@misc{DommainAndamaMcDonoughetal.2020, author = {Dommain, Ren{\´e} and Andama, Morgan and McDonough, Molly M. and Prado, Natalia A. and Goldhammer, Tobias and Potts, Richard and Maldonado, Jes{\´u}s E. and Nkurunungi, John Bosco and Campana, Michael G.}, title = {The Challenges of Reconstructing Tropical Biodiversity With Sedimentary Ancient DNA}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {970}, issn = {1866-8372}, doi = {10.25932/publishup-47430}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474305}, pages = {28}, year = {2020}, abstract = {Sedimentary ancient DNA has been proposed as a key methodology for reconstructing biodiversity over time. Yet, despite the concentration of Earth's biodiversity in the tropics, this method has rarely been applied in this region. Moreover, the taphonomy of sedimentary DNA, especially in tropical environments, is poorly understood. This study elucidates challenges and opportunities of sedimentary ancient DNA approaches for reconstructing tropical biodiversity. We present shotgun-sequenced metagenomic profiles and DNA degradation patterns from multiple sediment cores from Mubwindi Swamp, located in Bwindi Impenetrable Forest (Uganda), one of the most diverse forests in Africa. We describe the taxonomic composition of the sediments covering the past 2200 years and compare the sedimentary DNA data with a comprehensive set of environmental and sedimentological parameters to unravel the conditions of DNA degradation. Consistent with the preservation of authentic ancient DNA in tropical swamp sediments, DNA concentration and mean fragment length declined exponentially with age and depth, while terminal deamination increased with age. DNA preservation patterns cannot be explained by any environmental parameter alone, but age seems to be the primary driver of DNA degradation in the swamp. Besides degradation, the presence of living microbial communities in the sediment also affects DNA quantity. Critically, 92.3\% of our metagenomic data of a total 81.8 million unique, merged reads cannot be taxonomically identified due to the absence of genomic references in public databases. Of the remaining 7.7\%, most of the data (93.0\%) derive from Bacteria and Archaea, whereas only 0-5.8\% are from Metazoa and 0-6.9\% from Viridiplantae, in part due to unbalanced taxa representation in the reference data. The plant DNA record at ordinal level agrees well with local pollen data but resolves less diversity. Our animal DNA record reveals the presence of 41 native taxa (16 orders) including Afrotheria, Carnivora, and Ruminantia at Bwindi during the past 2200 years. Overall, we observe no decline in taxonomic richness with increasing age suggesting that several-thousand-year-old information on past biodiversity can be retrieved from tropical sediments. However, comprehensive genomic surveys of tropical biota need prioritization for sedimentary DNA to be a viable methodology for future tropical biodiversity studies.}, language = {en} } @phdthesis{Milewski2020, author = {Milewski, Robert}, title = {Potential of optical remote sensing for the analysis of salt pan environments}, doi = {10.25932/publishup-47373}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473732}, school = {Universit{\"a}t Potsdam}, pages = {xii, 145}, year = {2020}, abstract = {Salt pans also termed playas are common landscape features of hydrologically closed basins in arid and semiarid zones, where evaporation significantly exceeds the local precipitation. The analysis and monitoring of salt pan environments is important for the evaluation of current and future impact of these landscape features. Locally, salt pans have importance for the ecosystem, wildlife and human health, and through dust emissions they influence the climate on regional and global scales. Increasing economic exploitation of these environments in the last years, e.g. by brine extraction for raw materials, as well as climate change severely affect the water, material and energy balance of these systems. Optical remote sensing has the potential to characterise salt pan environments and to increase the understanding of processes in playa basins, as well as to assess wider impacts and feedbacks that exist between climate forcing and human intervention in their regions. Remote sensing techniques can provide information for extensive regions on a high temporal basis compared to traditional field samples and ground observations. Specifically, for salt pans that are often challenging to study because of their large size, remote location, and limited accessibility due to missing infrastructure and ephemeral flooding. Furthermore, the availability of current and upcoming hyperspectral remote sensing data opened the opportunity for the analyses of the complex reflectance signatures that relate to the mineralogical mixtures found in the salt pan sediments. However, these new advances in sensor technology, as well as increased data availability currently have not been fully explored for the study of salt pan environments. The potential of new sensors needs to be assessed and state of the art methods need to be adapted and improved to provide reliable information for in depth analysis of processes and characterisation of the recent condition, as well as to support long-term monitoring and to evaluate environmental impacts of changing climate and anthropogenic activity. This thesis provides an assessment of the capabilities of optical remote sensing for the study of salt pan environments that combines the information of hyperspectral data with the increased temporal coverage of multispectral observations for a more complete understanding of spatial and temporal complexity of salt pan environments using the Omongwa salt pan located in the south-west Kalahari as a test site. In particular, hyperspectral data are used for unmixing of the mineralogical surface composition, spectral feature-based modelling for quantification of main crust components, as well as time-series based classification of multispectral data for the assessment of the long-term dynamic and the analysis of the seasonal process regime. The results show that the surface of the Omongwa pan can be categorized into three major crust types based on diagnostic absorption features and mineralogical ground truth data. The mineralogical crust types can be related to different zones of surface dynamic as well as pan morphology that influences brine flow during the pan inundation and desiccation cycles. Using current hyperspectral imagery, as well as simulated data of upcoming sensors, robust quantification of the gypsum component could be derived. For the test site the results further indicate that the crust dynamic is mainly driven by flooding events in the wet season, but it is also influenced by temperature and aeolian activity in the dry season. Overall, the scientific outcomes show that optical remote sensing can provide a wide range of information helpful for the study of salt pan environments. The thesis also highlights that remote sensing approaches are most relevant, when they are adapted to the specific site conditions and research scenario and that upcoming sensors will increase the potential for mineralogical, sedimentological and geomorphological analysis, and will improve the monitoring capabilities with increased data availability.}, language = {en} } @phdthesis{Senftleben2020, author = {Senftleben, Robin}, title = {Earth's magnetic field over the last 1000 years}, doi = {10.25932/publishup-47315}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473150}, school = {Universit{\"a}t Potsdam}, pages = {xii, 104}, year = {2020}, abstract = {To investigate the reliability and stability of spherical harmonic models based on archeo/-paleomagnetic data, 2000 Geomagnetic models were calculated. All models are based on the same data set but with randomized uncertainties. Comparison of these models to the geomagnetic field model gufm1 showed that large scale magnetic field structures up to spherical harmonic degree 4 are stable throughout all models. Through a ranking of all models by comparing the dipole coefficients to gufm1 more realistic uncertainty estimates were derived than the authors of the data provide. The derived uncertainty estimates were used in further modelling, which combines archeo/-paleomagnetic and historical data. The huge difference in data count, accuracy and coverage of these two very different data sources made it necessary to introduce a time dependent spatial damping, which was constructed to constrain the spatial complexity of the model. Finally 501 models were calculated by considering that each data point is a Gaussian random variable, whose mean is the original value and whose standard deviation is its uncertainty. The final model arhimag1k is calculated by taking the mean of the 501 sets of Gauss coefficients. arhimag1k fits different dependent and independent data sets well. It shows an early reverse flux patch at the core-mantle boundary between 1000 AD and 1200 AD at the location of the South Atlantic Anomaly today. Another interesting feature is a high latitude flux patch over Greenland between 1200 and 1400 AD. The dipole moment shows a constant behaviour between 1600 and 1840 AD. In the second part of the thesis 4 new paleointensities from 4 different flows of the island Fogo, which is part of Cape Verde, are presented. The data is fitted well by arhimag1k with the exception of the value at 1663 of 28.3 microtesla, which is approximately 10 microtesla lower than the model suggest.}, language = {en} } @phdthesis{Borghini2020, author = {Borghini, Alessia}, title = {Melt inclusions in mafic rocks as witnesses of metasomatism in the Bohemian Massif}, doi = {10.25932/publishup-47363}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473639}, school = {Universit{\"a}t Potsdam}, pages = {205}, year = {2020}, abstract = {Orogenic peridotites represent portions of upper subcontinental mantle now incorporated in mountain belts. They often contain layers, lenses and irregular bodies of pyroxenite and eclogite. The origin of this heterogeneity and the nature of these layers is still debated but it is likely to involve processes such as transient melts coming from the crust or the mantle and segregating in magma conduits, crust-mantle interaction, upwelling of the asthenosphere and metasomatism. All these processes occur in the lithospheric mantle and are often related with the subduction of crustal rocks to mantle depths. In fact, during subduction, fluids and melts are released from the slab and can interact with the overlying mantle, making the study of deep melts in this environment crucial to understand mantle heterogeneity and crust-mantle interaction. The aim of this thesis is precisely to better constrain how such processes take place studying directly the melt trapped as primary inclusions in pyroxenites and eclogites. The Bohemian Massif, crystalline core of the Variscan belt, is targeted for these purposes because it contains orogenic peridotites with layers of pyroxenite and eclogite and other mafic rocks enclosed in felsic high pressure and ultra-high pressure crustal rocks. Within this Massif mafic rocks from two areas have been selected: the garnet clinopyroxenite in orogenic peridotite of the Granulitgebirge and the ultra-high pressure eclogite in the diamond-bearing gneisses of the Erzgebirge. In both areas primary melt inclusions were recognized in the garnet, ranging in size between 2-25 µm and with different degrees of crystallization, from glassy to polycrystalline. They have been investigated with Micro Raman spectroscopy and EDS mapping and the mineral assemblage is kumdykolite, phlogopite, quartz, kokchetavite, phase with a main Raman peak at 430 cm-1, phase with a main Raman peak at 412 cm-1, white mica and calcite with some variability in relative abundance depending on the case study. In the Granulitgebirge osumilite and pyroxene are also present, whereas calcite is one of the main phases in the Erzgebirge. The presence of glass and the mineral assemblage in the nanogranitoids suggest that they were former droplets of melt trapped in the garnet while it was growing. Glassy inclusions and re-homogenized nanogranitoids show a silicate melt that is granitic, hydrous, high in alkalis and weakly peraluminous. The melt is also enriched in both case studies in Cs, Pb, Rb, U, Th, Li and B suggesting the involvement of crustal component, i.e. white mica (main carrier of Cs, Pb, Rb, Li and B), and a fluid (Cs, Th and U) in the melt producing reaction. The whole rock in both cases mainly consists of garnet and clinopyroxene with, in Erzgebirge samples, the additional presence of quartz both in the matrix and as a polycrystalline inclusion in the garnet. The latter is interpreted as a quartz pseudomorph after coesite and occurs in the same microstructural position as the melt inclusions. Both rock types show a crustal and subduction zone signature with garnet and clinopyroxene in equilibrium. Melt was likely present during the metamorphic peak of the rock, as it occurs in garnet. Our data suggest that the processes most likely responsible for the formation of the investigated rocks in both areas is a metasomatic reaction between a melt produced in the crust and mafic layers formerly located in the mantle wedge for the Granulitgebirge and in the subducted continental crust itself in the Erzgebirge. Thus metasomatism in the first case took place in the mantle overlying the slab, whereas in the second case metasomatism took place in the continental crust that already contained, before subduction, mafic layers. Moreover, the presence of former coesite in the same microstructural position of the melt inclusions in the Erzgebirge garnets suggest that metasomatism took place at ultra-high pressure conditions. Summarizing, in this thesis we provide new insights into the geodynamic evolution of the Bohemian Massif based on the study of melt inclusions in garnet in two different mafic rock types, combining the direct microstructural and geochemical investigation of the inclusions with the whole-rock and mineral geochemistry. We report for the first time data, directly extracted from natural rocks, on the metasomatic melt responsible for the metasomatism of several areas of the Bohemian Massif. Besides the two locations here investigated, belonging to the Saxothuringian Zone, a signature similar to the investigated melt is clearly visible in pyroxenite and peridotite of the T-7 borehole (again Saxothuringian Zone) and the durbachite suite located in the Moldanubian Zone.}, language = {en} } @phdthesis{Zeckra2020, author = {Zeckra, Martin}, title = {Seismological and seismotectonic analysis of the northwestern Argentine Central Andean foreland}, doi = {10.25932/publishup-47324}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473240}, school = {Universit{\"a}t Potsdam}, pages = {vii, 120}, year = {2020}, abstract = {After a severe M W 5.7 earthquake on October 17, 2015 in El Galp{\´o}n in the province of Salta NW Argentina, I installed a local seismological network around the estimated epicenter. The network covered an area characterized by inherited Cretaceous normal faults and neotectonic faults with unknown recurrence intervals, some of which may have been reactivated normal faults. The 13 three-component seismic stations recorded data continuously for 15 months. The 2015 earthquake took place in the Santa B{\´a}rbara System of the Andean foreland, at about 17km depth. This region is the easternmost morphostructural region of the central Andes. As a part of the broken foreland, it is bounded to the north by the Subandes fold-and-thrust belt and the Sierras Pampeanas to the south; to the east lies the Chaco-Paran{\´a} basin. A multi-stage morphotectonic evolution with thick-skinned basement uplift and coeval thin-skinned deformation in the intermontane basins is suggested for the study area. The release of stresses associated with the foreland deformation can result in strong earthquakes, as the study area is known for recurrent and historical, destructive earthquakes. The available continuous record reaches back in time, when the strongest event in 1692 (magnitude 7 or intensity IX) destroyed the city of Esteco. Destructive earthquakes and surface deformation are thus a hallmark of this part of the Andean foreland. With state-of-the-art Python packages (e.g. pyrocko, ObsPy), a semi-automatic approach is followed to analyze the collected continuous data of the seismological network. The resulting 1435 hypocenter locations consist of three different groups: 1.) local crustal earthquakes (nearly half of the events belong to this group), 2.) interplate activity, of regional distance in the slab of the Nazca-plate, and 3.) very deep earthquakes at about 600km depth. My major interest focused on the first event class. Those crustal events are partly aftershock events of the El Galp{\´o}n earthquake and a second earthquake, in the south of the same fault. Further events can be considered as background seismicity of other faults within the study area. Strikingly, the seismogenic zone encompass the whole crust and propagates brittle deformation down, close to the Moho. From the collected seismological data, a local seismic velocity model is estimated, using VELEST. After the execution of various stability tests, the robust minimum 1D-velocity model implies guiding values for the composition of the local, subsurface structure of the crust. Afterwards, performing a hypocenter relocation enables the assignment of individual earthquakes to aftershock clusters or extended seismotectonic structures. This allows the mapping of previously unknown seismogenic faults. Finally, focal mechanisms are modeled for events with acurately located hypocenters, using the newly derived local velocity model. A compressive regime is attested by the majority of focal mechanisms, while the strike direction of the individual seismogenic structures is in agreement with the overall north - south orientation of the Central Andes, its mountain front, and individual mountain ranges in the southern Santa-B{\´a}rbara-System.}, language = {en} } @phdthesis{Nardini2020, author = {Nardini, Livia}, title = {Influence of heterogeneities on the initiation of shear zones in the ductile regime}, doi = {10.25932/publishup-44616}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446165}, school = {Universit{\"a}t Potsdam}, pages = {XIX, 121}, year = {2020}, abstract = {The current thesis contains the results from two experimental and one modelling study focused on the topic of ductile strain localization in the presence of material heterogeneities. Localization of strain in the high temperature regime is a well known feature of rock deformation occurring in nature at different scales and in a variety of lithologies. Large scale shear zones at the roots of major crustal fault zones are considered responsible for the activity of plate tectonics on our planet. A large number of mechanisms are suggested to be associated with strain softening and nucleation of localization. Among these, the presence of material heterogeneities within homogeneous host rocks is frequently observed in field examples to trigger shear zone development. Despite a number of studies conducted on the topic, the mechanisms controlling initiation and evolution of localization are not fully understood yet. We investigated, experimentally and by means of numerical modelling, phenomenological and microphysical aspects of high temperature strain localization in a homogeneous body containing single and paired inclusions of weaker material. A monomineralic carbonate system composed of Carrara marble (homogeneous, strong matrix) and Solnhofen limestone (weak planar inclusions) is selected for our studies based on its versatility as an experimental material and on the frequent occurrence of carbonate rocks at the core of natural shear zones. To explore the influence of different loading conditions on heterogeneity-induced high temperature shear zones we conducted torsion experiments under constant twist (deformation) rate and constant torque (stress) conditions in a Paterson-type deformation apparatus on hollow cylinders of marble containing single planar inclusions of limestone. At the imposed experimental conditions (900 ◦C temperature and 400 MPa confining pressure) both materials deform plastically and the marble is ≈ 9 times stronger than the limestone. The viscosity contrast between the two materials induces a perturbation of the stress field within the marble matrix at the tip of the planar inclusion. Early on along the deformation path (at bulk shear strains ≈ 0.3), heterogeneous distribution of strain can be observed under both loading conditions and a small area of incipient strain localization is formed at the tip of the weak limestone inclusion. Strongly deformed grains, incipient dynamic recrystallization and a weak crystallographic preferred orientation characterize the marble within an area a few mm in front of the inclusion. As the bulk strain is increased (up to γ ≈ 1), the area of microstructural modification is expanded along the inclusion plane, the texture strengthens and grain size refinement by dynamic recrystallization becomes pervasive. Locally, evidences for coexisting brittle deformation are also observed regardless of the imposed loading conditions. A shear zone is effectively formed within the deforming Carrara marble, its geometry controlled by the plane containing the thin plate of limestone. Thorough microstructural and textural analysis, however, do not reveal substantial differences in the mechanisms or magnitude of strain localization at the different loading conditions. We conclude that, in the presence of material heterogeneities capable of inducing strain softening, the imposed loading conditions do not affect ductile localization in its nucleating and transient stages. As the ultimate goal of experimental rock deformation is the extrapolation of results to geologically relevant time and space scales, we developed 2D numerical models reproducing (and benchmarked to) our experimental results. Our cm-scaled models have been implemented with a first-order strain-dependent softening law to reproduce the effect of rheological weakening in the deforming material. We successfully reproduced the local stress concentration at the inclusion tips and the strain localization initiated in the marble matrix. The heterogeneous distribution of strain and its evolution with imposed bulk deformation (i.e. the shape and extent of the nucleating shear zone) are observed to depend on the degree of softening imposed to the deforming matrix. When a second (artificial) softening step is introduced at elevated bulk strains in the model, the formation of a secondary high strain layer is observed at the core of the initial shear zone, analogous to the development of ultramylonite bands in high strain natural shear zones. Our results do not only reproduce the nucleation and transient evolution of a heterogeneity-induced high temperature shear zone with high accuracy, but also confirm the importance of introducing reliable softening laws capable of mimicking strain weakening to numerical models of crustal scale ductile processes. Material heterogeneities inducing strain localization in the field are often consisting of brittle precursors (joints and fractures). More generally, the interaction of brittle and ductile deformation mechanisms and its effect on the localization of strain have been a key topic in the structural geology community for a long time. The positive feedback between (micro)fracturing and ductile strain localization is a well recognized effect in a number of field examples. We experimentally investigated the influence of brittle deformation on the initiation and evolution of high temperature shear zones in a strong matrix containing pairs of weak material heterogeneities. Our Carrara marble-Solnhofen limestone inclusions system was tested in triaxial compression under constant strain rate and high temperature (900 ◦C) conditions in a Paterson deformation apparatus. The inclusion pairs were arranged in non-overlapping step-over geometries of either compressional or extensional nature. Experimental runs were conducted at different confining pressures (30, 50, 100 and 300 MPa) to induce various amounts of brittle deformation within the marble matrix. At low confinement (30 and 50 MPa) abundant brittle deformation is observed in all configurations, but the spatial distribution of cracks is dependent on the kinematics of the step-over region: concentrated along the shearing plane between the inclusions in the extensional samples, or broadly distributed around the inclusions but outside the step-over region in the compressional configuration. Accordingly, brittle-assisted ductile processes tend to localize deformation along the inclusions plane in the extensional geometry or to distribute widely across large areas of the matrix in the compressional step-over. At pressures of 100 and 300 MPa fracturing is mostly suppressed in both configurations and strain is accommodated almost entirely by viscous creep. In extensional samples this leads to progressive de-localization with increasing confinement. Our results show that, while ductile localization of strain is indeed more efficient where assisted by brittle processes, these latter are only effective if themselves heterogeneously distributed, ultimately a function of the local stress perturbations.}, language = {en} } @phdthesis{RamezaniZiarani2020, author = {Ramezani Ziarani, Maryam}, title = {Characterization of atmospheric processes related to hydro-meteorological extreme events over the south-central Andes}, doi = {10.25932/publishup-47175}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471755}, school = {Universit{\"a}t Potsdam}, pages = {i, 88}, year = {2020}, abstract = {The significant environmental and socioeconomic consequences of hydrometeorological extreme events, such as extreme rainfall, are constituted as a most important motivation for analyzing these events in the south-central Andes of NW Argentina. The steep topographic and climatic gradients and their interactions frequently lead to the formation of deep convective storms and consequently trigger extreme rainfall generation. In this dissertation, I focus on identifying the dominant climatic variables and atmospheric conditions and their spatiotemporal variability leading to deep convection and extreme rainfall in the south-central Andes. This dissertation first examines the significant contribution of temperature on atmospheric humidity (dew-point temperature, Td) and on convection (convective available potential energy, CAPE) for deep convective storms and hence, extreme rainfall along the topographic and climatic gradients. It was found that both climatic variables play an important role in extreme rainfall generation. However, their contributions differ depending on topographic and climatic sub-regions, as well as rainfall percentiles. Second, this dissertation explores if (near real-time) the measurements conducted by the Global Navigation Satellite System (GNSS) on integrated water vapor (IWV) provide reliable data for explaining atmospheric humidity. I argue that GNSS-IWV, in conjunction with other atmospheric stability parameters such as CAPE, is able to decipher the extreme rainfall in the eastern central Andes. In my work, I rely on a multivariable regression analysis described by a theoretical relationship and fitting function analysis. Third, this dissertation identifies the local impact of convection on extreme rainfall in the eastern Andes. Relying on a Principal Component Analysis (PCA) it was found that during the existence of moist and warm air, extreme rainfall is observed more often during local night hours. The analysis includes the mechanisms for this observation. Exploring the atmospheric conditions and climatic variables leading to extreme rainfall is one of the main findings of this dissertation. The conditions and variables are a prerequisite for understanding the dynamics of extreme rainfall and predicting these events in the eastern Andes.}, language = {en} } @article{AyzelSchefferHeistermann2020, author = {Ayzel, Georgy and Scheffer, Tobias and Heistermann, Maik}, title = {RainNet v1.0}, series = {Geoscientific Model Development}, volume = {13}, journal = {Geoscientific Model Development}, number = {6}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {1991-959X}, doi = {10.5194/gmd-13-2631-2020}, pages = {2631 -- 2644}, year = {2020}, abstract = {In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting. Its design was inspired by the U-Net and SegNet families of deep learning models, which were originally designed for binary segmentation tasks. RainNet was trained to predict continuous precipitation intensities at a lead time of 5min, using several years of quality-controlled weather radar composites provided by the German Weather Service (DWD). That data set covers Germany with a spatial domain of 900km × 900km and has a resolution of 1km in space and 5min in time. Independent verification experiments were carried out on 11 summer precipitation events from 2016 to 2017. In order to achieve a lead time of 1h, a recursive approach was implemented by using RainNet predictions at 5min lead times as model inputs for longer lead times. In the verification experiments, trivial Eulerian persistence and a conventional model based on optical flow served as benchmarks. The latter is available in the rainymotion library and had previously been shown to outperform DWD's operational nowcasting model for the same set of verification events. RainNet significantly outperforms the benchmark models at all lead times up to 60min for the routine verification metrics mean absolute error (MAE) and the critical success index (CSI) at intensity thresholds of 0.125, 1, and 5mm h⁻¹. However, rainymotion turned out to be superior in predicting the exceedance of higher intensity thresholds (here 10 and 15mm h⁻¹). The limited ability of RainNet to predict heavy rainfall intensities is an undesirable property which we attribute to a high level of spatial smoothing introduced by the model. At a lead time of 5min, an analysis of power spectral density confirmed a significant loss of spectral power at length scales of 16km and below. Obviously, RainNet had learned an optimal level of smoothing to produce a nowcast at 5min lead time. In that sense, the loss of spectral power at small scales is informative, too, as it reflects the limits of predictability as a function of spatial scale. Beyond the lead time of 5min, however, the increasing level of smoothing is a mere artifact - an analogue to numerical diffusion - that is not a property of RainNet itself but of its recursive application. In the context of early warning, the smoothing is particularly unfavorable since pronounced features of intense precipitation tend to get lost over longer lead times. Hence, we propose several options to address this issue in prospective research, including an adjustment of the loss function for model training, model training for longer lead times, and the prediction of threshold exceedance in terms of a binary segmentation task. Furthermore, we suggest additional input data that could help to better identify situations with imminent precipitation dynamics. The model code, pretrained weights, and training data are provided in open repositories as an input for such future studies.}, language = {en} } @misc{AyzelSchefferHeistermann2020, author = {Ayzel, Georgy and Scheffer, Tobias and Heistermann, Maik}, title = {RainNet v1.0}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {964}, issn = {1866-8372}, doi = {10.25932/publishup-47294}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472942}, pages = {16}, year = {2020}, abstract = {In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting. Its design was inspired by the U-Net and SegNet families of deep learning models, which were originally designed for binary segmentation tasks. RainNet was trained to predict continuous precipitation intensities at a lead time of 5min, using several years of quality-controlled weather radar composites provided by the German Weather Service (DWD). That data set covers Germany with a spatial domain of 900km × 900km and has a resolution of 1km in space and 5min in time. Independent verification experiments were carried out on 11 summer precipitation events from 2016 to 2017. In order to achieve a lead time of 1h, a recursive approach was implemented by using RainNet predictions at 5min lead times as model inputs for longer lead times. In the verification experiments, trivial Eulerian persistence and a conventional model based on optical flow served as benchmarks. The latter is available in the rainymotion library and had previously been shown to outperform DWD's operational nowcasting model for the same set of verification events. RainNet significantly outperforms the benchmark models at all lead times up to 60min for the routine verification metrics mean absolute error (MAE) and the critical success index (CSI) at intensity thresholds of 0.125, 1, and 5mm h⁻¹. However, rainymotion turned out to be superior in predicting the exceedance of higher intensity thresholds (here 10 and 15mm h⁻¹). The limited ability of RainNet to predict heavy rainfall intensities is an undesirable property which we attribute to a high level of spatial smoothing introduced by the model. At a lead time of 5min, an analysis of power spectral density confirmed a significant loss of spectral power at length scales of 16km and below. Obviously, RainNet had learned an optimal level of smoothing to produce a nowcast at 5min lead time. In that sense, the loss of spectral power at small scales is informative, too, as it reflects the limits of predictability as a function of spatial scale. Beyond the lead time of 5min, however, the increasing level of smoothing is a mere artifact - an analogue to numerical diffusion - that is not a property of RainNet itself but of its recursive application. In the context of early warning, the smoothing is particularly unfavorable since pronounced features of intense precipitation tend to get lost over longer lead times. Hence, we propose several options to address this issue in prospective research, including an adjustment of the loss function for model training, model training for longer lead times, and the prediction of threshold exceedance in terms of a binary segmentation task. Furthermore, we suggest additional input data that could help to better identify situations with imminent precipitation dynamics. The model code, pretrained weights, and training data are provided in open repositories as an input for such future studies.}, language = {en} } @phdthesis{Pick2020, author = {Pick, Leonie Johanna Lisa}, title = {The centennial evolution of geomagnetic activity and its driving mechanisms}, doi = {10.25932/publishup-47275}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472754}, school = {Universit{\"a}t Potsdam}, pages = {ix, 135}, year = {2020}, abstract = {This cumulative thesis is concerned with the evolution of geomagnetic activity since the beginning of the 20th century, that is, the time-dependent response of the geomagnetic field to solar forcing. The focus lies on the description of the magnetospheric response field at ground level, which is particularly sensitive to the ring current system, and an interpretation of its variability in terms of the solar wind driving. Thereby, this work contributes to a comprehensive understanding of long-term solar-terrestrial interactions. The common basis of the presented publications is formed by a reanalysis of vector magnetic field measurements from geomagnetic observatories located at low and middle geomagnetic latitudes. In the first two studies, new ring current targeting geomagnetic activity indices are derived, the Annual and Hourly Magnetospheric Currents indices (A/HMC). Compared to existing indices (e.g., the Dst index), they do not only extend the covered period by at least three solar cycles but also constitute a qualitative improvement concerning the absolute index level and the ~11-year solar cycle variability. The analysis of A/HMC shows that (a) the annual geomagnetic activity experiences an interval-dependent trend with an overall linear decline during 1900-2010 of ~5 \% (b) the average trend-free activity level amounts to ~28 nT (c) the solar cycle related variability shows amplitudes of ~15-45 nT (d) the activity level for geomagnetically quiet conditions (Kp<2) lies slightly below 20 nT. The plausibility of the last three points is ensured by comparison to independent estimations either based on magnetic field measurements from LEO satellite missions (since the 1990s) or the modeling of geomagnetic activity from solar wind input (since the 1960s). An independent validation of the longterm trend is problematic mainly because the sensitivity of the locally measured geomagnetic activity depends on geomagnetic latitude. Consequently, A/HMC is neither directly comparable to global geomagnetic activity indices (e.g., the aa index) nor to the partly reconstructed open solar magnetic flux, which requires a homogeneous response of the ground-based measurements to the interplanetary magnetic field and the solar wind speed. The last study combines a consistent, HMC-based identification of geomagnetic storms from 1930-2015 with an analysis of the corresponding spatial (magnetic local time-dependent) disturbance patterns. Amongst others, the disturbances at dawn and dusk, particularly their evolution during the storm recovery phases, are shown to be indicative of the solar wind driving structure (Interplanetary Coronal Mass Ejections vs. Stream or Co-rotating Interaction Regions), which enables a backward-prediction of the storm driver classes. The results indicate that ICME-driven geomagnetic storms have decreased since 1930 which is consistent with the concurrent decrease of HMC. Out of the collection of compiled follow-up studies the inclusion of measurements from high-latitude geomagnetic observatories into the third study's framework seems most promising at this point.}, language = {en} } @misc{AgarwalMarwanMaheswaranetal.2020, author = {Agarwal, Ankit and Marwan, Norbert and Maheswaran, Rathinasamy and {\"O}zt{\"u}rk, Ugur and Kurths, J{\"u}rgen and Merz, Bruno}, title = {Optimal design of hydrometric station networks based on complex network analysis}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {951}, issn = {1866-8372}, doi = {10.25932/publishup-47100}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471006}, pages = {19}, year = {2020}, abstract = {Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure - the weighted degree-betweenness (WDB) measure - to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail.}, language = {en} } @article{AgarwalMarwanMaheswaranetal.2020, author = {Agarwal, Ankit and Marwan, Norbert and Maheswaran, Rathinasamy and {\"O}zt{\"u}rk, Ugur and Kurths, J{\"u}rgen and Merz, Bruno}, title = {Optimal design of hydrometric station networks based on complex network analysis}, series = {Hydrology and Earth System Sciences}, volume = {24}, journal = {Hydrology and Earth System Sciences}, number = {5}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-24-2235-2020}, pages = {2235 -- 2251}, year = {2020}, abstract = {Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure - the weighted degree-betweenness (WDB) measure - to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail.}, language = {en} } @phdthesis{RodriguezZuluaga2020, author = {Rodriguez Zuluaga, Juan}, title = {Electric and magnetic characteristics of equatorial plasma depletions}, doi = {10.25932/publishup-44587}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445873}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 87}, year = {2020}, abstract = {Near-Earth space represents a significant scientific and technological challenge. Particularly at magnetic low-latitudes, the horizontal magnetic field geometry at the dip equator and its closed field-lines support the existence of a distinct electric current system, abrupt electric field variations and the development of plasma irregularities. Of particular interest are small-scale irregularities associated with equatorial plasma depletions (EPDs). They are responsible for the disruption of trans-ionospheric radio waves used for navigation, communication, and Earth observation. The fast increase of satellite missions makes it imperative to study the near-Earth space, especially the phenomena known to harm space technology or disrupt their signals. EPDs correspond to the large-scale structure (i.e., tens to hundreds of kilometers) of topside F region irregularities commonly known as Spread F. They are observed as depleted-plasma density channels aligned with the ambient magnetic field in the post-sunset low-latitude ionosphere. Although the climatological variability of their occurrence in terms of season, longitude, local time and solar flux is well-known, their day to day variability is not. The sparse observations from ground-based instruments like radars and the few simultaneous measurements of ionospheric parameters by space-based instruments have left gaps in the knowledge of EPDs essential to comprehend their variability. In this dissertation, I profited from the unique observations of the ESA's Swarm constellation mission launched in November 2013 to tackle three issues that revealed novel and significant results on the current knowledge of EPDs. I used Swarm's measurements of the electron density, magnetic, and electric fields to answer, (1.) what is the direction of propagation of the electromagnetic energy associated with EPDs?, (2.) what are the spatial and temporal characteristics of the electric currents (field-aligned and diamagnetic currents) related to EPDs, i.e., seasonal/geographical, and local time dependencies?, and (3.) under what conditions does the balance between magnetic and plasma pressure across EPDs occur? The results indicate that: (1.) The electromagnetic energy associated with EPDs presents a preference for interhemispheric flows; that is, the related Poynting flux directs from one magnetic hemisphere to the other and varies with longitude and season. (2.) The field-aligned currents at the edges of EPDs are interhemispheric. They generally close in the hemisphere with the highest Pedersen conductance. Such hemispherical preference presents a seasonal/longitudinal dependence. The diamagnetic currents increase or decrease the magnetic pressure inside EPDs. These two effects rely on variations of the plasma temperature inside the EPDs that depend on longitude and local time. (3.) EPDs present lower or higher plasma pressure than the ambient. For low-pressure EPDs the plasma pressure gradients are mostly dominated by variations of the plasma density so that variations of the temperature are negligible. High-pressure EPDs suggest significant temperature variations with magnitudes of approximately twice the ambient. Since their occurrence is more frequent in the vicinity of the South Atlantic magnetic anomaly, such high temperatures are suggested to be due to particle precipitation. In a broader context, this dissertation shows how dedicated satellite missions with high-resolution capabilities improve the specification of the low-latitude ionospheric electrodynamics and expand knowledge on EPDs which is valuable for current and future communication, navigation, and Earth-observing missions. The contributions of this investigation represent several 'firsts' in the study of EPDs: (1.) The first observational evidence of interhemispheric electromagnetic energy flux and field-aligned currents. (2.) The first spatial and temporal characterization of EPDs based on their associated field-aligned and diamagnetic currents. (3.) The first evidence of high plasma pressure in regions of depleted plasma density in the ionosphere. These findings provide new insights that promise to advance our current knowledge of not only EPDs but the low-latitude post-sunset ionosphere environment.}, language = {en} } @phdthesis{Schimpf2020, author = {Schimpf, Stefan}, title = {Herkunft und Ablagerungsmilieu quart{\"a}rer Sedimente im Einzugsgebiet des Heihe, NW China}, school = {Universit{\"a}t Potsdam}, pages = {xi, 186}, year = {2020}, abstract = {Der zentralasiatische Naturraum, wie er sich uns heute pr{\"a}sentiert, ist das Ergebnis eines Zusammenwirkens vieler verschiedener Faktoren {\"u}ber Jahrmillionen hinweg. Im aktuellen Kontext des Klimawandels zeigt sich jedoch, wie stark sich Stofffl{\"u}sse auch kurzfristig {\"a}ndern und dabei das Gesicht der Landschaft verwandeln k{\"o}nnen. Die Gobi-W{\"u}ste in der Inneren Mongolei (China), als Teil der gleichnamigen Trockenregionen Nordwestchinas, ist aufgrund der Ausgestaltung ihrer landschaftspr{\"a}genden Elemente sowie ihrer Landschaftsdynamik, im Zusammenhang mit der Lage zum Tibet-Plateau, in den Fokus der klimageschichtlichen Grundlagenforschung ger{\"u}ckt. Als großes Langzeitarchiv unterschiedlichster fluvialer, lakustriner und {\"a}olischer Sedimente stellt sie eine bedeutende Lokalit{\"a}t zur Rekonstruktion von lokalen und regionalen Stofffl{\"u}ssen dar.. Andererseits ist die Gobi-W{\"u}ste zugleich auch eine bedeutende Quelle f{\"u}r den {\"u}berregionalen Staubtransport, da sie aufgrund der klimatischen Bedingungen insbesondere der Erosion durch Ausblasung preisgegeben wird. Vor diesem Hintergrund erfolgten zwischen 2011 und 2014, im Rahmen des BMBF-Verbundprogramms WTZ Zentralasien - Monsundynamik \& Geo{\"o}kosysteme (F{\"o}rderkennzeichen 03G0814), mehrere deutsch-chinesische Expeditionen in das Ejina-Becken (Innere Mongolei) und das Qilian Shan-Vorland. Im Zuge dieser Expeditionen wurden f{\"u}r eine Bestimmung potenzieller Sedimentquellen erstmals zahlreiche Oberfl{\"a}chenproben aus dem gesamten Einzugsgebiet des Heihe (schwarzer Fluss) gesammelt. Zudem wurden mit zwei Bohrungen im inneren des Ejina-Beckens, erg{\"a}nzende Sedimentbohrkerne zum bestehenden Bohrkern D100 (siehe W{\"u}nnemann (2005)) abgeteuft, um weit reichende, erg{\"a}nzende Informationen zur Landschaftsgeschichte und zum {\"u}berregionalen Sedimenttransfer zu erhalten. Gegenstand und Ziel der vorliegenden Doktorarbeit ist die sedimentologisch-mineralogische Charakterisierung des Untersuchungsgebietes in Bezug auf potenzielle Sedimentquellen und Stofffl{\"u}sse des Ejina-Beckens sowie die Rekonstruktion der Ablagerungsgeschichte eines dort erbohrten, 19m langen Sedimentbohrkerns (GN100). Schwerpunkt ist hierbei die Kl{\"a}rung der Sedimentherkunft innerhalb des Bohrkerns sowie die Ausweisung von Herkunftssignalen und m{\"o}glichen Sedimentquellen bzw. Sedimenttransportpfaden. Die methodische Herangehensweise basiert auf einem Multi-Proxy-Ansatz zur Charakterisierung der klastischen Sedimentfazies anhand von Gel{\"a}ndebeobachtungen, lithologisch-granulometrischen und mineralogisch-geochemischen Analysen sowie statistischen Verfahren. F{\"u}r die mineralogischen Untersuchungen der Sedimente wurde eine neue, rasterelektronenmikroskopische Methode zur automatisierten Partikelanalyse genutzt und den traditionellen Methoden gegen{\"u}bergestellt. Die synoptische Betrachtung der granulometrischen, geochemischen und mineralogischen Befunde der Oberfl{\"a}chensedimente ergibt f{\"u}r das Untersuchungsgebiet ein logisches Kaskadenmodell mit immer wiederkehrenden Prozessbereichen und {\"a}hnlichen Prozesssignalen. Die umfangreichen granulometrischen Analysen deuten dabei auf abnehmende Korngr{\"o}ßen mit zunehmender Entfernung vom Qilian Shan hin und erm{\"o}glichen die Identifizierung von vier texturellen Signalen: den fluvialen Sanden, den D{\"u}nensanden, den Stillwassersedimenten und St{\"a}uben. Diese Ergebnisse k{\"o}nnen als Interpretationsgrundlage f{\"u}r die Korngr{\"o}ßenanalysen des Bohrkerns genutzt werden. Somit ist es m{\"o}glich, die Ablagerungsgeschichte der Bohrkernsedimente zu rekonstruieren und in Verbindung mit eigenen und literaturbasierten Datierungen in einen Gesamtkontext einzuh{\"a}ngen. F{\"u}r das Untersuchungsgebiet werden somit vier Ablagerungsphasen ausgewiesen, die bis in die Zeit des letzten glazialen Maximums (LGM) zur{\"u}ckreichen. W{\"a}hrend dieser Ablagerungsphasen kam es im Zuge unterschiedlicher Aktivit{\"a}ts- und Stabilit{\"a}tsphasen zu einer kontinuierlichen Progradation und {\"U}berpr{\"a}gung des Schwemmf{\"a}chers. Eine besonders aktive Phase kann zwischen 8 ka und 4 ka BP festgestellt werden, w{\"a}hrend der es aufgrund zunehmender fluvialer Aktivit{\"a}ten zu einer deutlich verst{\"a}rkten Schwemmf{\"a}cherdynamik gekommen zu sein scheint. In den Abschnitten davor und danach waren es vor allem {\"a}olische Prozesse, die zu einer {\"U}berpr{\"a}gung des Schwemmf{\"a}chers gef{\"u}hrt haben. Hinsichtlich der mineralogischen Herkunftssignale gibt es eine große Variabilit{\"a}t. Dies spiegelt die enorme Heterogenit{\"a}t der Geologie des Untersuchungsgebietes wider, wodurch die r{\"a}umlichen Signale nicht sehr stark ausgepr{\"a}gt sind. Dennoch, k{\"o}nnen f{\"u}r das Einzugsgebiet drei gr{\"o}ßere Bereiche deklariert werden, die als Herkunftsgebiet in Frage kommen. Das {\"o}stliche Qilian Shan Vorland zeichnet sich dabei durch deutlich h{\"o}here Chloritgehalte als prim{\"a}re Quelle f{\"u}r die Sedimente im Ejina-Becken aus. Sie unterscheiden sich insbesondere durch stark divergierende Chloritgehalte in der Tonmineral- und Gesamtmineralfraktion, was das {\"o}stliche Qilian Shan Vorland als prim{\"a}re Quelle f{\"u}r die Sedimente im Ejina-Becken auszeichnet. Dies steht in Zusammenhang mit den Gr{\"u}nschiefern, Ophioliten und Serpentiniten in diesem Bereich. Geochemisch deutet vor allem das Cr/Rb-Verh{\"a}ltnis eine große Variabilit{\"a}t innerhalb des Einzugsgebietes an. Auch hier ist es das {\"o}stliche Vorland, welches aufgrund seines hohen Anteils an mafischen Gesteinen reich an Chromiten und Spinellen ist und sich somit vom restlichen Untersuchungsgebiet abhebt. Die zeitliche aber auch die generelle Variabilit{\"a}t der Sedimentherkunft l{\"a}sst sich in den Bohrkernsedimenten nicht so deutlich nachzeichnen. Die mineralogisch-sedimentologischen Eigenschaften der erbohrten klastischen Sedimente zeugen zwar von zwischenzeitlichen {\"A}nderungen bei der Sedimentherkunft, diese sind jedoch nicht so deutlich ausgepr{\"a}gt, wie es die Quellsignale in den Oberfl{\"a}chensedimenten vermuten lassen. Ein Grund daf{\"u}r scheint die starke Vermischung unterschiedlichster Sedimente w{\"a}hrend des Transportes zu sein. Die Kombination der Korngr{\"o}ßenergebnisse mit den Befunden der Gesamt- und Schwermineralogie deuten darauf hin, dass es zwischenzeitlich eine Phase mit {\"u}berwiegend {\"a}olischen Prozessen gegeben hat, die mit einem Sedimenteintrag aus dem westlichen Bei Shan in Verbindung stehen. Neben der Zunahme ultrastabiler Schwerminerale wie Zirkon und Granat und der Abnahme opaker Schwerminerale, weisen vor allem die heutigen Verh{\"a}ltnisse darauf hin. Der Vergleich der traditionellen Schwermineralanalyse mit der Computer-Controlled-Scanning-Electron-Microscopy (kurz: CCSEM), die eine automatisierte Partikelauswertung der Proben erm{\"o}glicht, zeigt den deutlichen Vorteil der modernen Analysemethode. Neben einem zeitlichen Vorteil, den man durch die automatisierte Abarbeitung der vorbereiteten Proben erlangen kann, steht vor allem die deutlich gr{\"o}ßere statistische Signifikanz des Ergebnisses im Vordergrund. Zudem k{\"o}nnen mit dieser Methode auch chemische Variet{\"a}ten einiger Schwerminerale bestimmt werden, die eine noch feinere Klassifizierung und sicherere Aussagen zu einer m{\"o}glichen Sedimentherkunft erm{\"o}glichen. Damit ergeben sich außerdem verbesserte Aussagen zu Zusammensetzungen und Entstehungsprozessen der abgelagerten Sedimente. Die Studie verdeutlicht, dass die Sedimentherkunft innerhalb des Untersuchungsgebietes sowie die ablaufenden Prozesse zum Teil stark von lokalen Gegebenheiten abh{\"a}ngen. Die Heterogenit{\"a}t der Geologie und die Gr{\"o}ße des Einzugsgebietes sowie die daraus resultierende Komplexit{\"a}t der Sedimentgenese, machen exakte Zuordnungen zu klar definierten Sedimentquellen sehr schwer. Dennoch zeigen die Ergebnisse, dass die Sedimentzufuhr in das Ejina-Becken in erster Linie durch fluviale klastische Sedimente des Heihe aus dem Qilian Shan erfolgt sein muss. Die Untersuchungsergebnisse zeigen jedoch ebenso die Notwendigkeit einer erg{\"a}nzenden Bearbeitung angrenzender Untersuchungsgebiete, wie beispielsweise den Gobi-Altai im Norden oder den Beishan im Westen, sowie die Verdichtung der Oberfl{\"a}chenbeprobung zur feineren Aufl{\"o}sung von lokalen Sedimentquellen.}, language = {de} } @phdthesis{Liu2020, author = {Liu, Sibiao}, title = {Controls of foreland-deformation patterns in the orogen-foreland shortening system}, doi = {10.25932/publishup-44573}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445730}, school = {Universit{\"a}t Potsdam}, pages = {vi, 150}, year = {2020}, abstract = {The Andean Plateau (Altiplano-Puna Plateau) of the southern Central Andes is the second-highest orogenic plateau on our planet after Tibet. The Andean Plateau and its foreland exhibit a pronounced segmentation from north to south regarding the style and magnitude of deformation. In the Altiplano (northern segment), more than 300 km of tectonic shortening has been recorded, which started during the Eocene. A well-developed thin-skinned thrust wedge located at the eastern flank of the plateau (Subandes) indicates a simple-shear shortening mode. In contrast, the Puna (southern segment) records approximately half of the shortening of the Altiplano - and the shortening started later. The tectonic style in the Puna foreland switches to a thick-skinned mode, which is related to pure-shear shortening. In this study, carried out in the framework of the StRATEGy project, high-resolution 2D thermomechanical models were developed to systematically investigate controls of deformation patterns in the orogen-foreland pair. The 2D and 3D models were subsequently applied to study the evolution of foreland deformation and surface topography in the Altiplano-Puna Plateau. The models demonstrate that three principal factors control the foreland-deformation patterns: (i) strength differences in the upper lithosphere between the orogen and its foreland, rather than a strength difference in the entire lithosphere; (ii) gravitational potential energy of the orogen (GPE) controlled by crustal and lithospheric thicknesses, and (iii) the strength and thickness of foreland-basin sediments. The high-resolution 2D models are constrained by observations and successfully reproduce deformation structures and surface topography of different segments of the Altiplano-Puna plateau and its foreland. The developed 3D models confirm these results and suggest that a relatively high shortening rate in the Altiplano foreland (Subandean foreland fold-and-thrust belt) is due to simple-shear shortening facilitated by thick and mechanically weak sediments, a process which requires a much lower driving force than the pure-shear shortening deformation mode in the adjacent broken foreland of the Puna, where these thick sedimentary basin fills are absent. Lower shortening rate in the Puna foreland is likely accommodated in the forearc by the slab retreat.}, language = {en} } @phdthesis{KaramzadehToularoud2020, author = {Karamzadeh Toularoud, Nasim}, title = {Earthquake source and receiver array optimal configuration}, doi = {10.25932/publishup-45982}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459828}, school = {Universit{\"a}t Potsdam}, pages = {viii, 94}, year = {2020}, abstract = {Seismic receiver arrays have variety of applications in seismology, particularly when the signal enhancement is a prerequisite to detect seismic events, and in situations where installing and maintaining sparse networks are impractical. This thesis has mainly focused on the development of a new approach for seismological source and receiver array design.The proposed approach deals with the array design task as an optimization problem. The criteria and prerequisite constraints in array design task are integrated in objective function definition and evaluation of a optimization process. Three cases are covered in this thesis: (1) a 2-D receiver array geometry optimization, (2) a 3-D source array optimization, and (3) an array application to monitor microseismic data, where the effect of different types of noise are evaluated. A flexible receiver array design framework implements a customizable scenario modelling and optimization scheme by making use of synthetic seismograms. Using synthetic seismograms to evaluate array performance makes it possible to consider additional constraints, e.g. land ownership, site-specific noise levels or characteristics of the seismic sources under investigation. The use of synthetic array beamforming as an array design criteria is suggested. The framework is customized by designing a 2-D small scale receiver array to monitor earthquake swarm activity in northwest Bohemia/ Vogtland in central Europe. Two sub-functions are defined to verify the accuracy of horizontal slowness estimation; one to suppress aliasing effects due to possible secondary lobes of synthetic array beamforming calculated in horizontal slowness space, and the other to reduce the event's mislocation caused by miscalculation of the horizontal slowness vector. Subsequently, a weighting technique is applied to combine the sub-functions into one single scalar objective function to use in the optimization process. The idea of optimal array is employed to design a 3-D source array, given a well-located catalog of events. The conditions to make source arrays are formulated in four objective functions and a weighted sum technique is used to combine them in one single scalar function. The criteria are: (1) accurate slowness vector estimation, (2) high waveform coherency, (3) low location error and (4) high energy of coda phases. The method is evaluated by two experiments, (1) a synthetic test using realistic synthetic seismograms, (2) using real seismograms, and for each case optimized SA elements are configured using the data from the Vogtland area. The location of a possible scatterer in the velocity model, that makes the converted/reflected phases, e.g. sp-phases, is retrieved by a grid search method using the optimized SA. The accuracy of the approach and the obtained results demonstrated that the method is applicable to study the crustal structure and the location of crustal scatterers when the strong converted phases are observed in the data and a well-located catalog is available. Small aperture arrays are employed in seismology for a variety of applications, ranging from pure event detection to monitor and study of microcosmic activities. The monitoring of microseismicity during temporary human activities is often difficult, as the signal-to-noise ratio is very low and noise is strongly increased during the operation. The combination of small aperture seismic arrays with shallow borehole sensors offers a solution. We tested this monitoring approach at two different sites, (1) accompanying a fracking experiment in sedimentary shale at 4~km depth, and (2) above a gas field under depletion. Arrays recordings are compared with recordings available from shallow borehole sensors and examples of detection and location performance of the array are given. The effect of different types of noise at array and borehole stations are compared and discussed.}, language = {en} } @phdthesis{Nooshiri2020, author = {Nooshiri, Nima}, title = {Improvement of routine seismic source parameter estimation based on regional and teleseismic recordings}, doi = {10.25932/publishup-45946}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459462}, school = {Universit{\"a}t Potsdam}, pages = {ix, 118}, year = {2020}, abstract = {Seismological agencies play an important role in seismological research and seismic hazard mitigation by providing source parameters of seismic events (location, magnitude, mechanism), and keeping these data accessible in the long term. The availability of catalogues of seismic source parameters is an important requirement for the evaluation and mitigation of seismic hazards, and the catalogues are particularly valuable to the research community as they provide fundamental long-term data in the geophysical sciences. This work is well motivated by the rising demand for developing more robust and efficient methods for routine source parameter estimation, and ultimately generation of reliable catalogues of seismic source parameters. Specifically, the aim of this work is to develop some methods to determine hypocentre location and temporal evolution of seismic sources based on regional and teleseismic observations more accurately, and investigate the potential of these methods to be integrated in near real-time processing. To achieve this, a location method that considers several events simultaneously and improves the relative location accuracy among nearby events has been provided. This method tries to reduce the biasing effects of the lateral velocity heterogeneities (or equivalently to compensate for limitations and inaccuracies in the assumed velocity model) by calculating a set of timing corrections for each seismic station. The systematic errors introduced into the locations by the inaccuracies in the assumed velocity structure can be corrected without explicitly solving for a velocity model. Application to sets of multiple earthquakes in complex tectonic environments with strongly heterogeneous structure such as subduction zones and plate boundary region demonstrate that this relocation process significantly improves the hypocentre locations compared to standard locations. To meet the computational demands of this location process, a new open-source software package has been developed that allows for efficient relocation of large-scale multiple seismic events using arrival time data. Upon that, a flexible location framework is provided which can be tailored to various application cases on local, regional, and global scales. The latest version of the software distribution including source codes, a user guide, an example data set, and a change history, is freely available to the community. The developed relocation algorithm has been modified slightly and then its performance in a simulated near real-time processing has been evaluated. It has been demonstrated that applying the proposed technique significantly reduces the bias in routine locations and enhance the ability to locate the lower magnitude events using only regional arrival data. Finally, to return to emphasis on global seismic monitoring, an inversion framework has been developed to determine the seismic source time function through direct waveform fitting of teleseismic recordings. The inversion technique can be systematically applied to moderate- size seismic events and has the potential to be performed in near real-time applications. It is exemplified by application to an abnormal seismic event; the 2017 North Korean nuclear explosion. The presented work and application case studies in this dissertation represent the first step in an effort to establish a framework for automatic, routine generation of reliable catalogues of seismic event locations and source time functions.}, language = {en} } @misc{CrisologoHeistermann2020, author = {Crisologo, Irene and Heistermann, Maik}, title = {Using ground radar overlaps to verify the retrieval of calibration bias estimates from spaceborne platforms}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {863}, issn = {1866-8372}, doi = {10.25932/publishup-45963}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459630}, pages = {17}, year = {2020}, abstract = {Many institutions struggle to tap into the potential of their large archives of radar reflectivity: these data are often affected by miscalibration, yet the bias is typically unknown and temporally volatile. Still, relative calibration techniques can be used to correct the measurements a posteriori. For that purpose, the usage of spaceborne reflectivity observations from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) platforms has become increasingly popular: the calibration bias of a ground radar (GR) is estimated from its average reflectivity difference to the spaceborne radar (SR). Recently, Crisologo et al. (2018) introduced a formal procedure to enhance the reliability of such estimates: each match between SR and GR observations is assigned a quality index, and the calibration bias is inferred as a quality-weighted average of the differences between SR and GR. The relevance of quality was exemplified for the Subic S-band radar in the Philippines, which is greatly affected by partial beam blockage. The present study extends the concept of quality-weighted averaging by accounting for path-integrated attenuation (PIA) in addition to beam blockage. This extension becomes vital for radars that operate at the C or X band. Correspondingly, the study setup includes a C-band radar that substantially overlaps with the S-band radar. Based on the extended quality-weighting approach, we retrieve, for each of the two ground radars, a time series of calibration bias estimates from suitable SR overpasses. As a result of applying these estimates to correct the ground radar observations, the consistency between the ground radars in the region of overlap increased substantially. Furthermore, we investigated if the bias estimates can be interpolated in time, so that ground radar observations can be corrected even in the absence of prompt SR overpasses. We found that a moving average approach was most suitable for that purpose, although limited by the absence of explicit records of radar maintenance operations.}, language = {en} } @article{CrisologoHeistermann2020, author = {Crisologo, Irene and Heistermann, Maik}, title = {Using ground radar overlaps to verify the retrieval of calibration bias estimates from spaceborne platforms}, series = {Atmospheric Measurement Techniques}, volume = {13}, journal = {Atmospheric Measurement Techniques}, number = {2}, publisher = {Copernicus Publications}, address = {G{\"o}ttingen}, issn = {1867-1381}, doi = {10.5194/amt-13-645-2020}, pages = {645 -- 659}, year = {2020}, abstract = {Many institutions struggle to tap into the potential of their large archives of radar reflectivity: these data are often affected by miscalibration, yet the bias is typically unknown and temporally volatile. Still, relative calibration techniques can be used to correct the measurements a posteriori. For that purpose, the usage of spaceborne reflectivity observations from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) platforms has become increasingly popular: the calibration bias of a ground radar (GR) is estimated from its average reflectivity difference to the spaceborne radar (SR). Recently, Crisologo et al. (2018) introduced a formal procedure to enhance the reliability of such estimates: each match between SR and GR observations is assigned a quality index, and the calibration bias is inferred as a quality-weighted average of the differences between SR and GR. The relevance of quality was exemplified for the Subic S-band radar in the Philippines, which is greatly affected by partial beam blockage. The present study extends the concept of quality-weighted averaging by accounting for path-integrated attenuation (PIA) in addition to beam blockage. This extension becomes vital for radars that operate at the C or X band. Correspondingly, the study setup includes a C-band radar that substantially overlaps with the S-band radar. Based on the extended quality-weighting approach, we retrieve, for each of the two ground radars, a time series of calibration bias estimates from suitable SR overpasses. As a result of applying these estimates to correct the ground radar observations, the consistency between the ground radars in the region of overlap increased substantially. Furthermore, we investigated if the bias estimates can be interpolated in time, so that ground radar observations can be corrected even in the absence of prompt SR overpasses. We found that a moving average approach was most suitable for that purpose, although limited by the absence of explicit records of radar maintenance operations.}, language = {en} } @phdthesis{Schuck2020, author = {Schuck, Bernhard}, title = {Geomechanical and petrological characterisation of exposed slip zones, Alpine Fault, New Zealand}, doi = {10.25932/publishup-44612}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446129}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 143}, year = {2020}, abstract = {The Alpine Fault is a large, plate-bounding, strike-slip fault extending along the north-western edge of the Southern Alps, South Island, New Zealand. It regularly accommodates large (MW > 8) earthquakes and has a high statistical probability of failure in the near future, i.e., is late in its seismic cycle. This pending earthquake and associated co-seismic landslides are expected to cause severe infrastructural damage that would affect thousands of people, so it presents a substantial geohazard. The interdisciplinary study presented here aims to characterise the fault zone's 4D (space and time) architecture, because this provides information about its rheological properties that will enable better assessment of the hazard the fault poses. The studies undertaken include field investigations of principal slip zone fault gouges exposed along strike of the fault, and subsequent laboratory analyses of these outcrop and additional borehole samples. These observations have provided new information on (I) characteristic microstructures down to the nanoscale that indicate which deformation mechanisms operated within the rocks, (II) mineralogical information that constrains the fault's geomechanical behaviour and (III) geochemical compositional information that allows the influence of fluid- related alteration processes on material properties to be unraveled. Results show that along-strike variations of fault rock properties such as microstructures and mineralogical composition are minor and / or do not substantially influence fault zone architecture. They furthermore provide evidence that the architecture of the fault zone, particularly its fault core, is more complex than previously considered, and also more complex than expected for this sort of mature fault cutting quartzofeldspathic rocks. In particular our results strongly suggest that the fault has more than one principal slip zone, and that these form an anastomosing network extending into the basement below the cover of Quaternary sediments. The observations detailed in this thesis highlight that two major processes, (I) cataclasis and (II) authigenic mineral formation, are the major controls on the rheology of the Alpine Fault. The velocity-weakening behaviour of its fault gouge is favoured by abundant nanoparticles promoting powder lubrication and grain rolling rather than frictional sliding. Wall-rock fragmentation is accompanied by co-seismic, fluid-assisted dilatancy that is recorded by calcite cementation. This mineralisation, along with authigenic formation of phyllosilicates, quickly alters the petrophysical fault zone properties after each rupture, restoring fault competency. Dense networks of anastomosing and mutually cross-cutting calcite veins and intensively reworked gouge matrix demonstrate that strain repeatedly localised within the narrow fault gouge. Abundantly undeformed euhedral chlorite crystallites and calcite veins cross-cutting both fault gouge and gravels that overlie basement on the fault's footwall provide evidence that the processes of authigenic phyllosilicate growth, fluid-assisted dilatancy and associated fault healing are processes active particularly close to the Earth's surface in this fault zone. Exposed Alpine Fault rocks are subject to intense weathering as direct consequence of abundant orogenic rainfall associated with the fault's location at the base of the Southern Alps. Furthermore, fault rock rheology is substantially affected by shallow-depth conditions such as the juxtaposition of competent hanging wall fault rocks on poorly consolidated footwall sediments. This means microstructural, mineralogical and geochemical properties of the exposed fault rocks may differ substantially from those at deeper levels, and thus are not characteristic of the majority of the fault rocks' history. Examples are (I) frictionally weak smectites found within the fault gouges being artefacts formed at temperature conditions, and imparting petrophysical properties that are not typical for most of fault rocks of the Alpine Fault, (II) grain-scale dissolution resulting from subaerial weathering rather than deformation by pressure-solution processes and (III) fault gouge geometries being more complex than expected for deeper counterparts. The methodological approaches deployed in analyses of this, and other fault zones, and the major results of this study are finally discussed in order to contextualize slip zone investigations of fault zones and landslides. Like faults, landslides are major geohazards, which highlights the importance of characterising their geomechanical properties. Similarities between faults, especially those exposed to subaerial processes, and landslides, include mineralogical composition and geomechanical behaviour. Together, this ensures failure occurs predominantly by cataclastic processes, although aseismic creep promoted by weak phyllosilicates is not uncommon. Consequently, the multidisciplinary approach commonly used to investigate fault zones may contribute to increase the understanding of landslide faulting processes and the assessment of their hazard potential.}, language = {en} } @phdthesis{Purinton2020, author = {Purinton, Benjamin}, title = {Remote sensing applications to earth surface processes in the Eastern Central Andes}, doi = {10.25932/publishup-44592}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445926}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 134}, year = {2020}, abstract = {Geomorphology seeks to characterize the forms, rates, and magnitudes of sediment and water transport that sculpt landscapes. This is generally referred to as earth surface processes, which incorporates the influence of biologic (e.g., vegetation), climatic (e.g., rainfall), and tectonic (e.g., mountain uplift) factors in dictating the transport of water and eroded material. In mountains, high relief and steep slopes combine with strong gradients in rainfall and vegetation to create dynamic expressions of earth surface processes. This same rugged topography presents challenges in data collection and process measurement, where traditional techniques involving detailed observations or physical sampling are difficult to apply at the scale of entire catchments. Herein lies the utility of remote sensing. Remote sensing is defined as any measurement that does not disturb the natural environment, typically via acquisition of images in the visible- to radio-wavelength range of the electromagnetic spectrum. Remote sensing is an especially attractive option for measuring earth surface processes, because large areal measurements can be acquired at much lower cost and effort than traditional methods. These measurements cover not only topographic form, but also climatic and environmental metrics, which are all intertwined in the study of earth surface processes. This dissertation uses remote sensing data ranging from handheld camera-based photo surveying to spaceborne satellite observations to measure the expressions, rates, and magnitudes of earth surface processes in high-mountain catchments of the Eastern Central Andes in Northwest Argentina. This work probes the limits and caveats of remote sensing data and techniques applied to geomorphic research questions, and presents important progress at this disciplinary intersection.}, language = {en} }