@misc{KuekenSommerYanevaRoderetal.2018, author = {K{\"u}ken, Anika and Sommer, Frederik and Yaneva-Roder, Liliya and Mackinder, Luke C.M. and H{\"o}hne, Melanie and Geimer, Stefan and Jonikas, Martin C. and Schroda, Michael and Stitt, Mark and Nikoloski, Zoran and Mettler-Altmann, Tabea}, title = {Effects of microcompartmentation on flux distribution and metabolic pools in Chlamydomonas reinhardtii chloroplasts}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1122}, issn = {1866-8372}, doi = {10.25932/publishup-44635}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446358}, pages = {25}, year = {2018}, abstract = {Cells and organelles are not homogeneous but include microcompartments that alter the spatiotemporal characteristics of cellular processes. The effects of microcompartmentation on metabolic pathways are however difficult to study experimentally. The pyrenoid is a microcompartment that is essential for a carbon concentrating mechanism (CCM) that improves the photosynthetic performance of eukaryotic algae. Using Chlamydomonas reinhardtii, we obtained experimental data on photosynthesis, metabolites, and proteins in CCM-induced and CCM-suppressed cells. We then employed a computational strategy to estimate how fluxes through the Calvin-Benson cycle are compartmented between the pyrenoid and the stroma. Our model predicts that ribulose-1,5-bisphosphate (RuBP), the substrate of Rubisco, and 3-phosphoglycerate (3PGA), its product, diffuse in and out of the pyrenoid, respectively, with higher fluxes in CCM-induced cells. It also indicates that there is no major diffusional barrier to metabolic flux between the pyrenoid and stroma. Our computational approach represents a stepping stone to understanding microcompartmentalized CCM in other organisms.}, language = {en} } @article{LeunertEckertPauletal.2014, author = {Leunert, Franziska and Eckert, Werner and Paul, Andrea and Gerhardt, Volkmar and Grossart, Hans-Peter}, title = {Phytoplankton response to UV-generated hydrogen peroxide from natural organic matter}, series = {Journal of plankton research}, volume = {36}, journal = {Journal of plankton research}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0142-7873}, doi = {10.1093/plankt/fbt096}, pages = {185 -- 197}, year = {2014}, abstract = {In aquatic systems, natural organic matter (NOM) and in particular humic substances effectively absorb the ultraviolet (UV)/visible light spectrum of solar radiation and act as a photoprotective filter for organisms. Simultaneously, UV contributes to the generation of potentially harmful reactive oxygen species (ROS). Dose-response experiments were conducted on cyanobacteria and green algae with hydrogen peroxide (H2O2) as a long-lived representative of ROS. Delayed fluorescence (DF) decay kinetics was used as a non-invasive tool to follow changes of phytoplankton activity in real time. In order to investigate phototoxicity and photoprotection by NOM on phytoplankton, we exposed algae to UV-pre-irradiated NOM and direct UV excitation. Cyanobacteria responded to H2O2 concentrations as low as 10(-7) M, while green algae were 2 orders of magnitude less sensitive. UV irradiation of medium with NOM generated H2O2 concentrations of 1.5 x 10(-7) to 3.6 x 10(-7) M. When exposed to these concentrations, only the DF of cyanobacteria led to a measurable effect while that of green algae did not change. The addition of NOM protected all phytoplankton from direct UV irradiation, but cyanobacteria benefitted less. From this we conclude that UV-irradiated water enriched with NOM can adversely affect the physiology of cyanobacteria, but not of green algae, which might control phytoplankton composition and species-specific activities.}, language = {en} }