapping of key soil constituents, including soil organic carbon, for large areas in a non-agricultural ecosystem and under consideration of a partially vegetation coverage. It can contribute to a better assessment of soil constituents that describe ecosystem processes relevant to detect and monitor land changes. The maps further provide an assessment of the current carbon inventory in soils, valuable for carbon balances and carbon mitigation products.}, language = {en} } @article{BayonaViverosvonSpechtStraderetal.2019, author = {Bayona Viveros, Jose Antonio and von Specht, Sebastian and Strader, Anne and Hainzl, Sebastian and Cotton, Fabrice and Schorlemmer, Danijel}, title = {A Regionalized Seismicity Model for Subduction Zones Based on Geodetic Strain Rates, Geomechanical Parameters, and Earthquake-Catalog Data}, series = {Bulletin of the Seismological Society of America}, volume = {109}, journal = {Bulletin of the Seismological Society of America}, number = {5}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120190034}, pages = {2036 -- 2049}, year = {2019}, abstract = {The Seismic Hazard Inferred from Tectonics based on the Global Strain Rate Map (SHIFT_GSRM) earthquake forecast was designed to provide high-resolution estimates of global shallow seismicity to be used in seismic hazard assessment. This model combines geodetic strain rates with global earthquake parameters to characterize long-term rates of seismic moment and earthquake activity. Although SHIFT_GSRM properly computes seismicity rates in seismically active continental regions, it underestimates earthquake rates in subduction zones by an average factor of approximately 3. We present a complementary method to SHIFT_GSRM to more accurately forecast earthquake rates in 37 subduction segments, based on the conservation of moment principle and the use of regional interface seismicity parameters, such as subduction dip angles, corner magnitudes, and coupled seismogenic thicknesses. In seven progressive steps, we find that SHIFT_GSRM earthquake-rate underpredictions are mainly due to the utilization of a global probability function of seismic moment release that poorly captures the great variability among subduction megathrust interfaces. Retrospective test results show that the forecast is consistent with the observations during the 1 January 1977 to 31 December 2014 period. Moreover, successful pseudoprospective evaluations for the 1 January 2015 to 31 December 2018 period demonstrate the power of the regionalized earthquake model to properly estimate subduction-zone seismicity.}, language = {en} } @phdthesis{BayonaViveros2021, author = {Bayona Viveros, Jose}, title = {Constructing global stationary seismicity models from the long-term balance of interseismic strain measurements and earthquake-catalog data}, doi = {10.25932/publishup-50927}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-509270}, school = {Universit{\"a}t Potsdam}, pages = {ix, 83}, year = {2021}, abstract = {One third of the world's population lives in areas where earthquakes causing at least slight damage are frequently expected. Thus, the development and testing of global seismicity models is essential to improving seismic hazard estimates and earthquake-preparedness protocols for effective disaster-risk mitigation. Currently, the availability and quality of geodetic data along plate-boundary regions provides the opportunity to construct global models of plate motion and strain rate, which can be translated into global maps of forecasted seismicity. Moreover, the broad coverage of existing earthquake catalogs facilitates in present-day the calibration and testing of global seismicity models. As a result, modern global seismicity models can integrate two independent factors necessary for physics-based, long-term earthquake forecasting, namely interseismic crustal strain accumulation and sudden lithospheric stress release. In this dissertation, I present the construction of and testing results for two global ensemble seismicity models, aimed at providing mean rates of shallow (0-70 km) earthquake activity for seismic hazard assessment. These models depend on the Subduction Megathrust Earthquake Rate Forecast (SMERF2), a stationary seismicity approach for subduction zones, based on the conservation of moment principle and the use of regional "geodesy-to-seismicity" parameters, such as corner magnitudes, seismogenic thicknesses and subduction dip angles. Specifically, this interface-earthquake model combines geodetic strain rates with instrumentally-recorded seismicity to compute long-term rates of seismic and geodetic moment. Based on this, I derive analytical solutions for seismic coupling and earthquake activity, which provide this earthquake model with the initial abilities to properly forecast interface seismicity. Then, I integrate SMERF2 interface-seismicity estimates with earthquake computations in non-subduction zones provided by the Seismic Hazard Inferred From Tectonics based on the second iteration of the Global Strain Rate Map seismicity approach to construct the global Tectonic Earthquake Activity Model (TEAM). Thus, TEAM is designed to reduce number, and potentially spatial, earthquake inconsistencies of its predecessor tectonic earthquake model during the 2015-2017 period. Also, I combine this new geodetic-based earthquake approach with a global smoothed-seismicity model to create the World Hybrid Earthquake Estimates based on Likelihood scores (WHEEL) model. This updated hybrid model serves as an alternative earthquake-rate approach to the Global Earthquake Activity Rate model for forecasting long-term rates of shallow seismicity everywhere on Earth. Global seismicity models provide scientific hypotheses about when and where earthquakes may occur, and how big they might be. Nonetheless, the veracity of these hypotheses can only be either confirmed or rejected after prospective forecast evaluation. Therefore, I finally test the consistency and relative performance of these global seismicity models with independent observations recorded during the 2014-2019 pseudo-prospective evaluation period. As a result, hybrid earthquake models based on both geodesy and seismicity are the most informative seismicity models during the testing time frame, as they obtain higher information scores than their constituent model components. These results support the combination of interseismic strain measurements with earthquake-catalog data for improved seismicity modeling. However, further prospective evaluations are required to more accurately describe the capacities of these global ensemble seismicity models to forecast longer-term earthquake activity.}, language = {en} } @article{BazylevZakariadzeZhelyazkovaPanayotovaetal.1999, author = {Bazylev, B. A. and Zakariadze, G. S. and Zhelyazkova-Panayotova, M. D. and Kolcheva, K. and Oberh{\"a}nsli, Roland and Solov'eva, N. V.}, title = {Petrology of ultramafic rocks from the ophiolithe association in the crystalline basement of the Rhodope massif}, year = {1999}, language = {en} } @article{BazylevZakariadzeZhelyazkovaPanayotovaetal.1998, author = {Bazylev, B. A. and Zakariadze, G. S. and Zhelyazkova-Panayotova, M. D. and Solov'eva, N. V. and Oberh{\"a}nsli, Roland}, title = {Genetic diversity of ophiolite ultramafics from the crystalline basement of Rhodope massif}, year = {1998}, language = {en} } @phdthesis{Beamish2019, author = {Beamish, Alison Leslie}, title = {Hyperspectral remote sensing of the spatial and temporal heterogeneity of low Arctic vegetation}, doi = {10.25932/publishup-42592}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425922}, school = {Universit{\"a}t Potsdam}, pages = {v, 102}, year = {2019}, abstract = {Arctic tundra ecosystems are experiencing warming twice the global average and Arctic vegetation is responding in complex and heterogeneous ways. Shifting productivity, growth, species composition, and phenology at local and regional scales have implications for ecosystem functioning as well as the global carbon and energy balance. Optical remote sensing is an effective tool for monitoring ecosystem functioning in this remote biome. However, limited field-based spectral characterization of the spatial and temporal heterogeneity limits the accuracy of quantitative optical remote sensing at landscape scales. To address this research gap and support current and future satellite missions, three central research questions were posed: • Does canopy-level spectral variability differ between dominant low Arctic vegetation communities and does this variability change between major phenological phases? • How does canopy-level vegetation colour images recorded with high and low spectral resolution devices relate to phenological changes in leaf-level photosynthetic pigment concentrations? • How does spatial aggregation of high spectral resolution data from the ground to satellite scale influence low Arctic tundra vegetation signatures and thereby what is the potential of upcoming hyperspectral spaceborne systems for low Arctic vegetation characterization? To answer these questions a unique and detailed database was assembled. Field-based canopy-level spectral reflectance measurements, nadir digital photographs, and photosynthetic pigment concentrations of dominant low Arctic vegetation communities were acquired at three major phenological phases representing early, peak and late season. Data were collected in 2015 and 2016 in the Toolik Lake Research Natural Area located in north central Alaska on the North Slope of the Brooks Range. In addition to field data an aerial AISA hyperspectral image was acquired in the late season of 2016. Simulations of broadband Sentinel-2 and hyperspectral Environmental and Mapping Analysis Program (EnMAP) satellite reflectance spectra from ground-based reflectance spectra as well as simulations of EnMAP imagery from aerial hyperspectral imagery were also obtained. Results showed that canopy-level spectral variability within and between vegetation communities differed by phenological phase. The late season was identified as the most discriminative for identifying many dominant vegetation communities using both ground-based and simulated hyperspectral reflectance spectra. This was due to an overall reduction in spectral variability and comparable or greater differences in spectral reflectance between vegetation communities in the visible near infrared spectrum. Red, green, and blue (RGB) indices extracted from nadir digital photographs and pigment-driven vegetation indices extracted from ground-based spectral measurements showed strong significant relationships. RGB indices also showed moderate relationships with chlorophyll and carotenoid pigment concentrations. The observed relationships with the broadband RGB channels of the digital camera indicate that vegetation colour strongly influences the response of pigment-driven spectral indices and digital cameras can track the seasonal development and degradation of photosynthetic pigments. Spatial aggregation of hyperspectral data from the ground to airborne, to simulated satel-lite scale was influenced by non-photosynthetic components as demonstrated by the distinct shift of the red edge to shorter wavelengths. Correspondence between spectral reflectance at the three scales was highest in the red spectrum and lowest in the near infra-red. By artificially mixing litter spectra at different proportions to ground-based spectra, correspondence with aerial and satellite spectra increased. Greater proportions of litter were required to achieve correspondence at the satellite scale. Overall this thesis found that integrating multiple temporal, spectral, and spatial data is necessary to monitor the complexity and heterogeneity of Arctic tundra ecosystems. The identification of spectrally similar vegetation communities can be optimized using non-peak season hyperspectral data leading to more detailed identification of vegetation communities. The results also highlight the power of vegetation colour to link ground-based and satellite data. Finally, a detailed characterization non-photosynthetic ecosystem components is crucial for accurate interpretation of vegetation signals at landscape scales.}, language = {en} } @article{BeauvalHainzlScherbaum2006, author = {Beauval, Celine and Hainzl, Sebastian and Scherbaum, Frank}, title = {The impact of the spatial uniform distribution of seismicity on probabilistic seismic-hazard estimation}, series = {Bulletin of the Seismological Society of America}, volume = {96}, journal = {Bulletin of the Seismological Society of America}, number = {6}, publisher = {GeoScienceWorld}, address = {Alexandria, Va.}, issn = {0037-1106}, doi = {10.1785/0120060073}, pages = {2465 -- 2471}, year = {2006}, abstract = {The first step in the estimation of probabilistic seismic hazard in a region commonly consists of the definition and characterization of the relevant seismic sources. Because in low-seismicity regions seismicity is often rather diffuse and faults are difficult to identify, large areal source zones are mostly used. The corresponding hypothesis is that seismicity is uniformly distributed inside each areal seismic source zone. In this study, the impact of this hypothesis on the probabilistic hazard estimation is quantified through the generation of synthetic spatial seismicity distributions. Fractal seismicity distributions are generated inside a given source zone and probabilistic hazard is computed for a set of sites located inside this zone. In our study, the impact of the spatial seismicity distribution is defined as the deviation from the hazard value obtained for a spatially uniform seismicity distribution. From the generation of a large number of synthetic distributions, the correlation between the fractal dimension D and the impact is derived. The results show that the assumption of spatially uniform seismicity tends to bias the hazard to higher values. The correlation can be used to determine the systematic biases and uncertainties for hazard estimations in real cases, where the fractal dimension has been determined. We apply the technique in Germany (Cologne area) and in France (Alps).}, language = {en} } @article{BeauvalTasanLaurendeauetal.2012, author = {Beauval, Celine and Tasan, Hilal and Laurendeau, Aurore and Delavaud, Elise and Cotton, Fabrice and Gueguen, Philippe and K{\"u}hn, Nicolas}, title = {On the testing of ground-motion prediction equations against small-magnitude data}, series = {Bulletin of the Seismological Society of America}, volume = {102}, journal = {Bulletin of the Seismological Society of America}, number = {5}, publisher = {Seismological Society of America}, address = {El Cerrito}, issn = {0037-1106}, doi = {10.1785/0120110271}, pages = {1994 -- 2007}, year = {2012}, abstract = {Ground-motion prediction equations (GMPE) are essential in probabilistic seismic hazard studies for estimating the ground motions generated by the seismic sources. In low-seismicity regions, only weak motions are available during the lifetime of accelerometric networks, and the equations selected for the probabilistic studies are usually models established from foreign data. Although most GMPEs have been developed for magnitudes 5 and above, the minimum magnitude often used in probabilistic studies in low-seismicity regions is smaller. Disaggregations have shown that, at return periods of engineering interest, magnitudes less than 5 may be contributing to the hazard. This paper presents the testing of several GMPEs selected in current international and national probabilistic projects against weak motions recorded in France (191 recordings with source-site distances up to 300 km, 3:8 <= M-w <= 4:5). The method is based on the log-likelihood value proposed by Scherbaum et al. (2009). The best-fitting models (approximately 2:5 <= LLH <= 3:5) over the whole frequency range are the Cauzzi and Faccioli (2008), Akkar and Bommer (2010), and Abrahamson and Silva (2008) models. No significant regional variation of ground motions is highlighted, and the magnitude scaling could be the predominant factor in the control of ground-motion amplitudes. Furthermore, we take advantage of a rich Japanese dataset to run tests on randomly selected low-magnitude subsets, and confirm that a dataset of similar to 190 observations, the same size as the French dataset, is large enough to obtain stable LLH estimates. Additionally we perform the tests against larger magnitudes (5-7) from the Japanese dataset. The ranking of models is partially modified, indicating a magnitude scaling effect for some of the models, and showing that extrapolating testing results obtained from low-magnitude ranges to higher magnitude ranges is not straightforward.}, language = {en} } @article{BeauvalHainzlScherbaum2006, author = {Beauval, C{\´e}line and Hainzl, Sebastian and Scherbaum, Frank}, title = {Probabilistic seismic hazard estimation in low-seismicity regions considering non-Poissonian seismic occurrence}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2006.02863.x}, year = {2006}, abstract = {In low-seismicity regions, such as France or Germany, the estimation of probabilistic seismic hazard must cope with the difficult identification of active faults and with the low amount of seismic data available. Since the probabilistic hazard method was initiated, most studies assume a Poissonian occurrence of earthquakes. Here we propose a method that enables the inclusion of time and space dependences between earthquakes into the probabilistic estimation of hazard. Combining the seismicity model Epidemic Type Aftershocks-Sequence (ETAS) with a Monte Carlo technique, aftershocks are naturally accounted for in the hazard determination. The method is applied to the Pyrenees region in Southern France. The impact on hazard of declustering and of the usual assumption that earthquakes occur according to a Poisson process is quantified, showing that aftershocks contribute on average less than 5 per cent to the probabilistic hazard, with an upper bound around 18 per cent}, language = {en} } @article{BeauvalScotti2004, author = {Beauval, C{\´e}line and Scotti, O.}, title = {Quantifying sensitivities of PSHA for France to earthquake catalog uncertainties, truncation of ground-motion variability, and magnitude limits}, issn = {0037-1106}, year = {2004}, abstract = {The results of this study clearly identify four key parameters controlling the estimation of probabilistic seismic hazard assessment (PSHA) in France in the framework of the Cornell-McGuire method. Results in terms of peak ground acceleration demonstrate the equally high impact, at all return periods, of the choice of truncation of the predicted ground-motion distribution (at + 2sigma) and of the choice between two different magnitude-intensity correlations. The choice of minimum magnitude (3.5/4.5) on hazard estimates can have an important impact at small return periods (<1000 years), whereas the maximum magnitude (6.5/7.0), on the other hand, is not a key parameter even at large return periods (10,000 years). This hierarchy of impacts is maintained at lower frequencies down to 5 Hz. Below 5 Hz, the choice of the maximum magnitude has a much greater impact, whereas the impact due to the choice of the minimum magnitude disappears. Moreover, variability due to catalog uncertainties is also quantified; these uncertainties that underly all hazard results can engender as high a variability as the controlling parameters. Parameter impacts, calculated at the centers of each source zone, show a linear trend with the seismicity models of the zone, demonstrating the lack of contributions coming from neighboring zones. Indeed, the region of influence that contributes to the PSHA estimate at a given site decreases with increasing return periods. The resulting overall variability in hazard estimates due to input uncertainties is quantified through a logic tree, obtained coefficients of variation vary between 10\% and 20\%. Until better physical models are obtained, the uncertainty on hazard estimates may be reduced by working on an appropriate magnitude-intensity correlation}, language = {en} } @article{BecerrilUbideSudoetal.2016, author = {Becerril, Laura and Ubide, Teresa and Sudo, Masafumi and Marti, Joan and Galindo, Ines and Gale, Carlos and Maria Morales, Jose and Yepes, Jorge and Lago, Marceliano}, title = {Geochronological constraints on the evolution of El Hierro (Canary Islands)}, series = {Journal of African earth sciences}, volume = {113}, journal = {Journal of African earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {1464-343X}, doi = {10.1016/j.jafrearsci.2015.10.012}, pages = {88 -- 94}, year = {2016}, abstract = {New age data have been obtained to time constrain the recent Quaternary volcanism of El Hierro (Canary Islands) and to estimate its recurrence rate. We have carried out Ar-40/Ar-39 geochronology on samples spanning the entire volcanostratigraphic sequence of the island and C-14 geochronology on the most recent eruption on the northeast rift of the island: 2280 +/- 30 yr BP. We combine the new absolute data with a revision of published ages onshore, some of which were identified through geomorphological criteria (relative data). We present a revised and updated chronology of volcanism for the last 33 ka that we use to estimate the maximum eruptive recurrence of the island. The number of events per year determined is 9.7 x 10(-4) for the emerged part of the island, which means that, as a minimum, one eruption has occurred approximately every 1000 years. This highlights the need of more geochronological data to better constrain the eruptive recurrence of El Hierro. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{BeckHollowaySchwanghart2013, author = {Beck, Jan and Holloway, Jeremy D. and Schwanghart, Wolfgang}, title = {Undersampling and the measurement of beta diversity}, series = {Methods in ecology and evolution : an official journal of the British Ecological Society}, volume = {4}, journal = {Methods in ecology and evolution : an official journal of the British Ecological Society}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2041-210X}, doi = {10.1111/2041-210x.12023}, pages = {370 -- 382}, year = {2013}, abstract = {Beta diversity is a conceptual link between diversity at local and regional scales. Various additional methodologies of quantifying this and related phenomena have been applied. Among them, measures of pairwise (dis)similarity of sites are particularly popular. Undersampling, i.e. not recording all taxa present at a site, is a common situation in ecological data. Bias in many metrics related to beta diversity must be expected, but only few studies have explicitly investigated the properties of various measures under undersampling conditions. On the basis of an empirical data set, representing near-complete local inventories of the Lepidoptera from an isolated Pacific island, as well as simulated communities with varying properties, we mimicked different levels of undersampling. We used 14 different approaches to quantify beta diversity, among them dataset-wide multiplicative partitioning (i.e. true beta diversity') and pairwise site x site dissimilarities. We compared their values from incomplete samples to true results from the full data. We used these comparisons to quantify undersampling bias and we calculated correlations of the dissimilarity measures of undersampled data with complete data of sites. Almost all tested metrics showed bias and low correlations under moderate to severe undersampling conditions (as well as deteriorating precision, i.e. large chance effects on results). Measures that used only species incidence were very sensitive to undersampling, while abundance-based metrics with high dependency on the distribution of the most common taxa were particularly robust. Simulated data showed sensitivity of results to the abundance distribution, confirming that data sets of high evenness and/or the application of metrics that are strongly affected by rare species are particularly sensitive to undersampling. The class of beta measure to be used should depend on the research question being asked as different metrics can lead to quite different conclusions even without undersampling effects. For each class of metric, there is a trade-off between robustness to undersampling and sensitivity to rare species. In consequence, using incidence-based metrics carries a particular risk of false conclusions when undersampled data are involved. Developing bias corrections for such metrics would be desirable.}, language = {en} } @article{BeckenRitterBedrosianetal.2011, author = {Becken, Michael and Ritter, Oliver and Bedrosian, Paul A. and Weckmann, Ute}, title = {Correlation between deep fluids, tremor and creep along the central San Andreas fault}, series = {Nature : the international weekly journal of science}, volume = {480}, journal = {Nature : the international weekly journal of science}, number = {7375}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature10609}, pages = {87 -- U248}, year = {2011}, abstract = {The seismicity pattern along the San Andreas fault near Parkfield and Cholame, California, varies distinctly over a length of only fifty kilometres. Within the brittle crust, the presence of frictionally weak minerals, fault-weakening high fluid pressures and chemical weakening are considered possible causes of an anomalously weak fault northwest of Parkfield(1-4). Non-volcanic tremor from lower-crustal and upper-mantle depths(5-7) is most pronounced about thirty kilometres southeast of Parkfield and is thought to be associated with high pore-fluid pressures at depth(8). Here we present geophysical evidence of fluids migrating into the creeping section of the San Andreas fault that seem to originate in the region of the uppermost mantle that also stimulates tremor, and evidence that along-strike variations in tremor activity and amplitude are related to strength variations in the lower crust and upper mantle. Interconnected fluids can explain a deep zone of anomalously low electrical resistivity that has been imaged by magnetotelluric data southwest of the Parkfield-Cholame segment. Near Cholame, where fluids seem to be trapped below a high-resistivity cap, tremor concentrates adjacent to the inferred fluids within a mechanically strong zone of high resistivity. By contrast, sub-vertical zones of low resistivity breach the entire crust near the drill hole of the San Andreas Fault Observatory at Depth, northwest of Parkfield, and imply pathways for deep fluids into the eastern fault block, coincident with a mechanically weak crust and the lower tremor amplitudes in the lower crust. Fluid influx to the fault system is consistent with hypotheses of fault-weakening high fluid pressures in the brittle crust.}, language = {en} } @article{BehrensBalischewskiSperlichetal.2022, author = {Behrens, Karsten and Balischewski, Christian and Sperlich, Eric and Menski, Antonia Isabell and Balderas-Valadez, Ruth Fabiola and Pacholski, Claudia and G{\"u}nter, Christina and Lubahn, Susanne and Kelling, Alexandra and Taubert, Andreas}, title = {Mixed chloridometallate(ii) ionic liquids with tunable color and optical response for potential ammonia sensors}, series = {RSC Advances}, volume = {12}, journal = {RSC Advances}, publisher = {RSC}, address = {London}, issn = {2046-2069}, doi = {10.1039/d2ra05581c}, pages = {35072 -- 35082}, year = {2022}, abstract = {Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup.}, language = {en} } @phdthesis{Behrens2018, author = {Behrens, Ricarda}, title = {Causes for slow weathering and erosion in the steep, warm, monsoon-subjected Highlands of Sri Lanka}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408503}, school = {Universit{\"a}t Potsdam}, pages = {ix, 107, XXIV}, year = {2018}, abstract = {In the Highlands of Sri Lanka, erosion and chemical weathering rates are among the lowest for global mountain denudation. In this tropical humid setting, highly weathered deep saprolite profiles have developed from high-grade metamorphic charnockite during spheroidal weathering of the bedrock. The spheroidal weathering produces rounded corestones and spalled rindlets at the rock-saprolite interface. I used detailed textural, mineralogical, chemical, and electron-microscopic (SEM, FIB, TEM) analyses to identify the factors limiting the rate of weathering front advance in the profile, the sequence of weathering reactions, and the underlying mechanisms. The first mineral attacked by weathering was found to be pyroxene initiated by in situ Fe oxidation, followed by in situ biotite oxidation. Bulk dissolution of the primary minerals is best described with a dissolution - re-precipitation process, as no chemical gradients towards the mineral surface and sharp structural boundaries are observed at the nm scale. Only the local oxidation in pyroxene and biotite is better described with an ion by ion process. The first secondary phases are oxides and amorphous precipitates from which secondary minerals (mainly smectite and kaolinite) form. Only for biotite direct solid state transformation to kaolinite is likely. The initial oxidation of pyroxene and biotite takes place in locally restricted areas and is relatively fast: log J = -11 molmin/(m2 s). However, calculated corestone-scale mineral oxidation rates are comparable to corestone-scale mineral dissolution rates: log R = -13 molpx/(m2 s) and log R = -15 molbt/(m2 s). The oxidation reaction results in a volume increase. Volumetric calculations suggest that this observed oxidation leads to the generation of porosity due to the formation of micro-fractures in the minerals and the bedrock allowing for fluid transport and subsequent dissolution of plagioclase. At the scale of the corestone, this fracture reaction is responsible for the larger fractures that lead to spheroidal weathering and to the formation of rindlets. Since these fractures have their origin from the initial oxidational induced volume increase, oxidation is the rate limiting parameter for weathering to take place. The ensuing plagioclase weathering leads to formation of high secondary porosity in the corestone over a distance of only a few cm and eventually to the final disaggregation of bedrock to saprolite. As oxidation is the first weathering reaction, the supply of O2 is a rate-limiting factor for chemical weathering. Hence, the supply of O2 and its consumption at depth connects processes at the weathering front with erosion at the surface in a feedback mechanism. The strength of the feedback depends on the relative weight of advective versus diffusive transport of O2 through the weathering profile. The feedback will be stronger with dominating diffusive transport. The low weathering rate ultimately depends on the transport of O2 through the whole regolith, and on lithological factors such as low bedrock porosity and the amount of Fe-bearing primary minerals. In this regard the low-porosity charnockite with its low content of Fe(II) bearing minerals impedes fast weathering reactions. Fresh weatherable surfaces are a pre-requisite for chemical weathering. However, in the case of the charnockite found in the Sri Lankan Highlands, the only process that generates these surfaces is the fracturing induced by oxidation. Tectonic quiescence in this region and low pre-anthropogenic erosion rate (attributed to a dense vegetation cover) minimize the rejuvenation of the thick and cohesive regolith column, and lowers weathering through the feedback with erosion.}, language = {en} } @article{BehrensBouchezSchuessleretal.2015, author = {Behrens, Ricarda and Bouchez, Julien and Schuessler, Jan A. and Dultz, Stefan and Hewawasam, Tilak and von Blanckenburg, Friedhelm}, title = {Mineralogical transformations set slow weathering rates in low-porosity metamorphic bedrock on mountain slopes in a tropical climate}, series = {Chemical geology : official journal of the European Association for Geochemistry}, volume = {411}, journal = {Chemical geology : official journal of the European Association for Geochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0009-2541}, doi = {10.1016/j.chemgeo.2015.07.008}, pages = {283 -- 298}, year = {2015}, abstract = {In the Sri Lankan Highlands erosion and chemical weathering rates are among the lowest for global mountain denudation. In this tropical humid setting, highly weathered deep saprolite profiles have developed from high-grade metamorphic charnockite during spheroidal weathering of the bedrock. The spheroidal weathering produces rounded corestones and spalled rindlets at the rock-saprolite interface. We used detailed textural, mineralogical and chemical analyses to reconstruct the sequence of weathering reactions and their causes. The first mineral attacked by weathering was found to be pyroxene initiated by in situ Fe oxidation. Volumetric calculations suggest that this oxidation leads to the generation of porosity due to the formation of micro-fractures allowing for fluid transport and subsequent dissolution of biotite and plagioclase. The rapid ensuing plagioclase weathering leads to formation of high secondary porosity in the corestone over a distance of only a few cm and eventually to the final disaggregation of bedrock to saprolite. The first secondary phases are oxides or amorphous precipitates from which secondary minerals (mainly gibbsite, kaolinite and goethite) form. As oxidation is the first weathering reaction, the supply of O-2 is a rate-limiting factor for chemical weathering. Hence, the supply of O-2 and its consumption at depth connects processes at the weathering front with those at the Earth's surface in a feedback mechanism. The strength of the feedback depends on the relative weight of advective versus diffusive transport of O-2 through the weathering profile. The feedback will be stronger with dominating diffusive transport. The low weathering rate is explained by the nature of this feedback that is ultimately dependent on the transport of O-2 through the whole regolith, and on lithological factors such as low bedrock porosity and the amount of Fe-bearing primary minerals. Tectonic quiescence in this region and low pre-development erosion rate (attributed to a dense vegetation cover) minimize the rejuvenation of the thick and cohesive regolith column, finally leading to low denudation rates. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{BehyariMohajjelSobeletal.2017, author = {Behyari, Mahdi and Mohajjel, Mohammad and Sobel, Edward and Rezaeian, Mahnaz and Moayyed, Mohssen and Schmidt, Alexander}, title = {Analysis of exhumation history in Misho Mountains, NW Iran}, series = {Neues Jahrbuch f{\"u}r Geologie und Pal{\"a}ontologie : merged with Neues Jahrbuch f{\"u}r Geol. und Pal{\"a}ont. Monatshefte". Abhandlungen}, volume = {283}, journal = {Neues Jahrbuch f{\"u}r Geologie und Pal{\"a}ontologie : merged with Neues Jahrbuch f{\"u}r Geol. und Pal{\"a}ont. Monatshefte". Abhandlungen}, number = {3}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0077-7749}, doi = {10.1127/njgpa/2017/0642}, pages = {291 -- 308}, year = {2017}, abstract = {The Misho complex in Northwest Iran is a prominent topographic massif bounded by well known active faults. Our new structural analysis of this area indicates that faulting has important role in the exhumation of this complex. The conjugate orientation of the North and South Misho Faults caused uplift in the Misho and exhumation of the Precambrian crystalline basement. Our structural and stratigraphic data shows that rapid uplift could have been initiation since the 21-22 Ma and exhumation rate was about 0.16 to 0.24 km/Ma. To refine this age, we performed U/Pb analysis of detrital zircon from the Upper Red Formation using LA-ICP-MS. We conducted AFT analysis on 6 basement samples from the hanging wall and 1 sample from the Upper Red Formation in the footwall NMF. Uplift in the hanging wall of NMF led to resting of sample 916 marl. This geochronologic and thermochronologic data shows that exhumation in the MC is diachronously along strike and affected by faults. The phase of exhumation is documented in the study area and entire Iranian plateau is related to the final closure of the Neo-Tethys and northward motion of the Arabian Plate.}, language = {en} } @misc{BeisnerGrossartGasol2019, author = {Beisner, Beatrix E. and Grossart, Hans-Peter and Gasol, Josep M.}, title = {A guide to methods for estimating phago-mixotrophy in nanophytoplankton}, series = {Journal of plankton research}, volume = {41}, journal = {Journal of plankton research}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0142-7873}, doi = {10.1093/plankt/fbz008}, pages = {77 -- 89}, year = {2019}, abstract = {Growing attention to phytoplankton mixotrophy as a trophic strategy has led to significant revisions of traditional pelagic food web models and ecosystem functioning. Although some empirical estimates of mixotrophy do exist, a much broader set of in situ measurements are required to (i) identify which organisms are acting as mixotrophs in real time and to (ii) assess the contribution of their heterotrophy to biogeochemical cycling. Estimates are needed through time and across space to evaluate which environmental conditions or habitats favour mixotrophy: conditions still largely unknown. We review methodologies currently available to plankton ecologists to undertake estimates of plankton mixotrophy, in particular nanophytoplankton phago-mixotrophy. Methods are based largely on fluorescent or isotopic tracers, but also take advantage of genomics to identify phylotypes and function. We also suggest novel methods on the cusp of use for phago-mixotrophy assessment, including single-cell measurements improving our capacity to estimate mixotrophic activity and rates in wild plankton communities down to the single-cell level. Future methods will benefit from advances in nanotechnology, micromanipulation and microscopy combined with stable isotope and genomic methodologies. Improved estimates of mixotrophy will enable more reliable models to predict changes in food web structure and biogeochemical flows in a rapidly changing world.}, language = {en} } @article{BelinaDafflonTronickeetal.2009, author = {Belina, Florian A. and Dafflon, Baptiste and Tronicke, Jens and Holliger, Klaus}, title = {Enhancing the vertical resolution of surface georadar data}, issn = {0926-9851}, doi = {10.1016/j.jappgeo.2008.08.011}, year = {2009}, abstract = {There are far-reaching conceptual similarities between bi-static surface georadar and post-stack, "zero-offset" seismic reflection data, which is expressed in largely identical processing flows. One important difference is, however, that standard deconvolution algorithms routinely used to enhance the vertical resolution of seismic data are notoriously problematic or even detrimental to the overall signal quality when applied to surface georadar data. We have explored various options for alleviating this problem and have tested them on a geologically well-constrained surface georadar dataset. Standard stochastic and direct deterministic deconvolution approaches proved to be largely unsatisfactory. While least-squares-type deterministic deconvolution showed some promise, the inherent uncertainties involved in estimating the source wavelet introduced some artificial "ringiness". In contrast, we found spectral balancing approaches to be effective, practical and robust means for enhancing the vertical resolution of surface georadar data, particularly, but not exclusively, in the uppermost part of the georadar section, which is notoriously plagued by the interference of the direct air- and groundwaves. For the data considered in this study, it can be argued that band- limited spectral blueing may provide somewhat better results than standard band-limited spectral whitening, particularly in the uppermost part of the section affected by the interference of the air- and groundwaves. Interestingly, this finding is consistent with the fact that the amplitude spectrum resulting from least-squares-type deterministic deconvolution is characterized by a systematic enhancement of higher frequencies at the expense of lower frequencies and hence is blue rather than white. It is also consistent with increasing evidence that spectral "blueness" is a seemingly universal, albeit enigmatic, property of the distribution of reflection coefficients in the Earth. Our results therefore indicate that spectral balancing techniques in general and spectral blueing in particular represent simple, yet effective means of enhancing the vertical resolution of surface georadar data and, in many cases, could turn out to be a preferable alternative to standard deconvolution approaches.}, language = {en} } @article{BenDorFlaxLevitanetal.2021, author = {Ben Dor, Yoav and Flax, Tomer and Levitan, Itamar and Enzel, Yehouda and Brauer, Achim and Erel, Yigal}, title = {The paleohydrological implications of aragonite precipitation under contrasting climates in the endorheic Dead Sea and its precursors revealed by experimental investigations}, series = {Chemical geology : official journal of the European Association for Geochemistry}, volume = {576}, journal = {Chemical geology : official journal of the European Association for Geochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0009-2541}, doi = {10.1016/j.chemgeo.2021.120261}, pages = {18}, year = {2021}, abstract = {Carbonate minerals are common in both marine and lacustrine records, and are frequently used for paleoenvironmental reconstructions. The sedimentary sequence of the endorheic Dead Sea and its precursors contain aragonite laminae that provide a detailed sedimentary archive of climatic, hydrologic, limnologic and environmental conditions since the Pleistocene. However, the interpretation of these archives requires a detailed understanding of the constraints and mechanisms affecting CaCO3 precipitation, which are still debated. The implications of aragonite precipitation in the Dead Sea and in its late Pleistocene predecessor (Lake Lisan) were investigated in this study by mixing natural and synthetic brines with a synthetic bicarbonate solution that mimics flash-floods composition, with and without the addition of extracellular polymeric substances (EPS). Aragonite precipitation was monitored, and precipitation rates and carbonate yields were calculated and are discussed with respect to modern aquatic environments. The experimental insights on aragonite precipitation are then integrated with microfacies analyses in order to reconstruct and constrain prevailing limnogeological processes and their hydroclimatic drivers under low (interglacial) and high (glacial) lake level stands. Aragonite precipitation took place within days to several weeks after the mixing of the brines with a synthetic bicarbonate solution. Incubation time was proportional to bicarbonate concentration, and precipitation rates were partially influenced by ionic strength. Additionally, extracellular polymeric substances inhibited aragonite precipitation for several months. As for the lake's water budget, our calculations suggest that the precipitation of a typical aragonite lamina (0.5 mm thick) during high lake stand requires unreasonable freshwater inflow from either surface or subsurface sources. This discrepancy can be resolved by considering one or a combination of the following scenarios; (1) discontinuous aragonite deposition over parts of the lake floor; (2) supply of additional carbonate flux (or fluxes) to the lake from aeolian dust and the remobilization and dissolution of dust deposits at the watershed; (3) carbonate production via oxidation of organic carbon by sulfate-reducing bacteria. Altogether, it is suggested that aragonite laminae thickness cannot be directly interpreted for quantitatively reconstructing the hydrological balance for the entire lake, they may still prove valuable for identifying inherent hydroclimatic periodicities at a single site.}, language = {en} } @misc{BenDorNeugebauerEnzeletal.2020, author = {Ben Dor, Yoav and Neugebauer, Ina and Enzel, Yehouda and Schwab, Markus J. and Tjallingii, Rik and Erel, Yigal and Brauer, Achim}, title = {Reply to comment on: Ben Dor, Yoav et al. : Varves of the Dead Sea sedimentary record. - In: Quaternary science reviews : the international multidisciplinary research and review journal. - 215 (2019), S. 173 - 184. - (ISSN: 0277-3791). - https://doi.org/10.1016/j.quascirev.2019.04.011}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {231}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2019.106063}, pages = {5}, year = {2020}, abstract = {In the comment on "Varves of the Dead Sea sedimentary record." Quaternary Science Reviews 215 (Ben Dor et al., 2019): 173-184. by R. Bookman, two recently published papers are suggested to prove that the interpretation of the laminated sedimentary sequence of the Dead Sea, deposited mostly during MIS2 and Holocene pluvials, as annual deposits (i.e., varves) is wrong. In the following response, we delineate several lines of evidence which coalesce to demonstrate that based on the vast majority of evidence, including some of the evidence provided in the comment itself, the interpretation of these sediments as varves is the more likely scientific conclusion. We further discuss the evidence brought up in the comment and its irrelevance and lack of robustness for addressing the question under discussion.}, language = {en} } @article{BenDorNeugebauerEnzeletal.2019, author = {Ben Dor, Yoav and Neugebauer, Ina and Enzel, Yehouda and Schwab, Markus Julius and Tjallingii, Rik and Erel, Yigal and Brauer, Achim}, title = {Varves of the Dead Sea sedimentary record}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {215}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2019.04.011}, pages = {173 -- 184}, year = {2019}, abstract = {The sedimentary record of the Dead Sea provides an exceptional high-resolution archive of past climate changes in the drought-sensitive eastern Mediterranean-Levant, a key region for the development of humankind at the boundary of global climate belts. Moreover, it is the only deep hypersaline lake known to have deposited long sequences of finely laminated, annually deposited sediments (i.e. varves) of varied compositions, including aragonite, gypsum, halite and clastic sediments. Vast efforts have been made over the years to decipher the environmental information stored in these evaporitic-clastic sequences spanning from the Pleistocene Lake Amora to the Holocene Dead Sea. A general characterisation of sediment facies has been derived from exposed sediment sections, as well as from shallow- and deep-water sediment cores. During high lake stands and episodes of positive water budget, mostly during glacial times, alternating aragonite and detritus laminae ('aad' facies) were accumulated, whereas during low lake stands and droughts, prevailing during interglacials, laminated detritus ('ld' facies) and laminated halite ('lh' facies) dominate the sequence. In this paper, we (i) review the three types of laminated sediments of the Dead Sea sedimentary record ('aad', 'ld' and 'lh' facies), (ii) discuss their modes of formation, deposition and accumulation, and their interpretation as varves, and (iii) illustrate how Dead Sea varves are utilized for palaeoclimate reconstructions and for establishing floating chronologies.}, language = {en} } @article{BenNsirJomaaYildirimetal.2022, author = {Ben Nsir, Siwar and Jomaa, Seifeddine and Yildirim, Umit and Zhou, Xiangqian and D'Oria, Marco and Rode, Michael and Khlifi, Slaheddine}, title = {Assessment of climate change impact on discharge of the lakhmass catchment (Northwest Tunisia)}, series = {Water}, volume = {14}, journal = {Water}, number = {14}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w14142242}, pages = {17}, year = {2022}, abstract = {The Mediterranean region is increasingly recognized as a climate change hotspot but is highly underrepresented in hydrological climate change studies. This study aims to investigate the climate change effects on the hydrology of Lakhmass catchment in Tunisia. Lakhmass catchment is a part of the Medium Valley of Medjerda in northwestern Tunisia that drains an area of 126 km(2). First, the Hydrologiska Byrans Vattenbalansavdelning light (HBV-light) model was calibrated and validated successfully at a daily time step to simulate discharge during the 1981-1986 period. The Nash Sutcliffe Efficiency and Percent bias (NSE, PBIAS) were (0.80, +2.0\%) and (0.53, -9.5\%) for calibration (September 1982-August 1984) and validation (September 1984-August 1986) periods, respectively. Second, HBV-light model was considered as a predictive tool to simulate discharge in a baseline period (1981-2009) and future projections using data (precipitation and temperature) from thirteen combinations of General Circulation Models (GCMs) and Regional Climatic Models (RCMs). We used two trajectories of Representative Concentration Pathways, RCP4.5 and RCP8.5, suggested by the Intergovernmental Panel on Climate Change (IPCC). Each RCP is divided into three projection periods: near-term (2010-2039), mid-term (2040-2069) and long-term (2070-2099). For both scenarios, a decrease in precipitation and discharge will be expected with an increase in air temperature and a reduction in precipitation with almost 5\% for every +1 degrees C of global warming. By long-term (2070-2099) projection period, results suggested an increase in temperature with about 2.7 degrees C and 4 degrees C, and a decrease in precipitation of approximately 7.5\% and 15\% under RCP4.5 and RCP8.5, respectively. This will likely result in a reduction of discharge of 12.5\% and 36.6\% under RCP4.5 and RCP8.5, respectively. This situation calls for early climate change adaptation measures under a participatory approach, including multiple stakeholders and water users.}, language = {en} } @article{BenardKlimmWoodlandetal.2018, author = {Benard, Antoine and Klimm, Kevin and Woodland, Alan B. and Arculus, Richard J. and Wilke, Max and Botcharnikov, Roman E. and Shimizu, Nobumichi and Nebel, Oliver and Rivard, Camille and Ionov, Dmitri A.}, title = {Oxidising agents in sub-arc mantle melts link slab devolatilisation and arc magmas}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-05804-2}, pages = {10}, year = {2018}, abstract = {Subduction zone magmas are more oxidised on eruption than those at mid-ocean ridges. This is attributed either to oxidising components, derived from subducted lithosphere (slab) and added to the mantle wedge, or to oxidation processes occurring during magma ascent via differentiation. Here we provide direct evidence for contributions of oxidising slab agents to melts trapped in the sub-arc mantle. Measurements of sulfur (S) valence state in sub-arc mantle peridotites identify sulfate, both as crystalline anhydrite (CaSO4) and dissolved SO42- in spinel-hosted glass (formerly melt) inclusions. Copper-rich sulfide precipitates in the inclusions and increased Fe3+/Sigma Fe in spinel record a S6+-Fe2+ redox coupling during melt percolation through the sub-arc mantle. Sulfate-rich glass inclusions exhibit high U/Th, Pb/Ce, Sr/Nd and delta S-34 (+ 7 to + 11\%), indicating the involvement of dehydration products of serpentinised slab rocks in their parental melt sources. These observations provide a link between liberated slab components and oxidised arc magmas.}, language = {en} } @article{BenisekBetzlerMarcanoetal.2009, author = {Benisek, Merle-Friederike and Betzler, Christian and Marcano, Gabriela and Mutti, Maria}, title = {Coralline-algal assemblages of a Burdigalian platform slope : implications for carbonate platform reconstruction (northern Sardinia, western Mediterranean Sea)}, issn = {0172-9179}, doi = {10.1007/s10347-009-0183-7}, year = {2009}, abstract = {The rhodolithic slope deposits of a Burdigalian carbonate platform in Sardinia near Sedini were analyzed to reconstruct facies and palaeobathymetry. There is a distinct red-algal growth zonation along the platform slope. The clinoform rollover area consists of coralline-algal bindstones, which downslope change into a zone where rhodoliths are locally fused by progressive encrustation. Mid-slope rhodoliths are moderately branched, and downslope rhodoliths have fruticose protuberances, resulting in branching rhodolith growth patterns. There is a sharp change from the rhodolitic rudstones to the basinal, bivalve-dominated rudstones at the clinoform bottomsets. Red-algal genera identified include Sporolithon, Lithophyllum, Spongites, Hydrolithon, Mesophyllum, Lithoporella, Neogoniolithon, and other mastophoroids and melobesioids. Genera and subfamilies show a zonation along the clinoforms, allowing palaeobathymetric estimates. The clinoform rollovers formed at a water depth of around 40 m and the bottomsets around 60 m. Results from geometrical reconstruction show that coral reefs in the inner platform formed at water depths of around 20 m. Therefore, the Sedini carbonate platform is an example of a reef-bearing platform in which the edge or the platform-interior reefs do not build up to sea level.}, language = {en} } @article{BenmehdiMakaravaBenhamidoucheetal.2011, author = {Benmehdi, Sabah and Makarava, Natallia and Benhamidouche, N. and Holschneider, Matthias}, title = {Bayesian estimation of the self-similarity exponent of the Nile River fluctuation}, series = {Nonlinear processes in geophysics}, volume = {18}, journal = {Nonlinear processes in geophysics}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1023-5809}, doi = {10.5194/npg-18-441-2011}, pages = {441 -- 446}, year = {2011}, abstract = {The aim of this paper is to estimate the Hurst parameter of Fractional Gaussian Noise (FGN) using Bayesian inference. We propose an estimation technique that takes into account the full correlation structure of this process. Instead of using the integrated time series and then applying an estimator for its Hurst exponent, we propose to use the noise signal directly. As an application we analyze the time series of the Nile River, where we find a posterior distribution which is compatible with previous findings. In addition, our technique provides natural error bars for the Hurst exponent.}, language = {en} } @article{BennettFriedrichFurlong2004, author = {Bennett, Richard A. and Friedrich, A. M. and Furlong, K. P.}, title = {Codependent histories of the San Andreas and San Jacinto fault zones from inversion of fault displacement rates}, issn = {0091-7613}, year = {2004}, abstract = {The displacement histories of the San Jacinto and southernmost San Andreas fault zones are constrained by offset data with ages in the range of 5 Ma to 5 ka. Apparent discrepancies between long- and short-term average displacement rates can be reconciled with a time-variable rate model. In this model, the displacement rate on the San Andreas decelerated from similar to35 mm/yr at 1.5 Ma to as low as 9 +/- 4 mm/yr by 90 ka. Over this same time period, the rate on the San Jacinto fault zone accelerated from an initial value of zero to a rate of 26 +/- 4 mm/yr. The data also imply that the rate of the San Andreas fault accelerated since ca. 90 ka, from similar to9 mm/yr to the modern rate of 27 +/- 4 mm/yr, whereas the San Jacinto decelerated from 26 +/- 4 mm/yr to the modern rate of 8 +/- 4 mm/yr. The time scale of these changes is significantly longer than the earthquake cycle, but shorter than time scales characteristic of lithospheric-scalle dynamics. The emergence of the San Jacinto fault zone ca. 1.5 Ma coincided with the development of a major restraining bend in the San Andreas fault zone, suggesting that the formation of new subparallell faults could be driven by conditions that inhibit displacement on preexisting faults}, language = {en} } @article{BentzKwiatekMartinezGarzonetal.2020, author = {Bentz, Stephan and Kwiatek, Grzegorz and Martinez-Garzon, Patricia and Bohnhoff, Marco and Dresen, Georg}, title = {Seismic moment evolution during hydraulic stimulations}, series = {Geophysical research letters}, volume = {47}, journal = {Geophysical research letters}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2019GL086185}, pages = {9}, year = {2020}, abstract = {Analysis of past and present stimulation projects reveals that the temporal evolution and growth of maximum observed moment magnitudes may be linked directly to the injected fluid volume and hydraulic energy. Overall evolution of seismic moment seems independent of the tectonic stress regime and is most likely governed by reservoir specific parameters, such as the preexisting structural inventory. Data suggest that magnitudes can grow either in a stable way, indicating the constant propagation of self-arrested ruptures, or unbound, for which the maximum magnitude is only limited by the size of tectonic faults and fault connectivity. Transition between the two states may occur at any time during injection or not at all. Monitoring and traffic light systems used during stimulations need to account for the possibility of unstable rupture propagation from the very beginning of injection by observing the entire seismicity evolution in near-real time and at high resolution for an immediate reaction in injection strategy. Plain Language Summary Predicting and controlling the size of earthquakes caused by fluid injection is currently the major concern of many projects associated with geothermal energy production. Here, we analyze the magnitude and seismic moment evolution with injection parameters for prominent geothermal and scientific projects to date. Evolution of seismicity seems to be largely independent of the tectonic stress background and seemingly depends on reservoir specific characteristics. We find that the maximum observed magnitudes relate linearly to the injected volume or hydraulic energy. A linear relation suggests stable growth of induced ruptures, as predicted by current models, or rupture growth may no longer depend on the stimulated volume but on tectonics. A system may change between the two states during the course of fluid injection. Close-by and high-resolution monitoring of seismic and hydraulic parameters in near-real time may help identify these fundamental changes in ample time to change injection strategy and manage maximum magnitudes.}, language = {en} } @article{BentzMartinezGarzonKwiateketal.2019, author = {Bentz, Stephan and Martinez-Garzon, Patricia and Kwiatek, Grzegorz and Dresen, Georg and Bohnhoff, Marco}, title = {Analysis of Microseismicity Framing M-L > 2.5 Earthquakes at The Geysers Geothermal Field, California}, series = {Journal of geophysical research : Solid earth}, volume = {124}, journal = {Journal of geophysical research : Solid earth}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2019JB017716}, pages = {8823 -- 8843}, year = {2019}, abstract = {Preparatory mechanisms accompanying or leading to nucleation of larger earthquakes have been observed at both laboratory and field scales, but conditions favoring the occurrence of observable preparatory processes are still largely unknown. In particular, it remains a matter of debate why some earthquakes occur spontaneously without noticeable precursors as opposed to events that are preceded by an extended failure process. In this study, we have generated new high-resolution seismicity catalogs framing the occurrence of 20 M-L > 2.5 earthquakes at The Geysers geothermal field in California. To this end, a seismicity catalog of the 11 days framing each large event was created. We selected 20 sequences sampling different hypocentral depths and hydraulic conditions within the field. Seismic activity and magnitude frequency distributions displayed by the different earthquake sequences are correlated with their location within the reservoir. Sequences located in the northwestern part of the reservoir show overall increased seismic activity and low b values, while the southeastern part is dominated by decreased seismic activity and higher b values. Periods of high injection coincide with high b values and vice versa. These observations potentially reflect varying differential and mean stresses and damage of the reservoir rocks across the field. About 50\% of analyzed sequences exhibit no change in seismicity rate in response to the large main event. However, we find complex waveforms at the onset of the main earthquake, suggesting that small ruptures spontaneously grow into or trigger larger events.}, language = {en} } @article{BereswillGatzMillerSuetal.2023, author = {Bereswill, Sarah and Gatz-Miller, Hannah and Su, Danyang and T{\"o}tzke, Christian and Kardjilov, Nikolay and Oswald, Sascha and Mayer, Klaus Ulrich}, title = {Coupling non-invasive imaging and reactive transport modeling to investigate water and oxygen dynamics in the root zone}, series = {Vadose zone journal}, volume = {22}, journal = {Vadose zone journal}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {1539-1663}, doi = {10.1002/vzj2.20268}, pages = {19}, year = {2023}, abstract = {Oxygen (O-2) availability in soils is vital for plant growth and productivity. The transport and consumption of O-2 in the root zone is closely linked to soil moisture content, the spatial distribution of roots, as well as structure and heterogeneity of the surrounding soil. In this study, we measure three-dimensional root system architecture and the spatiotemporal dynamics of soil moisture (\& theta;) and O-2 concentrations in the root zone of maize (Zea mays) via non-invasive imaging, and then construct and parameterize a reactive transport model based on the experimental data. The combination of three non-invasive imaging methods allowed for a direct comparison of simulation results with observations at high spatial and temporal resolution. In three different modeling scenarios, we investigated how the results obtained for different levels of conceptual complexity in the model were able to match measured \& theta; and O-2 concentration patterns. We found that the modeling scenario that considers heterogeneous soil structure and spatial variability of hydraulic parameters (permeability, porosity, and van Genuchten \& alpha; and n), better reproduced the measured \& theta; and O-2 patterns relative to a simple model with a homogenous soil domain. The results from our combined imaging and modeling analysis reveal that experimental O-2 and water dynamics can be reproduced quantitatively in a reactive transport model, and that O-2 and water dynamics are best characterized when conditions unique to the specific system beyond the distribution of roots, such as soil structure and its effect on water saturation and macroscopic gas transport pathways, are considered.}, language = {en} } @article{BergerBousquetEngietal.2009, author = {Berger, Alfons and Bousquet, Romain and Engi, Martin and Janots, Emilie and Rubatto, Daniela and Schmid, Stefan and Wiederkehr, Michael}, title = {Transport of heat and mass in a Barrovian belt : what do we know from nature?}, issn = {0016-7037}, doi = {10.1016/j.gca.2009.05.002}, year = {2009}, language = {en} } @article{BergerSchmidEngietal.2011, author = {Berger, Alfons and Schmid, Stefan M. and Engi, Martin and Bousquet, Romain and Wiederkehr, Michael}, title = {Mechanisms of mass and heat transport during Barrovian metamorphism: A discussion based on field evidence from the Central Alps (Switzerland/northern Italy)}, series = {Tectonics}, volume = {30}, journal = {Tectonics}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2009TC002622}, pages = {17}, year = {2011}, abstract = {Tectonic and metamorphic data for the Central Alps (Switzerland/Italy) are used to discuss this classic example of a Barrovian metamorphic terrain, notably the evolution of its thermal structure in space and time. Available P-T-t data indicate variable contributions of advective and conductive heat transport during collision and subsequent cooling and exhumation. Some areas experienced a prolonged period of partial melting while other areas, at the same time, show but moderate heating. The Barrow-type metamorphic field gradient observed in the final orogen is the result of two distinct tectonic processes, with their related advective and conductive heat transport processes. The two tectonic processes are (1) accretion of material within a subduction channel related to decompression and emplacement of high-pressure units in the middle crust and (2) wedging and related nappe formation in the continental lower plate. The second process postdates the first one. Wedging and underthrusting of continental lower plate material produces heat input into lower crustal levels, and this process is responsible for predominantly conductive heat transport in the overlying units. The interacting processes lead to different maximum temperatures at different times, producing the final Barrovian metamorphic field gradient. The south experienced rapid cooling, whereas the north shows moderate cooling rates. This discrepancy principally reflects differences in the temperature distribution in the deeper crust prior to cooling. Differences in the local thermal gradient that prevailed before the cooling also determined the relationships between cooling rate and exhumation rate in the different areas. Citation: Berger, A., S. M. Schmid, M. Engi, R. Bousquet, and M. Wiederkehr (2011), Mechanisms of mass and heat transport during Barrovian metamorphism: A discussion based on field evidence from the Central Alps (Switzerland/northern Italy), Tectonics, 30, TC1007, doi:10.1029/2009TC002622.}, language = {en} } @phdthesis{Bergner2003, author = {Bergner, Andreas G. N.}, title = {Lake-level fluctuations and Late Quaternary climate change in the Central Kenya Rift}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001428}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Diese Arbeit besch{\"a}ftigt sich mit der Rekonstruktion von Klima in historischen Zeiten im tropischen Ostafrika. Nach einer {\"U}bersicht {\"u}ber die heutigen klimatischen Bedingungen der Tropen und den Besonderheiten des ostafrikanischen Klimas, werden die M{\"o}glichkeiten der Klimarekonstruktion anhand von Seesedimenten diskutiert. Es zeigt sich, dass die hoch gelegenen Seen des Zentralen Keniarifts, als Teil des Ostafrikanischen Grabensystems, besonders geeignete Klimaarchive darstellen, da sie sensibel auf klimatische Ver{\"a}nderungen reagieren. Ver{\"a}nderungen der Seechemie, wie sie in den Sedimenten aufgezeichnet werden, eignen sich um die nat{\"u}rlichen Schwankungen in der Quart{\"a}ren Klimageschichte Ostafrikas nachzuzeichnen. Basierend auf der guten 40Ar/39Ar- und 14C-Datierbarkeit der Seesedimente wird eine Chronologie der pal{\"a}o{\"o}kologischen Bedingungen anhand von Diatomeenvergesellschaftungen restauriert. Dabei zeigen sich f{\"u}r die Seen Nakuru, Elmenteita und Naivasha kurzfristige Transgression/ Regressions-Zyklen im Intervall von ca. 11.000 Jahren w{\"a}hrend des letzten (ca. 12.000 bis 6.000 J.v.H.) und vorletzten Interglazials (ca. 140.000 bis 60.000 J.v.H.). Zus{\"a}tzlich kann ein allgemeiner, langfristiger Trend der Seeentwicklung von großen Frischwasserseen hin zu st{\"a}rker salinen Gew{\"a}ssern innerhalb der letzen 1 Mio. Jahre festgestellt werden. Mittels Transferfunktionen und einem hydro-klimatischen Modellansatz k{\"o}nnen die restaurierten limnologischen Bedingungen als klimatische Schwankungen des Einzugsgebietes interpretiert werden. Wenngleich auch der zus{\"a}tzliche Einfluss von tektonischen Ver{\"a}nderungen auf das Seeeinzugsgebiet und das Gewicht ver{\"a}nderter Grundwasserstr{\"o}me abgewogen werden, zeigt sich, dass allein geringf{\"u}gig erh{\"o}hte Niederschlagswerte von ca. 30±10 \% zu dramatischen Seespiegelanstiegen im Zentralen Keniarift f{\"u}hren. Aufgrund der etablierten hydrrologisch-klimatischen Wechselwirkungen werden R{\"u}ckschl{\"u}sse auf die nat{\"u}rliche Variabilit{\"a}t des ostafrikanischen Klimas gezogen. Zudem wird die Sensitivit{\"a}t der Keniarift-Seen in Bezug auf die St{\"a}rke der {\"a}quatorialen Insolation und hinsichtilch variabler Oberfl{\"a}chenwassertemperaturen des Indischen Ozeans bewertet.}, language = {en} } @article{BergnerStreckerTrauthetal.2009, author = {Bergner, Andreas G. N. and Strecker, Manfred and Trauth, Martin H. and Deino, Alan L. and Gasse, Francoise and Blisniuk, Peter Michael and Duehnforth, Miriam}, title = {Tectonic and climatic control on evolution of rift lakes in the Central Kenya Rift, East Africa}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2009.07.008}, year = {2009}, abstract = {The long-term histories of the neighboring Nakuru-Elmenteita and Naivasha lake basins in the Central Kenya Rift illustrate the relative importance of tectonic versus climatic effects on rift-lake evolution and the formation of disparate sedimentary environments. Although modem climate conditions in the Central Kenya Rift are very similar for these basins, hydrology and hydrochemistry of present-day lakes Nakuru, Elmenteita and Naivasha contrast dramatically due to tectonically controlled differences in basin geometries, catchment size, and fluvial processes. In this study, we use eighteen C-14 and Ar-40/Ar-39 dated fluvio-lacustrine sedimentary sections to unravel the spatiotemporal evolution of the lake basins in response to tectonic and climatic influences. We reconstruct paleoclimatic and ecological trends recorded in these basins based on fossil diatom assemblages and geologic field mapping. Our study shows a tendency towards increasing alkalinity and shrinkage of water bodies in both lake basins during the last million years. Ongoing volcano-tectonic segmentation of the lake basins, as well as reorganization of upstream drainage networks have led to contrasting hydrologic regimes with adjacent alkaline and freshwater conditions. During extreme wet periods in the past, such as during the early Holocene climate optimum, lake levels were high and all basins evolved toward freshwater systems. During drier periods some of these lakes revert back to alkaline conditions, while others maintain freshwater characteristics. Our results have important implications for the use and interpretation of lake sediment as climate archives in tectonically active regions and emphasize the need to deconvolve lacustrine records with respect to tectonics versus climatic forcing mechanisms.}, language = {en} } @article{BergnerTrauth2004, author = {Bergner, Andreas G. N. and Trauth, Martin H.}, title = {Comparison of the hydrologic and hydrochemical evolution of Lake Naivasha (Kenya) during three highstands between 175 and 60 kyr BP}, year = {2004}, abstract = {Three diatomite beds exposed in the Ol Njorowa Gorge south of Lake Naivasha, Central Kenya Rift, document three major lake-level highstands between 175 and 60 kyr BP. Diatom transfer-function estimates of hydrological and hydrochemical parameters suggest that a deep and large freshwater lake existed during the highstands at 135 and 80 kyr BP. In contrast, a shallower but more expanded freshwater lake existed at 110 kyr BP. The best analog for the most extreme highstand at 135 kyr BP is the highstand during the Early Holocene humid period from 10 to 6 kyr BP. The environmental conditions as reconstructed from diatom assemblages suggest long-lasting episodes of increased humidity during the high lake periods. This contrasts to the modern situation with a relatively shallow Lake Naivasha characterized by rapid water level fluctuations within a few decades. The most likely cause for the variable hydrological conditions since 175 kyr BP is orbitally driven insolation changes on the equator and increased lateral moisture transport from the ocean.}, language = {en} } @article{BergnerTrauthBookhagen2003, author = {Bergner, Andreas G. N. and Trauth, Martin H. and Bookhagen, Bodo}, title = {Magnitude of precipitation : evaporation changes in the Naivasha Basin (Kenya) during the last 150 kyrs}, year = {2003}, abstract = {We modeled the two most extreme highstands of Lake Naivasha during the last 175 k.y. to estimate potential precipitation/ evaporation changes in this basin. In a first step, the bathymetry of the paleolakes at f135 and 9 k.y. BP was reconstructed from sediment cores and surface outcrops. Second, we modeled the paleohydrologic budget during the highstands using a simplified coupled energy mass-balance model. Our results show that the hydrologic and hence the climate conditions at f135 and 9 k.y. BP were similar, but significantly different from today. The main difference is a f15\% higher value in precipitation compared to the present. An adaptation and migration of vegetation in the cause of climate changes would result in a f30\% increase in precipitation. The most likely cause for such a wetter climate at f135 and 9 k.y. BP is a more intense intertropical convergence and increased precipitation in East Africa.}, language = {en} } @article{BerkesiCzupponSzaboetal.2018, author = {Berkesi, Marta and Czuppon, Gyorgy and Szabo, Csaba and Kovacs, Istvan and Ferrero, Silvio and Boiron, Marie-Christine and Peiffert, Chantal}, title = {Pargasite in fluid inclusions of mantle xenoliths from northeast Australia (Mt. Quincan)}, series = {Chemical geology : official journal of the European Association for Geochemistry}, volume = {508}, journal = {Chemical geology : official journal of the European Association for Geochemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0009-2541}, doi = {10.1016/j.chemgeo.2018.06.022}, pages = {182 -- 196}, year = {2018}, abstract = {Three spinel lherzolite xenoliths from Mt. Quincan (Queensland, northeastern Australia) were studied with special attention to their enclosed fluid inclusions. The xenoliths are deformed, have porphyroclastic textures and overall show very similar petrographic features. The only significant difference is manifested in the abundance of fluid inclusions in the samples, mostly in orthopyroxene porphyroclasts. Xenolith JMTQ11 is fluid inclusion-free, whereas xenolith JMTQ20 shows a high abundance of fluid inclusions (fluid inclusion-rich). Xenolith JMTQ45 represents a transitional state between the previous two, as it contains only a small amount of fluid inclusions (fluid inclusion-bearing). Previous studies revealed that these xenoliths and the entrapped fluid inclusions represent a former addition of a MORB-type fluid to the pre-existing lithosphere, resulting from asthenosphere upwelling. There is a progressive enrichment in LREE, Nb, Sr and Ti from the fluid inclusion-free xenolith through the fluid inclusion-bearing one to the fluid inclusion-rich lherzolite. This suggests an increase in the extent of the interaction between the fluid-rich melt and the lherzolite wallrock. In addition, the same interaction is considered to be responsible for the formation of pargasitic amphibole as well. The presence of fluid inclusions indicates fluid migration at mantle depth, and their association with exsolution lamellae in orthopyroxene suggests fluid entrapment following the continental rifting (thermal relaxation) during cooling. A series of analyses, including microthermometry coupled with Raman spectroscopy, FTIR hyperspectral imaging, and Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) was carried out on the fluid inclusions. Based on the results, the entrapped high-density fluid is composed of 7589 mol\% CO2, 918 mol\% H2O, 0.11.7 mol\% N-2 and <= 0.5 mol\% H2S with dissolved trace elements (melt component). Our findings suggest that the metasomatic fluid phase could have been either a fluid/fluid-rich silicate melt released from the deeper asthenosphere, or a coexisting incipient fluid-rich silicate melt. Further cooling, possibly due to thermal relaxation and the upward migration of the fluid phase, caused the investigated lherzolites to reach pargasite stability conditions. We conclude that pargasite, even if only present in very limited modal proportions, can be a common phase at spinel lherzolite stability in the lithospheric upper mantle in continental rift back-arc settings. Studies of fluid inclusions indicate that significant CO2 release from the asthenosphere in a continental rifting environment is resulting from asthenosphere upwelling and its addition to the lithospheric mantle together with fluid-rich melt lherzolite interaction that leaves a CO2-rich fluid behind.}, language = {en} } @article{BernardezPregoVirginiaFilgueirasetal.2017, author = {Bernardez, Patricia and Prego, Ricardo and Virginia Filgueiras, Ana and Ospina-Alvarez, Natalia and Santos-Echeandia, Juan and Angel Alvarez-Vazquez, Miguel and Caetano, Miguel}, title = {Lithogenic sources, composition and intra-annual variability of suspended particulate matter supplied from rivers to the Northern Galician Rias (Bay of Biscay)}, series = {Journal of sea research}, volume = {130}, journal = {Journal of sea research}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1385-1101}, doi = {10.1016/j.seares.2017.05.006}, pages = {73 -- 84}, year = {2017}, abstract = {Scarce research about small European rivers from non-human impacted areas to determine their natural background state has been undertaken. During the annual hydrological cycle of 2008-9 the patterns of particulate supply (SPM, POC, PON, Al, Cd, Co, Cr, Cu, Fe, Ni, Pb, V, Zn) from the rivers Sor, Mera Landro, Lourido and Landoi to the Northern Galician Rias (SW Bay of Biscay) were tackled. No differences in the composition of the SPM were detected for the studied rivers regarding Al, Fe and POC but the relative percentage of particulate trace elements (PTE) discriminate the rivers. So, Cr, Co and Ni in the Lourido, and Landoi rivers, and Cu in the Mera River, are controlled by watershed minerals of Ortegal Geological Complex while for the rest rivers PTE are by granitic and Ollo de Sapo bedrock watershed. Therefore, the imprint of PTE in the parental rocks of the river basins is reflected on the coastal sediments of the Rias. The main process controlling the dynamics and variations of chemical elements in the particulate form is the river discharge. This fact exemplifies that these rivers presents a natural behavior not being highly influenced by anthropogenic activities.}, language = {en} } @article{BernerTrauthHolschneider2022, author = {Berner, Nadine and Trauth, Martin H. and Holschneider, Matthias}, title = {Bayesian inference about Plio-Pleistocene climate transitions in Africa}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {277}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2021.107287}, pages = {12}, year = {2022}, abstract = {During the last 5 Ma the Earth's ocean-atmosphere system passed through several major transitions, many of which are discussed as possible triggers for human evolution. A classic in this context is the possible influence of the closure of the Panama Strait, the intensification of Northern Hemisphere Glaciation, a stepwise increase in aridity in Africa, and the first appearance of the genus Homo about 2.5 - 2.7 Ma ago. Apart from the fact that the correlation between these events does not necessarily imply causality, many attempts to establish a relationship between climate and evolution fail due to the challenge of precisely localizing an a priori unknown number of changes potentially underlying complex climate records. The kernel-based Bayesian inference approach applied here allows inferring the location, generic shape, and temporal scale of multiple transitions in established records of Plio-Pleistocene African climate. By defining a transparent probabilistic analysis strategy, we are able to identify conjoint changes occurring across the investigated terrigenous dust records from Ocean Drilling Programme (ODP) sites in the Atlantic Ocean (ODP 659), Arabian (ODP 721/722) and Mediterranean Sea (ODP 967). The study indicates a two-step transition in the African climate proxy records at (2.35-2.10) Ma and (1.70 - 1.50) Ma, that may be associated with the reorganization of the Hadley-Walker Circulation. .}, language = {en} } @article{BernhardMoskwaSchmidtetal.2018, author = {Bernhard, Nadine and Moskwa, Lisa-Marie and Schmidt, Karsten and Oeser, Ralf Andreas and Aburto, Felipe and Bader, Maaike Y. and Baumann, Karen and von Blanckenburg, Friedhelm and Boy, Jens and van den Brink, Liesbeth and Brucker, Emanuel and Buedel, Burkhard and Canessa, Rafaella and Dippold, Michaela A. and Ehlers, Todd and Fuentes, Juan P. and Godoy, Roberto and Jung, Patrick and Karsten, Ulf and Koester, Moritz and Kuzyakov, Yakov and Leinweber, Peter and Neidhardt, Harald and Matus, Francisco and Mueller, Carsten W. and Oelmann, Yvonne and Oses, Romulo and Osses, Pablo and Paulino, Leandro and Samolov, Elena and Schaller, Mirjam and Schmid, Manuel and Spielvogel, Sandra and Spohn, Marie and Stock, Svenja and Stroncik, Nicole and Tielboerger, Katja and Uebernickel, Kirstin and Scholten, Thomas and Seguel, Oscar and Wagner, Dirk and K{\"u}hn, Peter}, title = {Pedogenic and microbial interrelations to regional climate and local topography}, series = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, volume = {170}, journal = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2018.06.018}, pages = {335 -- 355}, year = {2018}, abstract = {The effects of climate and topography on soil physico-chemical and microbial parameters were studied along an extensive latitudinal climate gradient in the Coastal Cordillera of Chile (26 degrees-38 degrees S). The study sites encompass arid (Pan de Azucar), semiarid (Santa Gracia), mediterranean (La Campana) and humid (Nahuelbuta) climates and vegetation, ranging from arid desert, dominated by biological soil crusts (biocrusts), semiarid shrubland and mediterranean sclerophyllous forest, where biocrusts are present but do have a seasonal pattern to temperate-mixed forest, where biocrusts only occur as an early pioneering development stage after disturbance. All soils originate from granitic parent materials and show very strong differences in pedogenesis intensity and soil depth. Most of the investigated physical, chemical and microbiological soil properties showed distinct trends along the climate gradient. Further, abrupt changes between the arid northernmost study site and the other semi-arid to humid sites can be shown, which indicate non-linearity and thresholds along the climate gradient. Clay and total organic carbon contents (TOC) as well as Ah horizons and solum depths increased from arid to humid climates, whereas bulk density (BD), pH values and base saturation (BS) decreased. These properties demonstrate the accumulation of organic matter, clay formation and element leaching as key-pedogenic processes with increasing humidity. However, the soils in the northern arid climate do not follow this overall latitudinal trend, because texture and BD are largely controlled by aeolian input of dust and sea salts spray followed by the formation of secondary evaporate minerals. Total soil DNA concentrations and TOC increased from arid to humid sites, while areal coverage by biocrusts exhibited an opposite trend. Relative bacterial and archaeal abundances were lower in the arid site, but for the other sites the local variability exceeds the variability along the climate gradient. Differences in soil properties between topographic positions were most pronounced at the study sites with the mediterranean and humid climate, whereas microbial abundances were independent on topography across all study sites. In general, the regional climate is the strongest controlling factor for pedogenesis and microbial parameters in soils developed from the same parent material. Topographic position along individual slopes of limited length augmented this effect only under humid conditions, where water erosion likely relocated particles and elements downward. The change from alkaline to neutral soil pH between the arid and the semi-arid site coincided with qualitative differences in soil formation as well as microbial habitats. This also reflects non-linear relationships of pedogenic and microbial processes in soils depending on climate with a sharp threshold between arid and semi-arid conditions. Therefore, the soils on the transition between arid and semi-arid conditions are especially sensitive and may be well used as indicators of long and medium-term climate changes. Concluding, the unique latitudinal precipitation gradient in the Coastal Cordillera of Chile is predestined to investigate the effects of the main soil forming factor - climate - on pedogenic processes.}, language = {en} } @article{BernhardtHebbelnRegenbergetal.2016, author = {Bernhardt, Anne and Hebbeln, Dierk and Regenberg, Marcus and Lueckge, Andreas and Strecker, Manfred}, title = {Shelfal sediment transport by an undercurrent forces turbidity-current activity during high sea level along the Chile continental margin}, series = {Geology}, volume = {44}, journal = {Geology}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G37594.1}, pages = {295 -- 298}, year = {2016}, abstract = {Terrigenous sediment supply, marine transport, and depositional processes along tectonically active margins are key to decoding turbidite successions as potential archives of climatic and seismic forcings. Sequence stratigraphic models predict coarse-grained sediment delivery to deep-marine sites mainly during sea-level fall and lowstand. Marine siliciclastic deposition during transgressions and highstands has been attributed to sustained connectivity between terrigenous sources and marine sinks facilitated by narrow shelves. To decipher the controls on Holocene highstand turbidite deposition, we analyzed 12 sediment cores from spatially discrete, coeval turbidite systems along the Chile margin (29 degrees-40 degrees S) with changing climatic and geomorphic characteristics but uniform changes in sea level. Sediment cores from intraslope basins in north-central Chile (29 degrees-33 degrees S) offshore a narrow to absent shelf record a shut-off of turbidite deposition during the Holocene due to postglacial aridification. In contrast, core sites in south-central Chile (36 degrees-40 degrees S) offshore a wide shelf record frequent turbidite deposition during highstand conditions. Two core sites are linked to the Biobio river-canyon system and receive sediment directly from the river mouth. However, intraslope basins are not connected via canyons to fluvial systems but yield even higher turbidite frequencies. High sediment supply combined with a wide shelf and an undercurrent moving sediment toward the shelf edge appear to control Holocene turbidite sedimentation and distribution. Shelf undercurrents may play an important role in lateral sediment transport and supply to the deep sea and need to be accounted for in sediment-mass balances.}, language = {en} } @article{BernhardtJobeGroveetal.2012, author = {Bernhardt, Anne and Jobe, Zane R. and Grove, Marty and Lowe, Donald R.}, title = {Palaeogeography and diachronous infill of an ancient deep-marine foreland basin, Upper Cretaceous Cerro Toro Formation, Magallanes Basin}, series = {Basin research}, volume = {24}, journal = {Basin research}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0950-091X}, doi = {10.1111/j.1365-2117.2011.00528.x}, pages = {269 -- 294}, year = {2012}, abstract = {The details of how narrow, orogen-parallel ocean basins are filled with sediment by large axial submarine channels is important to understand because these depositional systems commonly form in through-like basins in various tectonic settings. The Magallanes foreland basin is an excellent location to study an orogen-parallel deep-marine system. Conglomerate lenses of the Upper Cretaceous Cerro Toro Formation have been previously interpreted to represent the fill of a single submarine channel (48 km wide, >100 km long) that funneled coarse detritus southward along the basin axis. This interpretation was based on lithologic correlations. New U/Pb dating of zircons from volcanic ashes and sandstones, coupled with strontium isotope stratigraphy, refine the controls on depositional ages and provenance. Results demonstrate that north-south oriented conglomerate lenses are contemporaneous within error limits (ca. 8482 Ma) supporting that they represent parts of an axial channel belt. Channel deposits 20 km west of the axial location are 8782 Ma in age. These channels are partly contemporaneous with the ones within the axial channel belt, making it likely that they represent feeders to the axial channel system. The northern Cerro Toro Formation spans a Turonian to Campanian interval (ca. 9082 Ma) whereas the formation top, 70 km to the south, is as young as ca. 76 Ma. KolmogorovSmirnoff statistical analysis on detrital zircon age distributions shows that the northern uppermost Cerro Toro Formation yields a statistically different age distribution than other samples from the same formation but shows no difference relative to the overlying Tres Pasos Formation. These results suggest the partly coeval deposition of both formations. Integration of previously acquired geochronologic and stratigraphic data with new data show a pronounced southward younging pattern in all four marine formations in the Magallanes Basin. Highly diachronous infilling may be an important depositional pattern for narrow, orogen-parallel ocean basins.}, language = {en} } @misc{BernhardtMelnickHebbelnetal.2015, author = {Bernhardt, Anne and Melnick, Daniel and Hebbeln, Dierk and L{\"u}ckge, Andreas and Strecker, Manfred}, title = {Turbidite paleoseismology along the active continental margin of Chile - Feasible or not?}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {120}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2015.04.001}, pages = {71 -- 92}, year = {2015}, abstract = {Much progress has been made in estimating recurrence intervals of great and giant subduction earthquakes using terrestrial, lacustrine, and marine paleoseismic archives. Recent detailed records suggest these earthquakes may have variable recurrence periods and magnitudes forming supercycles. Understanding seismic supercycles requires long paleoseismic archives that record timing and magnitude of such events. Turbidite paleoseismic archives may potentially extend past earthquake records to the Pleistocene and can thus complement commonly shorter-term terrestrial archives. However, in order to unambiguously establish recurring seismicity as a trigger mechanism for turbidity currents, synchronous deposition of turbidites in widely spaced, isolated depocenters has to be ascertained. Furthermore, characteristics that predispose a seismically active continental margin to turbidite paleoseismology and the correct sample site selection have to be taken into account. Here we analyze 8 marine sediment cores along 950 km of the Chile margin to test for the feasibility of compiling detailed and continuous paleoseismic records based on turbidites. Our results suggest that the deposition of areally widespread, synchronous turbidites triggered by seismicity is largely controlled by sediment supply and, hence, the climatic and geomorphic conditions of the adjacent subaerial setting. The feasibility of compiling a turbidite paleoseismic record depends on the delicate balance between sufficient sediment supply providing material to fail frequently during seismic shaking and sufficiently low sedimentation rates to allow for coeval accumulation of planktonic foraminifera for high-resolution radiocarbon dating. We conclude that offshore northern central Chile (29-32.5 degrees S) Holocene turbidite paleoseismology is not feasible, because sediment supply from the semi-arid mainland is low and almost no Holocene turbidity-current deposits are found in the cores. In contrast, in the humid region between 36 and 38 degrees S frequent Holocene turbidite deposition may generally correspond to paleoseismic events. However, high terrigenous sedimentation rates prevent high-resolution radiocarbon dating. The climatic transition region between 32.5 and 36 degrees S appears to be best suited for turbidite paleoseismology. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{BernhardtMelnickJaraMunozetal.2015, author = {Bernhardt, Anne and Melnick, Daniel and Jara Mu{\~n}oz, Julius and Argandona, Boris and Gonzalez, Javiera and Strecker, Manfred}, title = {Controls on submarine canyon activity during sea-level highstands: The Biobio canyon system offshore Chile}, series = {Geosphere}, volume = {11}, journal = {Geosphere}, number = {4}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {1553-040X}, doi = {10.1130/GES01063.1}, pages = {1226 -- 1255}, year = {2015}, abstract = {Newly acquired high-resolution bathymetric data (with 5 m and 2 m grid sizes) from the continental shelf off Concepcion (Chile), in combination with seismic reflection profiles, reveal a distinctly different evolution for the Biobio submarine canyon compared to that of one of its tributaries. Both canyons are incised into the shelf of the active margin. Whereas the inner shelf appears to be mantled with unconsolidated sediment, the outer shelf shows the influence of strong bottom currents that form drifts of loose sediment and transport -material into the Biobio submarine canyon and onto the continental slope. The main stem of the Biobio Canyon is connected to the mouth of the Biobio River and currently provides a conduit for terrestrial sediment from the continental shelf to the deep seafloor. In contrast, the head of its tributary closest to the coast is located similar to 24 km offshore of the present-day coastline at 120 m water depth, and it is subject to passive sedimentation. However, canyon activity within the study area is interpreted to be controlled not only by the direct input of fluvial sediments into the canyon head facilitated by the river-mouth to canyon-head connection, but also by input from southward-directed bottom currents and possibly longshore drift. In addition, about 24 km offshore of the present-day coastline, the main stem of the Biobio Canyon has steep canyon walls next to sites of active tectonic deformation that are prone to wall failure. Mass-failure events may also foster turbidity currents and contribute to canyon feeding. In contrast, the tributary has less steep canyon walls with limited evidence of canyon-wall failure and is located down-system of bottom currents from the Biobio Canyon. It consequently receives neither fluvial nor longshore sediments. Therefore, the canyon's connectivity to fluvial or longshore sediment delivery pathways is affected by the distance of the canyon head from the coastline and the orientation of the canyon axis relative to the direction of bottom currents. The ability of a submarine canyon to act as an active conduit for large quantities of terrestrial sediment toward the deep sea during sea-level highstands may be controlled by several different conditions simultaneously. These include bottom current direction, structural deformation of the seafloor affecting canyon location and orientation as well as canyon-wall failure, shelf gradient and associated distance from the canyon head to the coast, and fluvial networks. The complex interplay between these factors may vary even within an individual canyon system, resulting in distinct levels of canyon activity on a regional scale.}, language = {en} } @article{BernhardtSchwanghartHebbelnetal.2017, author = {Bernhardt, Anne and Schwanghart, Wolfgang and Hebbeln, Dierk and Stuut, Jan-Berend W. and Strecker, Manfred}, title = {Immediate propagation of deglacial environmental change to deep-marine turbidite systems along the Chile convergent margin}, series = {Earth \& planetary science letters}, volume = {473}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2017.05.017}, pages = {190 -- 204}, year = {2017}, abstract = {Understanding how Earth-surface processes respond to past climatic perturbations is crucial for making informed predictions about future impacts of climate change on sediment "uxes. Sedimentary records provide the archives for inferring these processes, but their interpretation is compromised by our incomplete understanding of how sediment-routing systems respond to millennial-scale climate cycles. We analyzed seven sediment cores recovered from marine turbidite depositional sites along the Chile continental margin. The sites span a pronounced arid-to-humid gradient with variable relief and related sediment connectivity of terrestrial and marine environments. These sites allowed us to study event related depositional processes in different climatic and geomorphic settings from the Last Glacial Maximum to the present day. The three sites reveal a steep decline of turbidite deposition during deglaciation. High rates of sea-level rise postdate the decline in turbidite deposition. Comparison with paleoclimate proxies documents that the spatio-temporal sedimentary pattern rather mirrors the deglacial humidity decrease and concomitant warming with no resolvable lag times. Our results let us infer that declining deglacial humidity decreased "uvial sediment supply. This signal propagated rapidly through the highly connected systems into the marine sink in north-central Chile. In contrast, in south-central Chile, connectivity between the Andean erosional zone and the "uvial transfer zone probably decreased abruptly by sediment trapping in piedmont lakes related to deglaciation, resulting in a sudden decrease of sediment supply to the ocean. Additionally, reduced moisture supply may have contributed to the rapid decline of turbidite deposition. These different causes result in similar depositional patterns in the marine sinks. We conclude that turbiditic strata may constitute reliable recorders of climate change across a wide range of climatic zones and geomorphic conditions. However, the underlying causes for similar signal manifestations in the sinks may differ, ranging from maintained high system connectivity to abrupt connectivity loss. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @article{BernhardtStrightLowe2012, author = {Bernhardt, Anne and Stright, Lisa and Lowe, Donald R.}, title = {Channelized debris-flow deposits and their impact on turbidity currents: The Puchkirchen axial channel belt in the Austrian Molasse Basin}, series = {Sedimentology : the journal of the International Association of Sedimentologists}, volume = {59}, journal = {Sedimentology : the journal of the International Association of Sedimentologists}, number = {7}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0037-0746}, doi = {10.1111/j.1365-3091.2012.01334.x}, pages = {2042 -- 2070}, year = {2012}, abstract = {Deposits of submarine debris flows can build up substantial topography on the sea floor. The resulting sea floor morphology can strongly influence the pathways of and deposition from subsequent turbidity currents. Map views of sea floor morphology are available for parts of the modern sea floor and from high-resolution seismic-reflection data. However, these data sets usually lack lithological information. In contrast, outcrops provide cross-sectional and lateral stratigraphic details of deep-water strata with superb lithological control but provide little information on sea floor morphology. Here, a methodology is presented that extracts fundamental lithological information from sediment core and well logs with a novel calibration between core, well-logs and seismic attributes within a large submarine axial channel belt in the Tertiary Molasse foreland basin, Austria. This channel belt was the course of multiple debris-flow and turbidity current events, and the fill consists of interbedded layers deposited by both of these processes. Using the core-well-seismic calibration, three-dimensional lithofacies proportion volumes were created. These volumes enable the interpretation of the three-dimensional distribution of the important lithofacies and thus the investigation of sea floor morphology produced by debris-flow events and its impact on succeeding turbidite deposition. These results show that the distribution of debris-flow deposits follows a relatively regular pattern of levees and lobes. When subsequent high-density turbidity currents encountered this mounded debris-flow topography, they slowed and deposited a portion of their sandy high-density loads just upstream of morphological highs. Understanding the depositional patterns of debris flows is key to understanding and predicting the location and character of associated sandstone accumulations. This detailed model of the filling style and the resulting stratigraphic architecture of a debris-flow dominated deep-marine depositional system can be used as an analogue for similar modern and ancient systems.}, language = {en} } @article{BeyeneKatohWoldeGabrieletal.2013, author = {Beyene, Yonas and Katoh, Shigehiro and Wolde Gabriel, Giday and Hart, William K. and Uto, Kozo and Sudo, Masafumi and Kondo, Megumi and Hyodo, Masayuki and Renne, Paul R. and Suwa, Gen and Asfaw, Berhane}, title = {The characteristics and chronology of the earliest. Acheulean at Konso, Ethiopia}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {110}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {5}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1221285110}, pages = {1584 -- 1591}, year = {2013}, abstract = {The Acheulean technological tradition, characterized by a large (>10 cm) flake-based component, represents a significant technological advance over the Oldowan. Although stone tool assemblages attributed to the Acheulean have been reported from as early as circa 1.6-1.75 Ma, the characteristics of these earliest occurrences and comparisons with later assemblages have not been reported in detail. Here, we provide a newly established chronometric calibration for the Acheulean assemblages of the Konso Formation, southern Ethiopia, which span the time period similar to 1.75 to <1.0 Ma. The earliest Konso Acheulean is chronologically indistinguishable from the assemblage recently published as the world's earliest with an age of similar to 1.75 Ma at Kokiselei, west of Lake Turkana, Kenya. This Konso assemblage is characterized by a combination of large picks and crude bifaces/unifaces made predominantly on large flake blanks. An increase in the number of flake scars was observed within the Konso Formation handaxe assemblages through time, but this was less so with picks. The Konso evidence suggests that both picks and handaxes were essential components of the Acheulean from its initial stages and that the two probably differed in function. The temporal refinement seen, especially in the handaxe forms at Konso, implies enhanced function through time, perhaps in processing carcasses with long and stable cutting edges. The documentation of the earliest Acheulean at similar to 1.75 Ma in both northern Kenya and southern Ethiopia suggests that behavioral novelties were being established in a regional scale at that time, paralleling the emergence of Homo erectus-like hominid morphology.}, language = {en} } @article{BeyreutherHammerWassermannetal.2012, author = {Beyreuther, Moritz and Hammer, Conny and Wassermann, Joachim and Ohrnberger, Matthias and Megies, Tobias}, title = {Constructing a hidden Markov Model based earthquake detector: application to induced seismicity}, series = {Geophysical journal international}, volume = {189}, journal = {Geophysical journal international}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2012.05361.x}, pages = {602 -- 610}, year = {2012}, abstract = {The triggering or detection of seismic events out of a continuous seismic data stream is one of the key issues of an automatic or semi-automatic seismic monitoring system. In the case of dense networks, either local or global, most of the implemented trigger algorithms are based on a large number of active stations. However, in the case of only few available stations or small events, for example, like in monitoring volcanoes or hydrothermal power plants, common triggers often show high false alarms. In such cases detection algorithms are of interest, which show reasonable performance when operating even on a single station. In this context, we apply Hidden Markov Models (HMM) which are algorithms borrowed from speech recognition. However, many pitfalls need to be avoided to apply speech recognition technology directly to earthquake detection. We show the fit of the model parameters in an innovative way. State clustering is introduced to refine the intrinsically assumed time dependency of the HMMs and we explain the effect coda has on the recognition results. The methodology is then used for the detection of anthropogenicly induced earthquakes for which we demonstrate for a period of 3.9 months of continuous data that the single station HMM earthquake detector can achieve similar detection rates as a common trigger in combination with coincidence sums over two stations. To show the general applicability of state clustering we apply the proposed method also to earthquake classification at Mt. Merapi volcano, Indonesia.}, language = {en} } @article{Bhatt2014, author = {Bhatt, Kaushalendra M.}, title = {Microseisms and its impact on the marine-controlled source electromagnetic signal}, series = {Journal of geophysical research : Solid earth}, volume = {119}, journal = {Journal of geophysical research : Solid earth}, number = {12}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1002/2014JB011024}, pages = {8655 -- 8666}, year = {2014}, abstract = {The marine-controlled source electromagnetic method (mCSEM) is employed for studying the electrical characteristics and fluid contents of sedimentary reservoirs. However, the success rate of the method can be improved significantly by finding the sources of electromagnetic noise and addressing the challenge posed by them at larger offsets where the reservoir signal is often weak. I have studied the mCSEM data and reporting an electromagnetic noise. The strength of the noise is observed 1600 times stronger than the seafloor mCSEM signal at 0.1 Hz. Moreover, the noise and the transmitted mCSEM signals are found coherent in interstation recordings. These readings suggest the severity of the noise. The source investigation presuming the observed noise as an infragravity wave failed to match the response. Then, the role of microseisms is investigated. Microseism causes oscillation of the seafloor and produces electromagnetic disturbances by the dynamics of water. I have used various conditions for a proper discrimination of the noise as microseisms. This mechanism is clearly illustrated with the help of a conceptual diagram. The role of the directionality is part of the study, which is argued for having a significant role in the generation of microseisms. In this paper, a new algorithm is presented and is used for calculating the coherency. The algorithm helps in mapping the coherency value simultaneously in time and frequency domains.}, language = {en} }