@misc{SchoenfeldtPanekWinocuretal.2020, author = {Schoenfeldt, Elisabeth and Panek, Tomas and Winocur, Diego and Silhan, Karel and Korup, Oliver}, title = {Corrigendum to: postglacial Patagonian mass movement}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {373}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2020.107471}, pages = {1}, year = {2020}, language = {en} } @article{EsfahaniGholamiOhrnberger2020, author = {Esfahani, Reza Dokht Dolatabadi and Gholami, Ali and Ohrnberger, Matthias}, title = {An inexact augmented Lagrangian method for nonlinear dispersion-curve inversion using Dix-type global linear approximation}, series = {Geophysics : a journal of general and applied geophysics}, volume = {85}, journal = {Geophysics : a journal of general and applied geophysics}, number = {3}, publisher = {GeoScienceWorld}, address = {Tulsa, Okla.}, issn = {0016-8033}, doi = {10.1190/geo2019-0717.1}, pages = {EN77 -- EN85}, year = {2020}, abstract = {Dispersion-curve inversion of Rayleigh waves to infer subsurface shear-wave velocity is a long-standing problem in seismology. Due to nonlinearity and ill-posedness, sophisticated regularization techniques are required to solve the problem for a stable velocity model. We have formulated the problem as a minimization problem with nonlinear operator constraint and then solve it by using an inexact augmented Lagrangian method, taking advantage of the Haney-Tsai Dix-type relation (a global linear approximation of the nonlinear forward operator). This replaces the original regularized nonlinear problem with iterative minimization of a more tractable regularized linear problem followed by a nonlinear update of the phase velocity (data) in which the update can be performed accurately with any forward modeling engine, for example, the finite-element method. The algorithm allows discretizing the medium with thin layers (for the finite-element method) and thus omitting the layer thicknesses from the unknowns and also allows incorporating arbitrary regularizations to shape the desired velocity model. In this research, we use total variation regularization to retrieve the shear-wave velocity model. We use two synthetic and two real data examples to illustrate the performance of the inversion algorithm with total variation regularization. We find that the method is fast and stable, and it converges to the solution of the original nonlinear problem.}, language = {en} } @misc{WangOswaldGraeffetal.2020, author = {Wang, Wei-shi and Oswald, Sascha and Gr{\"a}ff, Thomas and Lensing, Hermann-Josef and Liu, Tie and Strasser, Daniel and Munz, Matthias}, title = {Correction: Impact of river reconstruction on groundwater flow during bank filtration assessed by transient three-dimensional modelling of flow and heat transport. - Hydrogeology Journal. - Berlin: Springer. - 28 (2020) , S. 723. - https://doi.org/10.1007/s10040-019-02063-3}, series = {Hydrogeology journal : official journal of the International Association of Hydrogeologists}, volume = {28}, journal = {Hydrogeology journal : official journal of the International Association of Hydrogeologists}, number = {7}, publisher = {Springer}, address = {Berlin ; Heidelberg ; New York, NY}, issn = {1431-2174}, doi = {10.1007/s10040-020-02221-y}, pages = {2633 -- 2634}, year = {2020}, language = {en} } @misc{BenDorNeugebauerEnzeletal.2020, author = {Ben Dor, Yoav and Neugebauer, Ina and Enzel, Yehouda and Schwab, Markus J. and Tjallingii, Rik and Erel, Yigal and Brauer, Achim}, title = {Reply to comment on: Ben Dor, Yoav et al. : Varves of the Dead Sea sedimentary record. - In: Quaternary science reviews : the international multidisciplinary research and review journal. - 215 (2019), S. 173 - 184. - (ISSN: 0277-3791). - https://doi.org/10.1016/j.quascirev.2019.04.011}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {231}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2019.106063}, pages = {5}, year = {2020}, abstract = {In the comment on "Varves of the Dead Sea sedimentary record." Quaternary Science Reviews 215 (Ben Dor et al., 2019): 173-184. by R. Bookman, two recently published papers are suggested to prove that the interpretation of the laminated sedimentary sequence of the Dead Sea, deposited mostly during MIS2 and Holocene pluvials, as annual deposits (i.e., varves) is wrong. In the following response, we delineate several lines of evidence which coalesce to demonstrate that based on the vast majority of evidence, including some of the evidence provided in the comment itself, the interpretation of these sediments as varves is the more likely scientific conclusion. We further discuss the evidence brought up in the comment and its irrelevance and lack of robustness for addressing the question under discussion.}, language = {en} } @misc{KumarHesseRaoetal.2020, author = {Kumar, Rohini and Hesse, Fabienne and Rao, P. Srinivasa and Musolff, Andreas and Jawitz, James and Sarrazin, Francois and Samaniego, Luis and Fleckenstein, Jan H. and Rakovec, Oldrich and Thober, S. and Attinger, Sabine}, title = {Strong hydroclimatic controls on vulnerability to subsurface nitrate contamination across Europe}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-54987}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549875}, pages = {12}, year = {2020}, abstract = {Subsurface contamination due to excessive nutrient surpluses is a persistent and widespread problem in agricultural areas across Europe. The vulnerability of a particular location to pollution from reactive solutes, such as nitrate, is determined by the interplay between hydrologic transport and biogeochemical transformations. Current studies on the controls of subsurface vulnerability do not consider the transient behaviour of transport dynamics in the root zone. Here, using state-of-the-art hydrologic simulations driven by observed hydroclimatic forcing, we demonstrate the strong spatiotemporal heterogeneity of hydrologic transport dynamics and reveal that these dynamics are primarily controlled by the hydroclimatic gradient of the aridity index across Europe. Contrasting the space-time dynamics of transport times with reactive timescales of denitrification in soil indicate that similar to 75\% of the cultivated areas across Europe are potentially vulnerable to nitrate leaching for at least onethird of the year. We find that neglecting the transient nature of transport and reaction timescale results in a great underestimation of the extent of vulnerable regions by almost 50\%. Therefore, future vulnerability and risk assessment studies must account for the transient behaviour of transport and biogeochemical transformation processes.}, language = {en} } @article{KumarHesseRaoetal.2020, author = {Kumar, Rohini and Hesse, Fabienne and Rao, P. Srinivasa and Musolff, Andreas and Jawitz, James and Sarrazin, Francois and Samaniego, Luis and Fleckenstein, Jan H. and Rakovec, Oldrich and Thober, S. and Attinger, Sabine}, title = {Strong hydroclimatic controls on vulnerability to subsurface nitrate contamination across Europe}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group UK}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-020-19955-8}, pages = {1 -- 10}, year = {2020}, abstract = {Subsurface contamination due to excessive nutrient surpluses is a persistent and widespread problem in agricultural areas across Europe. The vulnerability of a particular location to pollution from reactive solutes, such as nitrate, is determined by the interplay between hydrologic transport and biogeochemical transformations. Current studies on the controls of subsurface vulnerability do not consider the transient behaviour of transport dynamics in the root zone. Here, using state-of-the-art hydrologic simulations driven by observed hydroclimatic forcing, we demonstrate the strong spatiotemporal heterogeneity of hydrologic transport dynamics and reveal that these dynamics are primarily controlled by the hydroclimatic gradient of the aridity index across Europe. Contrasting the space-time dynamics of transport times with reactive timescales of denitrification in soil indicate that similar to 75\% of the cultivated areas across Europe are potentially vulnerable to nitrate leaching for at least onethird of the year. We find that neglecting the transient nature of transport and reaction timescale results in a great underestimation of the extent of vulnerable regions by almost 50\%. Therefore, future vulnerability and risk assessment studies must account for the transient behaviour of transport and biogeochemical transformation processes.}, language = {en} } @article{PalmerGregoryBaggeetal.2020, author = {Palmer, Matthew D. and Gregory, Jonathan and Bagge, Meike and Calvert, Daley and Hagedoorn, Jan Marius and Howard, Tom and Klemann, Volker and Lowe, Jason A. and Roberts, Chris and Slangen, Aimee B. A. and Spada, Giorgio}, title = {Exploring the drivers of global and local sea-level change over the 21st century and beyond}, series = {Earth's future}, volume = {8}, journal = {Earth's future}, number = {9}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2328-4277}, doi = {10.1029/2019EF001413}, pages = {1 -- 25}, year = {2020}, abstract = {We present a new set of global and local sea-level projections at example tide gauge locations under the RCP2.6, RCP4.5, and RCP8.5 emissions scenarios. Compared to the CMIP5-based sea-level projections presented in IPCC AR5, we introduce a number of methodological innovations, including (i) more comprehensive treatment of uncertainties, (ii) direct traceability between global and local projections, and (iii) exploratory extended projections to 2300 based on emulation of individual CMIP5 models. Combining the projections with observed tide gauge records, we explore the contribution to total variance that arises from sea-level variability, different emissions scenarios, and model uncertainty. For the period out to 2300 we further breakdown the model uncertainty by sea-level component and consider the dependence on geographic location, time horizon, and emissions scenario. Our analysis highlights the importance of local variability for sea-level change in the coming decades and the potential value of annual-to-decadal predictions of local sea-level change. Projections to 2300 show a substantial degree of committed sea-level rise under all emissions scenarios considered and highlight the reduced future risk associated with RCP2.6 and RCP4.5 compared to RCP8.5. Tide gauge locations can show large ( > 50\%) departures from the global average, in some cases even reversing the sign of the change. While uncertainty in projections of the future Antarctic ice dynamic response tends to dominate post-2100, we see substantial differences in the breakdown of model variance as a function of location, time scale, and emissions scenario.}, language = {en} } @misc{PalmerGregoryBaggeetal.2020, author = {Palmer, Matthew D. and Gregory, Jonathan and Bagge, Meike and Calvert, Daley and Hagedoorn, Jan Marius and Howard, Tom and Klemann, Volker and Lowe, Jason A. and Roberts, Chris and Slangen, Aimee B. A. and Spada, Giorgio}, title = {Exploring the drivers of global and local sea-level change over the 21st century and beyond}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {9}, issn = {1866-8372}, doi = {10.25932/publishup-54988}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549881}, pages = {27}, year = {2020}, abstract = {We present a new set of global and local sea-level projections at example tide gauge locations under the RCP2.6, RCP4.5, and RCP8.5 emissions scenarios. Compared to the CMIP5-based sea-level projections presented in IPCC AR5, we introduce a number of methodological innovations, including (i) more comprehensive treatment of uncertainties, (ii) direct traceability between global and local projections, and (iii) exploratory extended projections to 2300 based on emulation of individual CMIP5 models. Combining the projections with observed tide gauge records, we explore the contribution to total variance that arises from sea-level variability, different emissions scenarios, and model uncertainty. For the period out to 2300 we further breakdown the model uncertainty by sea-level component and consider the dependence on geographic location, time horizon, and emissions scenario. Our analysis highlights the importance of local variability for sea-level change in the coming decades and the potential value of annual-to-decadal predictions of local sea-level change. Projections to 2300 show a substantial degree of committed sea-level rise under all emissions scenarios considered and highlight the reduced future risk associated with RCP2.6 and RCP4.5 compared to RCP8.5. Tide gauge locations can show large ( > 50\%) departures from the global average, in some cases even reversing the sign of the change. While uncertainty in projections of the future Antarctic ice dynamic response tends to dominate post-2100, we see substantial differences in the breakdown of model variance as a function of location, time scale, and emissions scenario.}, language = {en} } @misc{PilzCottonRazafindrakotoetal.2020, author = {Pilz, Marco and Cotton, Fabrice and Razafindrakoto, Hoby Njara Tendrisoa and Weatherill, Graeme and Spies, Thomas}, title = {Regional broad-band ground-shaking modelling over extended and thick sedimentary basins}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-57165}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571655}, pages = {25}, year = {2020}, abstract = {The simulation of broad-band (0.1 to 10 + Hz) ground-shaking over deep and spatially extended sedimentary basins at regional scales is challenging. We evaluate the ground-shaking of a potential M 6.5 earthquake in the southern Lower Rhine Embayment, one of the most important areas of earthquake recurrence north of the Alps, close to the city of Cologne in Germany. In a first step, information from geological investigations, seismic experiments and boreholes is combined for deriving a harmonized 3D velocity and attenuation model of the sedimentary layers. Three alternative approaches are then applied and compared to evaluate the impact of the sedimentary cover on ground-motion amplification. The first approach builds on existing response spectra ground-motion models whose amplification factors empirically take into account the influence of the sedimentary layers through a standard parameterization. In the second approach, site-specific 1D amplification functions are computed from the 3D basin model. Using a random vibration theory approach, we adjust the empirical response spectra predicted for soft rock conditions by local site amplification factors: amplifications and associated ground-motions are predicted both in the Fourier and in the response spectra domain. In the third approach, hybrid physics-based ground-motion simulations are used to predict time histories for soft rock conditions which are subsequently modified using the 1D site-specific amplification functions computed in method 2. For large distances and at short periods, the differences between the three approaches become less notable due to the significant attenuation of the sedimentary layers. At intermediate and long periods, generic empirical ground-motion models provide lower levels of amplification from sedimentary soils compared to methods taking into account site-specific 1D amplification functions. In the near-source region, hybrid physics-based ground-motions models illustrate the potentially large variability of ground-motion due to finite source effects.}, language = {en} } @misc{KloseChaparroSchillingetal.2020, author = {Klose, Tim and Chaparro, M. Carme and Schilling, Frank and Butscher, Christoph and Klumbach, Steffen and Blum, Philipp}, title = {Fluid flow simulations of a large-scale borehole leakage experiment}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-57353}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-573539}, pages = {23}, year = {2020}, abstract = {Borehole leakage is a common and complex issue. Understanding the fluid flow characteristics of a cemented area inside a borehole is crucial to monitor and quantify the wellbore integrity as well as to find solutions to minimise existing leakages. In order to improve our understanding of the flow behaviour of cemented boreholes, we investigated experimental data of a large-scale borehole leakage tests by means of numerical modelling using three different conceptual models. The experiment was performed with an autoclave system consisting of two vessels bridged by a cement-filled casing. After a partial bleed-off at the well-head, a sustained casing pressure was observed due to fluid flow through the cementsteel composite. The aim of our simulations is to investigate and quantify the permeability of the cement-steel composite. From our model results, we conclude that the flow occurred along a preferential flow path at the cement-steel interface. Thus, the inner part of the cement core was impermeable during the duration of the experiment. The preferential flow path can be described as a highly permeable and highly porous area with an aperture of about 5 mu m and a permeability of 3 . 10(-12) m(2) (3 Darcy). It follows that the fluid flow characteristics of a cemented area inside a borehole cannot be described using one permeability value for the entire cement-steel composite. Furthermore, it can be concluded that the quality of the cement and the filling process regarding the cement-steel interface is crucial to minimize possible well leakages.}, language = {en} } @misc{RodriguezPicedaScheckWenderothGomezDacaletal.2020, author = {Rodriguez Piceda, Constanza and Scheck Wenderoth, Magdalena and Gomez Dacal, Maria Laura and Bott, Judith and Prezzi, Claudia Beatriz and Strecker, Manfred}, title = {Lithospheric density structure of the southern Central Andes constrained by 3D data-integrative gravity modelling}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {7}, issn = {1866-8372}, doi = {10.25932/publishup-56262}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-562628}, pages = {29}, year = {2020}, abstract = {The southern Central Andes (SCA) (between 27 degrees S and 40 degrees S) is bordered to the west by the convergent margin between the continental South American Plate and the oceanic Nazca Plate. The subduction angle along this margin is variable, as is the deformation of the upper plate. Between 33 degrees S and 35 degrees S, the subduction angle of the Nazca plate increases from sub-horizontal (< 5 degrees) in the north to relatively steep (similar to 30 degrees) in the south. The SCA contain inherited lithological and structural heterogeneities within the crust that have been reactivated and overprinted since the onset of subduction and associated Cenozoic deformation within the Andean orogen. The distribution of the deformation within the SCA has often been attributed to the variations in the subduction angle and the reactivation of these inherited heterogeneities. However, the possible influence that the thickness and composition of the continental crust have had on both short-term and long-term deformation of the SCA is yet to be thoroughly investigated. For our investigations, we have derived density distributions and thicknesses for various layers that make up the lithosphere and evaluated their relationships with tectonic events that occurred over the history of the Andean orogeny and, in particular, investigated the short- and long-term nature of the present-day deformation processes. We established a 3D model of lithosphere beneath the orogen and its foreland (29 degrees S-39 degrees S) that is consistent with currently available geological and geophysical data, including the gravity data. The modelled crustal configuration and density distribution reveal spatial relationships with different tectonic domains: the crystalline crust in the orogen (the magmatic arc and the main orogenic wedge) is thicker (similar to 55 km) and less dense (similar to 2900 kg/m(3)) than in the forearc (similar to 35 km, similar to 2975 kg/m(3)) and foreland (similar to 30 km, similar to 3000 kg/m(3)). Crustal thickening in the orogen probably occurred as a result of stacking of low-density domains, while density and thickness variations beneath the forearc and foreland most likely reflect differences in the tectonic evolution of each area following crustal accretion. No clear spatial relationship exists between the density distribution within the lithosphere and previously proposed boundaries of crustal terranes accreted during the early Paleozoic. Areas with ongoing deformation show a spatial correlation with those areas that have the highest topographic gradients and where there are abrupt changes in the average crustal-density contrast. This suggests that the short-term deformation within the interior of the Andean orogen and its foreland is fundamentally influenced by the crustal composition and the relative thickness of different crustal layers. A thicker, denser, and potentially stronger lithosphere beneath the northern part of the SCA foreland is interpreted to have favoured a strong coupling between the Nazca and South American plates, facilitating the development of a sub-horizontal slab.}, language = {en} } @article{JonesArpGrosseetal.2020, author = {Jones, Benjamin M. and Arp, Christopher D. and Grosse, Guido and Nitze, Ingmar and Lara, Mark J. and Whitman, Matthew S. and Farquharson, Louise M. and Kanevskiy, Mikhail and Parsekian, Andrew D. and Breen, Amy L. and Ohara, Nori and Rangel, Rodrigo Correa and Hinkel, Kenneth M.}, title = {Identifying historical and future potential lake drainage events on the western Arctic coastal plain of Alaska}, series = {Permafrost and Periglacial Processes}, volume = {31}, journal = {Permafrost and Periglacial Processes}, number = {1}, publisher = {Wiley}, address = {New York}, doi = {10.1002/ppp.2038}, pages = {110 -- 127}, year = {2020}, abstract = {Arctic lakes located in permafrost regions are susceptible to catastrophic drainage. In this study, we reconstructed historical lake drainage events on the western Arctic Coastal Plain of Alaska between 1955 and 2017 using USGS topographic maps, historical aerial photography (1955), and Landsat Imagery (ca. 1975, ca. 2000, and annually since 2000). We identified 98 lakes larger than 10 ha that partially (>25\% of area) or completely drained during the 62-year period. Decadal-scale lake drainage rates progressively declined from 2.0 lakes/yr (1955-1975), to 1.6 lakes/yr (1975-2000), and to 1.2 lakes/yr (2000-2017) in the ~30,000-km(2) study area. Detailed Landsat trend analysis between 2000 and 2017 identified two years, 2004 and 2006, with a cluster (five or more) of lake drainages probably associated with bank overtopping or headward erosion. To identify future potential lake drainages, we combined the historical lake drainage observations with a geospatial dataset describing lake elevation, hydrologic connectivity, and adjacent lake margin topographic gradients developed with a 5-m-resolution digital surface model. We identified ~1900 lakes likely to be prone to drainage in the future. Of the 20 lakes that drained in the most recent study period, 85\% were identified in this future lake drainage potential dataset. Our assessment of historical lake drainage magnitude, mechanisms and pathways, and identification of potential future lake drainages provides insights into how arctic lowland landscapes may change and evolve in the coming decades to centuries.}, language = {en} } @misc{JonesArpGrosseetal.2020, author = {Jones, Benjamin M. and Arp, Christopher D. and Grosse, Guido and Nitze, Ingmar and Lara, Mark J. and Whitman, Matthew S. and Farquharson, Louise M. and Kanevskiy, Mikhail and Parsekian, Andrew D. and Breen, Amy L. and Ohara, Nori and Rangel, Rodrigo Correa and Hinkel, Kenneth M.}, title = {Identifying historical and future potential lake drainage events on the western Arctic coastal plain of Alaska}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-61043}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-610435}, pages = {20}, year = {2020}, abstract = {Arctic lakes located in permafrost regions are susceptible to catastrophic drainage. In this study, we reconstructed historical lake drainage events on the western Arctic Coastal Plain of Alaska between 1955 and 2017 using USGS topographic maps, historical aerial photography (1955), and Landsat Imagery (ca. 1975, ca. 2000, and annually since 2000). We identified 98 lakes larger than 10 ha that partially (>25\% of area) or completely drained during the 62-year period. Decadal-scale lake drainage rates progressively declined from 2.0 lakes/yr (1955-1975), to 1.6 lakes/yr (1975-2000), and to 1.2 lakes/yr (2000-2017) in the ~30,000-km(2) study area. Detailed Landsat trend analysis between 2000 and 2017 identified two years, 2004 and 2006, with a cluster (five or more) of lake drainages probably associated with bank overtopping or headward erosion. To identify future potential lake drainages, we combined the historical lake drainage observations with a geospatial dataset describing lake elevation, hydrologic connectivity, and adjacent lake margin topographic gradients developed with a 5-m-resolution digital surface model. We identified ~1900 lakes likely to be prone to drainage in the future. Of the 20 lakes that drained in the most recent study period, 85\% were identified in this future lake drainage potential dataset. Our assessment of historical lake drainage magnitude, mechanisms and pathways, and identification of potential future lake drainages provides insights into how arctic lowland landscapes may change and evolve in the coming decades to centuries.}, language = {en} } @misc{FosterGarvieWeissetal.2020, author = {Foster, William J. and Garvie, Christopher L. and Weiss, Anna M. and Muscente, A. Drew and Aberhan, Martin and Counts, John W. and Martindale, Rowan C.}, title = {Resilience of marine invertebrate communities during the early Cenozoic hyperthermals}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51601}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516011}, pages = {13}, year = {2020}, abstract = {The hyperthermal events of the Cenozoic, including the Paleocene-Eocene Thermal Maximum, provide an opportunity to investigate the potential effects of climate warming on marine ecosystems. Here, we examine the shallow benthic marine communities preserved in the late Cretaceous to Eocene strata on the Gulf Coastal Plain (United States). In stark contrast to the ecological shifts following the end-Cretaceous mass extinction, our data show that the early Cenozoic hyperthermals did not have a long-term impact on the generic diversity nor composition of the Gulf Coastal Plain molluscan communities. We propose that these communities were resilient to climate change because molluscs are better adapted to high temperatures than other taxa, as demonstrated by their physiology and evolutionary history. In terms of resilience, these communities differ from other shallow-water carbonate ecosystems, such as reef communities, which record significant changes during the early Cenozoic hyperthermals. These data highlight the strikingly different responses of community types, i.e., the almost imperceptible response of molluscs versus the marked turnover of foraminifera and reef faunas. The impact on molluscan communities may have been low because detrimental conditions did not devastate the entire Gulf Coastal Plain, allowing molluscs to rapidly recolonise vacated areas once harsh environmental conditions ameliorated.}, language = {en} } @article{FosterGarvieWeissetal.2020, author = {Foster, William J. and Garvie, Christopher L. and Weiss, Anna M. and Muscente, A. Drew and Aberhan, Martin and Counts, John W. and Martindale, Rowan C.}, title = {Resilience of marine invertebrate communities during the early Cenozoic hyperthermals}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-58986-5}, pages = {1 -- 11}, year = {2020}, abstract = {The hyperthermal events of the Cenozoic, including the Paleocene-Eocene Thermal Maximum, provide an opportunity to investigate the potential effects of climate warming on marine ecosystems. Here, we examine the shallow benthic marine communities preserved in the late Cretaceous to Eocene strata on the Gulf Coastal Plain (United States). In stark contrast to the ecological shifts following the end-Cretaceous mass extinction, our data show that the early Cenozoic hyperthermals did not have a long-term impact on the generic diversity nor composition of the Gulf Coastal Plain molluscan communities. We propose that these communities were resilient to climate change because molluscs are better adapted to high temperatures than other taxa, as demonstrated by their physiology and evolutionary history. In terms of resilience, these communities differ from other shallow-water carbonate ecosystems, such as reef communities, which record significant changes during the early Cenozoic hyperthermals. These data highlight the strikingly different responses of community types, i.e., the almost imperceptible response of molluscs versus the marked turnover of foraminifera and reef faunas. The impact on molluscan communities may have been low because detrimental conditions did not devastate the entire Gulf Coastal Plain, allowing molluscs to rapidly recolonise vacated areas once harsh environmental conditions ameliorated.}, language = {en} } @article{TardifBecquetFluteauDonnadieuetal.2020, author = {Tardif-Becquet, Delphine and Fluteau, Fr{\´e}d{\´e}ric and Donnadieu, Yannick and Le Hir, Guillaume and Ladant, Jean-Baptiste and Sepulchre, Pierre and Licht, Alexis and Poblete, Fernando and Dupont-Nivet, Guillaume}, title = {The origin of Asian monsoons}, series = {Climate of the Past}, volume = {16}, journal = {Climate of the Past}, number = {3}, publisher = {Copernicus Publications}, address = {G{\"o}ttingen}, issn = {1814-9332}, doi = {10.5194/cp-16-847-2020}, pages = {847 -- 865}, year = {2020}, abstract = {The Cenozoic inception and development of the Asian monsoons remain unclear and have generated much debate, as several hypotheses regarding circulation patterns at work in Asia during the Eocene have been proposed in the few last decades. These include (a) the existence of modern-like monsoons since the early Eocene; (b) that of a weak South Asian monsoon (SAM) and little to no East Asian monsoon (EAM); or (c) a prevalence of the Intertropical Convergence Zone (ITCZ) migrations, also referred to as Indonesian-Australian monsoon (I-AM). As SAM and EAM are supposed to have been triggered or enhanced primarily by Asian palaeogeographic changes, their possible inception in the very dynamic Eocene palaeogeographic context remains an open question, both in the modelling and field-based communities. We investigate here Eocene Asian climate conditions using the IPSL-CM5A2 (Sepulchre et al., 2019) earth system model and revised palaeogeographies. Our Eocene climate simulation yields atmospheric circulation patterns in Asia substantially different from modern conditions. A large high-pressure area is simulated over the Tethys ocean, which generates intense low tropospheric winds blowing southward along the western flank of the proto-Himalayan-Tibetan plateau (HTP) system. This low-level wind system blocks, to latitudes lower than 10 degrees N, the migration of humid and warm air masses coming from the Indian Ocean. This strongly contrasts with the modern SAM, during which equatorial air masses reach a latitude of 20-25 degrees N over India and southeastern China. Another specific feature of our Eocene simulation is the widespread subsidence taking place over northern India in the midtroposphere (around 5000 m), preventing deep convective updraught that would transport water vapour up to the condensation level. Both processes lead to the onset of a broad arid region located over northern India and over the HTP. More humid regions of high seasonality in precipitation encircle this arid area, due to the prevalence of the Intertropical Convergence Zone (ITCZ) migrations (or Indonesian-Australian monsoon, I-AM) rather than monsoons. Although the existence of this central arid region may partly result from the specifics of our simulation (model dependence and palaeogeographic uncertainties) and has yet to be confirmed by proxy records, most of the observational evidence for Eocene monsoons are located in the highly seasonal transition zone between the arid area and the more humid surroundings. We thus suggest that a zonal arid climate prevailed over Asia before the initiation of monsoons that most likely occurred following Eocene palaeogeographic changes. Our results also show that precipitation seasonality should be used with caution to infer the presence of a monsoonal circulation and that the collection of new data in this arid area is of paramount importance to allow the debate to move forward.}, language = {en} } @misc{TardifBecquetFluteauDonnadieuetal.2020, author = {Tardif-Becquet, Delphine and Fluteau, Fr{\´e}d{\´e}ric and Donnadieu, Yannick and Le Hir, Guillaume and Ladant, Jean-Baptiste and Sepulchre, Pierre and Licht, Alexis and Poblete, Fernando and Dupont-Nivet, Guillaume}, title = {The origin of Asian monsoons}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1436}, issn = {1866-8372}, doi = {10.25932/publishup-51677}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516770}, pages = {21}, year = {2020}, abstract = {The Cenozoic inception and development of the Asian monsoons remain unclear and have generated much debate, as several hypotheses regarding circulation patterns at work in Asia during the Eocene have been proposed in the few last decades. These include (a) the existence of modern-like monsoons since the early Eocene; (b) that of a weak South Asian monsoon (SAM) and little to no East Asian monsoon (EAM); or (c) a prevalence of the Intertropical Convergence Zone (ITCZ) migrations, also referred to as Indonesian-Australian monsoon (I-AM). As SAM and EAM are supposed to have been triggered or enhanced primarily by Asian palaeogeographic changes, their possible inception in the very dynamic Eocene palaeogeographic context remains an open question, both in the modelling and field-based communities. We investigate here Eocene Asian climate conditions using the IPSL-CM5A2 (Sepulchre et al., 2019) earth system model and revised palaeogeographies. Our Eocene climate simulation yields atmospheric circulation patterns in Asia substantially different from modern conditions. A large high-pressure area is simulated over the Tethys ocean, which generates intense low tropospheric winds blowing southward along the western flank of the proto-Himalayan-Tibetan plateau (HTP) system. This low-level wind system blocks, to latitudes lower than 10 degrees N, the migration of humid and warm air masses coming from the Indian Ocean. This strongly contrasts with the modern SAM, during which equatorial air masses reach a latitude of 20-25 degrees N over India and southeastern China. Another specific feature of our Eocene simulation is the widespread subsidence taking place over northern India in the midtroposphere (around 5000 m), preventing deep convective updraught that would transport water vapour up to the condensation level. Both processes lead to the onset of a broad arid region located over northern India and over the HTP. More humid regions of high seasonality in precipitation encircle this arid area, due to the prevalence of the Intertropical Convergence Zone (ITCZ) migrations (or Indonesian-Australian monsoon, I-AM) rather than monsoons. Although the existence of this central arid region may partly result from the specifics of our simulation (model dependence and palaeogeographic uncertainties) and has yet to be confirmed by proxy records, most of the observational evidence for Eocene monsoons are located in the highly seasonal transition zone between the arid area and the more humid surroundings. We thus suggest that a zonal arid climate prevailed over Asia before the initiation of monsoons that most likely occurred following Eocene palaeogeographic changes. Our results also show that precipitation seasonality should be used with caution to infer the presence of a monsoonal circulation and that the collection of new data in this arid area is of paramount importance to allow the debate to move forward.}, language = {en} } @misc{LehrLischeid2020, author = {Lehr, Christian and Lischeid, Gunnar}, title = {Efficient screening of groundwater head monitoring data for anthropogenic effects and measurement errors}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-51199}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-511992}, pages = {15}, year = {2020}, abstract = {Groundwater levels are monitored by environmental agencies to support the sustainable use of groundwater resources. For this purpose continuous and spatially comprehensive monitoring in high spatial and temporal resolution is desired. This leads to large datasets that have to be checked for quality and analysed to distinguish local anthropogenic influences from natural variability of the groundwater level dynamics at each well. Both technical problems with the measurements as well as local anthropogenic influences can lead to local anomalies in the hydrographs. We suggest a fast and efficient screening method for the identification of well-specific peculiarities in hydrographs of groundwater head monitoring networks. The only information required is a set of time series of groundwater heads all measured at the same instants of time. For each well of the monitoring network a reference hydrograph is calculated, describing expected "normal" behaviour at the respective well as is typical for the monitored region. The reference hydrograph is calculated by multiple linear regression of the observed hydrograph with the "stable" principal components (PCs) of a principal component analysis of all groundwater head series of the network as predictor variables. The stable PCs are those PCs which were found in a random subsampling procedure to be rather insensitive to the specific selection of the analysed observation wells, i.e. complete series, and to the specific selection of measurement dates. Hence they can be considered to be representative for the monitored region in the respective period. The residuals of the reference hydrograph describe local deviations from the normal behaviour. Peculiarities in the residuals allow the data to be checked for measurement errors and the wells with a possible anthropogenic influence to be identified. The approach was tested with 141 groundwater head time series from the state authority groundwater monitoring network in northeastern Germany covering the period from 1993 to 2013 at an approximately weekly frequency of measurement.}, language = {en} } @misc{SchuckSchleicherJanssenetal.2020, author = {Schuck, Bernhard and Schleicher, Anja Maria and Janssen, Christoph and Toy, Virginia G. and Dresen, Georg}, title = {Fault zone architecture of a large plate-bounding strike-slip fault}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51244}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-512441}, pages = {32}, year = {2020}, abstract = {New Zealand's Alpine Fault is a large, platebounding strike-slip fault, which ruptures in large (M-w > 8) earthquakes. We conducted field and laboratory analyses of fault rocks to assess its fault zone architecture. Results reveal that the Alpine Fault Zone has a complex geometry, comprising an anastomosing network of multiple slip planes that have accommodated different amounts of displacement. This contrasts with the previous perception of the Alpine Fault Zone, which assumes a single principal slip zone accommodated all displacement. This interpretation is supported by results of drilling projects and geophysical investigations. Furthermore, observations presented here show that the young, largely unconsolidated sediments that constitute the footwall at shallow depths have a significant influence on fault gouge rheological properties and structure.}, language = {en} } @article{SchuckSchleicherJanssenetal.2020, author = {Schuck, Bernhard and Schleicher, Anja Maria and Janssen, Christoph and Toy, Virginia G. and Dresen, Georg}, title = {Fault zone architecture of a large plate-bounding strike-slip fault}, series = {Solid Earth}, volume = {11}, journal = {Solid Earth}, number = {1}, publisher = {Copernicus Publications}, address = {G{\"o}ttingen}, issn = {1869-9529}, doi = {10.5194/se-11-95-2020}, pages = {95 -- 124}, year = {2020}, abstract = {New Zealand's Alpine Fault is a large, platebounding strike-slip fault, which ruptures in large (M-w > 8) earthquakes. We conducted field and laboratory analyses of fault rocks to assess its fault zone architecture. Results reveal that the Alpine Fault Zone has a complex geometry, comprising an anastomosing network of multiple slip planes that have accommodated different amounts of displacement. This contrasts with the previous perception of the Alpine Fault Zone, which assumes a single principal slip zone accommodated all displacement. This interpretation is supported by results of drilling projects and geophysical investigations. Furthermore, observations presented here show that the young, largely unconsolidated sediments that constitute the footwall at shallow depths have a significant influence on fault gouge rheological properties and structure.}, language = {en} } @misc{OzturkPittoreBehlingetal.2020, author = {Ozturk, Ugur and Pittore, Massimiliano and Behling, Robert and R{\"o}ßner, Sigrid and Andreani, Louis and Korup, Oliver}, title = {How robust are landslide susceptibility estimates?}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-54198}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-541980}, pages = {17}, year = {2020}, abstract = {Much of contemporary landslide research is concerned with predicting and mapping susceptibility to slope failure. Many studies rely on generalised linear models with environmental predictors that are trained with data collected from within and outside of the margins of mapped landslides. Whether and how the performance of these models depends on sample size, location, or time remains largely untested. We address this question by exploring the sensitivity of a multivariate logistic regression-one of the most widely used susceptibility models-to data sampled from different portions of landslides in two independent inventories (i.e. a historic and a multi-temporal) covering parts of the eastern rim of the Fergana Basin, Kyrgyzstan. We find that considering only areas on lower parts of landslides, and hence most likely their deposits, can improve the model performance by >10\% over the reference case that uses the entire landslide areas, especially for landslides of intermediate size. Hence, using landslide toe areas may suffice for this particular model and come in useful where landslide scars are vague or hidden in this part of Central Asia. The model performance marginally varied after progressively updating and adding more landslides data through time. We conclude that landslide susceptibility estimates for the study area remain largely insensitive to changes in data over about a decade. Spatial or temporal stratified sampling contributes only minor variations to model performance. Our findings call for more extensive testing of the concept of dynamic susceptibility and its interpretation in data-driven models, especially within the broader framework of landslide risk assessment under environmental and land-use change.}, language = {en} } @article{OlenBookhagenStrecker2020, author = {Olen, Stephanie M. and Bookhagen, Bodo and Strecker, Manfred}, title = {Corrigendum to: Olen, Stephanie M.; Bookhagen, Bodo; Strecker, Manfred R. : Role of climate and vegetation density in modulating denudation rates in the Himalaya. - Earth and planetary science letters. - 445 (2016), S. 57 - 67. - doi: https://doi.org/10.1016/j.epsl.2016.03.047}, series = {Earth and planetary science letters}, volume = {540}, journal = {Earth and planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2020.116252}, pages = {5}, year = {2020}, abstract = {Vegetation has long been hypothesized to influence the nature and rates of surface processes. We test the possible impact of vegetation and climate on denudation rates at orogen scale by taking advantage of a pronounced along-strike gradient in rainfall and vegetation density in the Himalaya. We combine 12 new 10Be denudation rates from the Sutlej Valley and 123 published denudation rates from fluvially- dominated catchments in the Himalaya with remotely-sensed measures of vegetation density and rainfall metrics, and with tectonic and lithologic constraints. In addition, we perform topographic analyses to assess the contribution of vegetation and climate in modulating denudation rates along strike. We observe variations in denudation rates and the relationship between denudation and topography along strike that are most strongly controlled by local rainfall amount and vegetation density, and cannot be explained by along-strike differences in tectonics or lithology. A W-E along-strike decrease in denudation rate variability positively correlates with the seasonality of vegetation density (R = 0.95, p < 0.05), and negatively correlates with mean vegetation density (R = -0.84, p < 0.05). Vegetation density modulates the topographic response to changing denudation rates, such that the functional relationship between denudation rate and topographic steepness becomes increasingly linear as vegetation density increases. We suggest that while tectonic processes locally control the pattern of denudation rates across strike of the Himalaya (i.e., S-N), along strike of the orogen (i.e., E-W) climate exerts a measurable influence on how denudation rates scatter around long-term, tectonically-controlled erosion, and on the functional relationship between topography and denudation}, language = {en} } @article{KruegerDahmHannemann2020, author = {Kr{\"u}ger, Frank and Dahm, Torsten and Hannemann, Katrin}, title = {Mapping of Eastern North Atlantic Ocean seismicity from Po/So observations at a mid-aperture seismological broad-band deep sea array}, series = {Geophysical journal international}, volume = {221}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggaa054}, pages = {1055 -- 1080}, year = {2020}, abstract = {A mid-aperture broad-band test array (OBS array DOCTAR) was deployed from June 2011 to April 2012 about 100 km north of the Gloria fault in the Eastern North Atlantic in about 5000 m water depth. In addition arrays were installed on Madeira Island and in western Portugal mainland. For the first time in the Eastern North Atlantic, we recorded a large number of high frequency Po and So waves from local and regional small and moderate earthquakes (M-L < 4). An incoherent beamforming method was adapted to scan continuous data for such Po and So arrivals applying a sliding window waveform migration and frequency-wavenumber technique. We identify about 320 Po and 1550 So arrivals and compare the phase onsets with the ISC catalogue (ISC 2015) for the same time span. Up to a distance of 6 degrees to the DOCTAR stations all events listed in the ISC catalogue could be associated to Po and So phases. Arrivals from events in more than 10 degrees distance could be identified only in some cases. Only few Po and/or So arrivals were detected for earthquakes from the European and African continental area, the continental shelf regions and for earthquakes within or northwest of the Azores plateau. Unexpectedly, earthquake clusters are detected within the oceanic plates north and south of the Gloria fault and far from plate boundaries, indicating active intraplate structures. We also observe and locate numerous small magnitude earthquakes on the segment of the Gloria fault directly south of DOCTAR, which likely coincides with the rupture of the 25 November 1941 event. Local small magnitude earthquakes located beneath DOCTAR show hypocentres up to 30 km depth and strike-slip focal mechanisms. A comparison with detections at temporary mid-aperture arrays on Madeira and in western Portugal shows that the deep ocean array performs much better than the island and the continental array regarding the detection threshold for events in the oceanic plates. We conclude that sparsely distributed mid-aperture seismic arrays in the deep ocean could decrease the detection and location threshold for seismicity with M-L < 4 in the oceanic plate and might constitute a valuable tool to monitor oceanic plate seismicity.}, language = {en} } @article{GrotheerMeyerRiedeletal.2020, author = {Grotheer, Hendrik and Meyer, Vera and Riedel, Theran and Pfalz, Gregor and Mathieu, Lucie and Hefter, Jens H. and Gentz, Torben and Lantuit, Hugues and Mollennauer, Gesine and Fritz, Michael}, title = {Burial and origin of permafrost-derived carbon in the nearshore zone of the southern Canadian Beaufort Sea}, series = {Geophysical research letters}, volume = {47}, journal = {Geophysical research letters}, number = {3}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {0094-8276}, doi = {10.1029/2019GL085897}, pages = {11}, year = {2020}, abstract = {Detailed organic geochemical and carbon isotopic (delta C-13 and Delta C-14) analyses are performed on permafrost deposits affected by coastal erosion (Herschel Island, Canadian Beaufort Sea) and adjacent marine sediments (Herschel Basin) to understand the fate of organic carbon in Arctic nearshore environments. We use an end-member model based on the carbon isotopic composition of bulk organic matter to identify sources of organic carbon. Monte Carlo simulations are applied to quantify the contribution of coastal permafrost erosion to the sedimentary carbon budget. The models suggest that similar to 40\% of all carbon released by local coastal permafrost erosion is efficiently trapped and sequestered in the nearshore zone. This highlights the importance of sedimentary traps in environments such as basins, lagoons, troughs, and canyons for the carbon sequestration in previously poorly investigated, nearshore areas. Plain Language Summary Increasing air and sea surface temperatures at high latitudes leads to accelerated thaw, destabilization, and erosion of perennially frozen soils (i.e., permafrost), which are often rich in organic carbon. Coastal erosion leads to an increased mobilization of organic carbon into the Arctic Ocean, which there can be converted into greenhouse gases and may therefore contribute to further warming. Carbon decomposition can be limited if organic matter is efficiently deposited on the seafloor, buried in marine sediments, and thus removed from the short-term carbon cycle. Basins, canyons, and troughs near the coastline can serve as sediment traps and potentially accommodate large quantities of organic carbon along the Arctic coast. Here we use biomarkers (source-specific molecules), stable carbon isotopes, and radiocarbon to identify the sources of organic carbon in the nearshore zone of the southern Canadian Beaufort Sea near Herschel Island. We quantify the contribution of coastal permafrost erosion to the sedimentary carbon budget of the area and estimate that more than a third of all carbon released by local permafrost erosion is efficiently trapped in marine sediments. This highlights the importance of regional sediment traps for carbon sequestration.}, language = {en} } @article{PowaliSharmaMandaletal.2020, author = {Powali, Debarchan and Sharma, Shubham and Mandal, Riddhi and Mitra, Supriyo}, title = {A reappraisal of the 2005 Kashmir (M-w 7.6) earthquake and its aftershocks}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {789}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2020.228501}, pages = {11}, year = {2020}, abstract = {We study the source properties of the 2005 Kashmir earthquake and its aftershocks to unravel the seismotectonics of the NW Himalayan syntaxis. The mainshock and larger aftershocks have been simultaneously relocated using phase data. We use back-projection of high-frequency energy from multiple teleseismic arrays to model the spatio-temporal evolution of the mainshock rupture. Our analysis reveal a bilateral rupture, which initially propagated SE and then NW of the epicenter, with an average rupture velocity of similar to 2 km s(-1). The area of maximum energy release is parallel to and bound by the surface rupture. Incorporating rupture propagation and velocity, we model the mainshock as a line source using P- and SH-waveform inversion. Our result confirms that the mainshock occurred on a NE dipping (similar to 35 degrees) fault plane, with centroid depth of similar to 10 km. Integrated source time function show that majority of the energy was released in the first similar to 20 s, and was confined above the hypocenter. From waveform inverted fault dimension and seismic moment, we argue that the mainshock had an additional similar to 25 km blind rupture beyond the NW Himalayan syntaxis. Combining this with findings from previous studies, we conjecture that the blind rupture propagated NW of the syntaxis underneath a weak detachment overlain by infra-Cambrian salt layer, and terminated in a wedge thrust. All moderate-to-large aftershocks, NW of the mainshock rupture, are concentrated at the edge of the blind rupture termination. Source modeling of these aftershocks reveal thrust mechanism with centroid depths of 2-10 km, and fault planes oriented subparallel to the mainshock rupture. To study the influence of mainshock rupture on aftershock occurrence, we compute Coulomb failure stress on aftershock faults. All these aftershocks lie in the positive Coulomb stress change region. This suggest that the aftershocks have been triggered by either co-seismic or post-seismic slip on the mainshock fault.}, language = {en} } @article{VolantePourteauCollinsetal.2020, author = {Volante, Silvia and Pourteau, Amaury and Collins, William J. and Blereau, Eleanore and Li, Zheng-Xiang and Smit, Matthijs Arjen and Evans, Noreen and Nordsvan, Adam R. and Spencer, Chris J. and McDonald, Brad J. and Li, Jiangyu and G{\"u}nter, Christina}, title = {Multiple P-T-d-t paths reveal the evolution of the final Nuna assembly in northeast Australia}, series = {Journal of metamorphic geology}, volume = {38}, journal = {Journal of metamorphic geology}, number = {6}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {0263-4929}, doi = {10.1111/jmg.12532}, pages = {593 -- 627}, year = {2020}, abstract = {The final assembly of the Mesoproterozoic supercontinent Nuna was marked by the collision of Laurentia and Australia at 1.60 Ga, which is recorded in the Georgetown Inlier of NE Australia. Here, we decipher the metamorphic evolution of this final Nuna collisional event using petrostructural analysis, major and trace element compositions of key minerals, thermodynamic modelling, and multi-method geochronology. The Georgetown Inlier is characterised by deformed and metamorphosed 1.70-1.62 Ga sedimentary and mafic rocks, which were intruded byc. 1.56 Ga old S-type granites. Garnet Lu-Hf and monazite U-Pb isotopic analyses distinguish two major metamorphic events (M1 atc. 1.60 Ga and M2 atc. 1.55 Ga), which allows at least two composite fabrics to be identified at the regional scale-c. 1.60 Ga S1 (consisting in fabrics S1a and S1b) andc. 1.55 Ga S2 (including fabrics S2a and S2b). Also, three tectono-metamorphic domains are distinguished: (a) the western domain, with S1 defined by low-P(LP) greenschist facies assemblages; (b) the central domain, where S1 fabric is preserved as medium-P(MP) amphibolite facies relicts, and locally as inclusion trails in garnet wrapped by the regionally dominant low-Pamphibolite facies S2 fabric; and (c) the eastern domain dominated by upper amphibolite to granulite facies S2 foliation. In the central domain, 1.60 GaMP-medium-T(MT) metamorphism (M1) developed within the staurolite-garnet stability field, with conditions ranging from 530-550 degrees C at 6-7 kbar (garnet cores) to 620-650 degrees C at 8-9 kbar (garnet rims), and it is associated with S1 fabric. The onset of 1.55 GaLP-high-T(HT) metamorphism (M2) is marked by replacement of staurolite by andalusite (M2a/D2a), which was subsequently pseudomorphed by sillimanite (M2b/D2b) where granite and migmatite are abundant.P-Tconditions ranged from 600 to 680 degrees C and 4-6 kbar for the M2b sillimanite stage. 1.60 Ga garnet relicts within the S2 foliation highlight the progressive obliteration of the S1 fabric by regional S2 in the central zone during peak M2 metamorphism. In the eastern migmatitic complex, partial melting of paragneiss and amphibolite occurred syn- to post-S2, at 730-770 degrees C and 6-8 kbar, and at 750-790 degrees C and 6 kbar, respectively. The pressure-temperature-deformation-time paths reconstructed for the Georgetown Inlier suggest ac. 1.60 Ga M1/D1 event recorded under greenschist facies conditions in the western domain and under medium-Pand medium-Tconditions in the central domain. This event was followed by the regional 1.56-1.54 Ga low-Pand high-Tphase (M2/D2), extensively recorded in the central and eastern domains. Decompression between these two metamorphic events is ascribed to an episode of exhumation. The two-stage evolution supports the previous hypothesis that the Georgetown Inlier preserves continental collisional and subsequent thermal perturbation associated with granite emplacement.}, language = {en} } @article{HennigStockmannKuehn2020, author = {Hennig, Theresa and Stockmann, Madlen and K{\"u}hn, Michael}, title = {Simulation of diffusive uranium transport and sorption processes in the Opalinus Clay}, series = {Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry}, volume = {123}, journal = {Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0883-2927}, doi = {10.1016/j.apgeochem.2020.104777}, pages = {9}, year = {2020}, abstract = {Diffusive transport and sorption processes of uranium in the Swiss Opalinus Clay were investigated as a function of partial pressure of carbon dioxide pCO(2), varying mineralogy in the facies and associated changes in porewater composition. Simulations were conducted in one-dimensional diffusion models on the 100 m-scale for a time of one million years using a bottom-up approach based on mechanistic surface complexation models as well as cation exchange to quantify sorption. Speciation calculations have shown, uranium is mainly present as U(VI) and must therefore be considered as mobile for in-situ conditions. Uranium migrated up to 26 m in both, the sandy and the carbonate-rich facies, whereas in the shaly facies 16 m was the maximum. The main species was the anionic complex CaUO2(CO3)(3)(2-) . Hence, anion exclusion was taken into account and further reduced the migration distances by 30 \%. The concentrations of calcium and carbonates reflected by the set pCO(2) determine speciation and activity of uranium and consequently the sorption behaviour. Our simulation results allow for the first time to prioritize on the far-field scale the governing parameters for diffusion and sorption of uranium and hence outline the sensitivity of the system. Sorption processes are controlled in descending priority by the carbonate and calcium concentrations, pH, pe and the clay mineral content. Therefore, the variation in porewater composition resulting from the heterogeneity of the facies in the Opalinus Clay formation needs to be considered in the assessment of uranium migration in the far field of a potential repository.}, language = {en} } @article{TranterDeLuciaWolfgrammetal.2020, author = {Tranter, Morgan Alan and De Lucia, Marco and Wolfgramm, Markus and K{\"u}hn, Michael}, title = {Barite scale formation and injectivity loss models for geothermal systems}, series = {Water}, volume = {12}, journal = {Water}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w12113078}, pages = {24}, year = {2020}, abstract = {Barite scales in geothermal installations are a highly unwanted effect of circulating deep saline fluids. They build up in the reservoir if supersaturated fluids are re-injected, leading to irreversible loss of injectivity. A model is presented for calculating the total expected barite precipitation. To determine the related injectivity decline over time, the spatial precipitation distribution in the subsurface near the injection well is assessed by modelling barite growth kinetics in a radially diverging Darcy flow domain. Flow and reservoir properties as well as fluid chemistry are chosen to represent reservoirs subject to geothermal exploration located in the North German Basin (NGB) and the Upper Rhine Graben (URG) in Germany. Fluids encountered at similar depths are hotter in the URG, while they are more saline in the NGB. The associated scaling amount normalised to flow rate is similar for both regions. The predicted injectivity decline after 10 years, on the other hand, is far greater for the NGB (64\%) compared to the URG (24\%), due to the temperature- and salinity-dependent precipitation rate. The systems in the NGB are at higher risk. Finally, a lightweight score is developed for approximating the injectivity loss using the Damkohler number, flow rate and total barite scaling potential. This formula can be easily applied to geothermal installations without running complex reactive transport simulations.}, language = {en} } @article{CastinoBookhagenDelaTorre2020, author = {Castino, Fabiana and Bookhagen, Bodo and De la Torre, Alejandro}, title = {Atmospheric dynamics of extreme discharge events from 1979 to 2016 in the southern Central Andes}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {55}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, number = {11-12}, publisher = {Springer}, address = {Berlin ; Heidelberg [u.a.]}, issn = {0930-7575}, doi = {10.1007/s00382-020-05458-1}, pages = {3485 -- 3505}, year = {2020}, abstract = {During the South-American Monsoon season, deep convective systems occur at the eastern flank of the Central Andes leading to heavy rainfall and flooding. We investigate the large- and meso-scale atmospheric dynamics associated with extreme discharge events (> 99.9th percentile) observed in two major river catchments meridionally stretching from humid to semi-arid conditions in the southern Central Andes. Based on daily gauge time series and ERA-Interim reanalysis, we made the following three key observations: (1) for the period 1940-2016 daily discharge exhibits more pronounced variability in the southern, semi-arid than in the northern, humid catchments. This is due to a smaller ratio of discharge magnitudes between intermediate (0.2 year return period) and rare events (20 year return period) in the semi-arid compared to the humid areas; (2) The climatological composites of the 40 largest discharge events showed characteristic atmospheric features of cold surges based on 5-day time-lagged sequences of geopotential height at different levels in the troposphere; (3) A subjective classification revealed that 80\% of the 40 largest discharge events are mainly associated with the north-northeastward migration of frontal systems and 2/3 of these are cold fronts, i.e. cold surges. This work highlights the importance of cold surges and their related atmospheric processes for the generation of heavy rainfall events and floods in the southern Central Andes.}, language = {en} } @article{RamachandranRupakhetiLawrence2020, author = {Ramachandran, Srikanthan and Rupakheti, Maheswar and Lawrence, Mark}, title = {Black carbon dominates the aerosol absorption over the Indo-Gangetic Plain and the Himalayan foothills}, series = {Environment international : a journal of science, technology, health, monitoring and policy}, volume = {142}, journal = {Environment international : a journal of science, technology, health, monitoring and policy}, publisher = {Elsevier}, address = {Oxford}, issn = {0160-4120}, doi = {10.1016/j.envint.2020.105814}, pages = {12}, year = {2020}, abstract = {This study, based on new and high quality in situ observations, quantifies for the first time, the individual contributions of light-absorbing aerosols (black carbon (BC), brown carbon (BrC) and dust) to aerosol absorption over the Indo-Gangetic Plain (IGP) and the Himalayan foothill region, a relatively poorly studied region with several sensitive ecosystems of global importance, as well as highly vulnerable populations. The annual and seasonal average single scattering albedo (SSA) over Kathmandu is the lowest of all the locations. The SSA over Kathmandu is < 0.89 during all seasons, which confirms the dominance of light-absorbing carbonaceous aerosols from local and regional sources over Kathmandu. It is observed here that the SSA decreases with increasing elevation, confirming the dominance of light absorbing carbonaceous aerosols at higher elevations. In contrast, the SSA over the IGP does not exhibit a pronounced spatial variation. BC dominates (>= 75\%) the aerosol absorption over the IGP and the Himalayan foothills throughout the year. Higher BC concentration at elevated locations in the Himalayas leads to lower SSA at elevated locations in the Himalayas. The contribution of dust to aerosol absorption is higher throughout the year over the IGP than over the Himalayan foothills. The aerosol absorption over South Asia is very high, exceeding available observations over East Asia, and also exceeds previous model estimates. This quantification will be valuable as observational constraints to help improve regional simulations of climate change, impacts on the glaciers and the hydrological cycle, and will help to direct the focus towards BC as the main contributor to aerosol-induced warming in the region.}, language = {en} } @article{DurandBentzKwiateketal.2020, author = {Durand, Virginie and Bentz, Stephan and Kwiatek, Grzegorz and Dresen, Georg and Wollin, Christopher and Heidbach, Oliver and Martinez-Garzon, Patricia and Cotton, Fabrice and Nurlu, Murat and Bohnhoff, Marco}, title = {A two-scale preparation phase preceded an M-w 5.8 earthquake in the sea of marmara offshore Istanbul, Turkey}, series = {Seismological research letters}, volume = {91}, journal = {Seismological research letters}, number = {6}, address = {Boulder}, issn = {0895-0695}, doi = {10.1785/0220200110}, pages = {3139 -- 3147}, year = {2020}, abstract = {We analyze the spatiotemporal evolution of seismicity during a sequence of moderate (an M-w 4.7 foreshock and M-w 5.8 mainshock) earthquakes occurring in September 2019 at the transition between a creeping and a locked segment of the North Anatolian fault in the central Sea of Marmara, northwest Turkey. To investigate in detail the seismicity evolution, we apply a matched-filter technique to continuous waveforms, thus reducing the magnitude threshold for detection. Sequences of foreshocks preceding the two largest events are clearly seen, exhibiting two different behaviors: a long-term activation of the seismicity along the entire fault segment and a short-term concentration around the epicenters of the large events. We suggest a two-scale preparation phase, with aseismic slip preparing the mainshock final rupture a few days before, and a cascade mechanism leading to the nucleation of the mainshock. Thus, our study shows a combination of seismic and aseismic slip during the foreshock sequence changing the strength of the fault, bringing it closer to failure.}, language = {en} } @article{ZozulyaKullerudRibackietal.2020, author = {Zozulya, Dmitry R. and Kullerud, Kare and Ribacki, Enrico and Altenberger, Uwe and Sudo, Masafumi and Savchenko, Yevgeny E.}, title = {The newly discovered neoproterozoic aillikite occurrence in Vinoren (Southern Norway)}, series = {Minerals}, volume = {10}, journal = {Minerals}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2075-163X}, doi = {10.3390/min10111029}, pages = {26}, year = {2020}, abstract = {During the period 750-600 Ma ago, prior to the final break-up of the supercontinent Rodinia, the crust of both the North American Craton and Baltica was intruded by significant amounts of rift-related magmas originating from the mantle. In the Proterozoic crust of Southern Norway, the 580 Ma old Fen carbonatite-ultramafic complex is a representative of this type of rocks. In this paper, we report the occurrence of an ultramafic lamprophyre dyke which possibly is linked to the Fen complex, although Ar-40/Ar-39 data from phenocrystic phlogopite from the dyke gave an age of 686 +/- 9 Ma. The lamprophyre dyke was recently discovered in one of the Kongsberg silver mines at Vinoren, Norway. Whole rock geochemistry, geochronological and mineralogical data from the ultramafic lamprophyre dyke are presented aiming to elucidate its origin and possible geodynamic setting. From the whole-rock composition of the Vinoren dyke, the rock could be recognized as transitional between carbonatite and kimberlite-II (orangeite). From its diagnostic mineralogy, the rock is classified as aillikite. The compositions and xenocrystic nature of several of the major and accessory minerals from the Vinoren aillikite are characteristic for diamondiferous rocks (kimberlites/lamproites/UML): Phlogopite with kinoshitalite-rich rims, chromite-spinel-ulvospinel series, Mg- and Mn-rich ilmenites, rutile and lucasite-(Ce). We suggest that the aillikite melt formed during partial melting of a MARID (mica-amphibole-rutile-ilmenite-diopside)-like source under CO2 fluxing. The pre-rifting geodynamic setting of the Vinoren aillikite before the Rodinia supercontinent breakup suggests a relatively thick SCLM (Subcontinental Lithospheric Mantle) during this stage and might indicate a diamond-bearing source for the parental melt. This is in contrast to the about 100 Ma younger Fen complex, which were derived from a thin SCLM.}, language = {en} } @article{vonSpechtCotton2020, author = {von Specht, Sebastian and Cotton, Fabrice}, title = {A link between machine learning and optimization in ground-motion model development}, series = {Bulletin of the Seismological Society of America}, volume = {110}, journal = {Bulletin of the Seismological Society of America}, number = {6}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120190133}, pages = {2777 -- 2800}, year = {2020}, abstract = {The steady increase of ground-motion data not only allows new possibilities but also comes with new challenges in the development of ground-motion models (GMMs). Data classification techniques (e.g., cluster analysis) do not only produce deterministic classifications but also probabilistic classifications (e.g., probabilities for each datum to belong to a given class or cluster). One challenge is the integration of such continuous classification in regressions for GMM development such as the widely used mixed-effects model. We address this issue by introducing an extension of the mixed-effects model to incorporate data weighting. The parameter estimation of the mixed-effects model, that is, fixed-effects coefficients of the GMMs and the random-effects variances, are based on the weighted likelihood function, which also provides analytic uncertainty estimates. The data weighting permits for earthquake classification beyond the classical, expert-driven, binary classification based, for example, on event depth, distance to trench, style of faulting, and fault dip angle. We apply Angular Classification with Expectation-maximization, an algorithm to identify clusters of nodal planes from focal mechanisms to differentiate between, for example, interface- and intraslab-type events. Classification is continuous, that is, no event belongs completely to one class, which is taken into account in the ground-motion modeling. The theoretical framework described in this article allows for a fully automatic calibration of ground-motion models using large databases with automated classification and processing of earthquake and ground-motion data. As an example, we developed a GMM on the basis of the GMM by Montalva et al. (2017) with data from the strong-motion flat file of Bastias and Montalva (2016) with similar to 2400 records from 319 events in the Chilean subduction zone. Our GMM with the data-driven classification is comparable to the expert-classification-based model. Furthermore, the model shows temporal variations of the between-event residuals before and after large earthquakes in the region.}, language = {en} } @article{SieberYaxleyHermann2020, author = {Sieber, Melanie Jutta and Yaxley, Gregory M. and Hermann, J{\"o}rg}, title = {Investigation of fluid-driven carbonation of a hydrated, forearc mantle wedge using serpentinite cores in high-pressure experiments}, series = {Journal of petrology}, volume = {61}, journal = {Journal of petrology}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-3530}, doi = {10.1093/petrology/egaa035}, pages = {24}, year = {2020}, abstract = {High-pressure experiments were performed to investigate the effectiveness, rate and mechanism of carbonation of serpentinites by a carbon-saturated COH fluid at 1.5-2.5 GPa and 375-700 degrees C. This allows a better understanding of the fate and redistribution of slab-derived carbonic fluids when they react with the partially hydrated mantle within and above the subducting slab under pressure and temperature conditions corresponding to the forearc mantle. Interactions between carbon-saturated CO2-H2O-CH4 fluids and serpentinite were investigated using natural serpentinite cylinders with natural grain sizes and shapes in piston-cylinder experiments. The volatile composition of post-run fluids was quantified by gas chromatography. Solid phases were examined by Raman spectroscopy, electron microscopy and laser ablation inductively coupled plasma mass spectrometry. Textures, porosity and phase abundances of recovered rock cores were visualized and quantified by three-dimensional, high-resolution computed tomography. We find that carbonation of serpentinites is efficient at sequestering CO2 from the interacting fluid into newly formed magnesite. Time-series experiments demonstrate that carbonation is completed within similar to 96 h at 2 GPa and 600 degrees C. With decreasing CO2, aq antigorite is replaced first by magnesite + quartz followed by magnesite + talc + chlorite in distinct, metasomatic fronts. Above antigorite stability magnesite + enstatite + talc + chlorite occur additionally. The formation of fluid-permeable reaction zones enhances the reaction rate and efficiency of carbonation. Carbonation probably occurs via an interface-coupled replacement process, whereby interconnected porosity is present within reaction zones after the experiment. Consequently, carbonation of serpentinites is self-promoting and efficient even if fluid flow is channelized into veins. We conclude that significant amounts of carbonates may accumulate, over time, in the hydrated forearc mantle.}, language = {en} } @article{CalitriSommervanderMeijetal.2020, author = {Calitri, Francesca and Sommer, Michael and van der Meij, Marijn W. and Egli, Markus}, title = {Soil erosion along a transect in a forested catchment: recent or ancient processes?}, series = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, volume = {194}, journal = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2020.104683}, pages = {11}, year = {2020}, abstract = {Forested areas are assumed not to be influenced by erosion processes. However, forest soils of Northern Germany in a hummocky ground moraine landscape can sometimes exhibit a very shallow thickness on crest positions and buried soils on slope positions. The question consequently is: Are these on-going or ancient erosional and depositional processes? Plutonium isotopes act as soil erosion/deposition tracers for recent (last few decades) processes. Here, we quantified the 239+240PU inventories in a small, forested catchment (ancient forest "Melzower Forst", deciduous trees), which is characterised by a hummocky terrain including a kettle hole. Soil development depths (depth to C horizon) and 239+240PU inventories along a catena of sixteen different profiles were determined and correlated to relief parameters. Moreover, we compared different modelling approaches to derive erosion rates from Pu data.
We find a strong relationship between soil development depths, distance-to-sink and topography along the catena. Fully developed Retisols (thicknesses > 1 m) in the colluvium overlay old land surfaces as documented by fossil Ah horizons. However, we found no relationship of Pu-based erosion rates to any relief parameter. Instead, 239+240PU inventories showed a very high local, spatial variability (36-70 Bq m(-2)). Low annual rainfall, spatially distributed interception and stem flow might explain the high variability of the 239+240PU inventories, giving rise to a patchy input pattern. Different models resulted in quite similar erosion and deposition rates (max: -5 t ha(-1) yr(-1) to +7.3 t ha(-1) yr(-1)). Although some rates are rather high, the magnitude of soil erosion and deposition - in terms of soil thickness change - is negligible during the last 55 years. The partially high values are an effect of the patchy Pu deposition on the forest floor. This forest has been protected for at least 240 years. Therefore rather natural events and anthropogenic activities during medieval times or even earlier must have caused the observed soil pattern, which documents strong erosion and deposition processes.}, language = {en} } @article{ZhangChenKuangetal.2020, author = {Zhang, Liyu and Chen, Daizhao and Kuang, Guodun and Guo, Zenghui and Zhang, Gongjing and Wang, Xia}, title = {Persistent oxic deep ocean conditions and frequent volcanic activities during the Frasnian-Famennian transition recorded in South China}, series = {Global and planetary change}, volume = {195}, journal = {Global and planetary change}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0921-8181}, doi = {10.1016/j.gloplacha.2020.103350}, pages = {11}, year = {2020}, abstract = {The Frasnian-Famennian (F-F) transition of Late Devonian was a critical episode in geological history, recording a major mass extinction event. In this study, we focus on an F-F succession from a deep marine context in Bancheng, southern Guangxi, South China, to investigate coeval changes in pelagic environments of the Paleo-Tethys Ocean. The studied succession is exclusively composed of bedded cherts intercalated with multiple siliceous volcanic ash beds. A SIMS zircon U-Pb Concordia age of 367.8 +/- 2.5 Ma is reported for a tuffaceous layer slightly above the F-F boundary. Geochemical ratios of Al/(Al + Fe + Mn), Ce/Ce*, Y/Ho, and Al, Fe contents in bedded cherts indicate that they are of predominantly biogenic/chemical origin with some terrigenous inputs. Negligible enrichment of redox sensitive elements (Mo, U, V) and low V/Cr ratios (<2) suggest persistently oxic conditions existed in the deep pelagic basin at Bancheng, South China during the F-F transition. These findings call into question the widely held hypothesis that marine anoxia was the primary killing mechanism for the F-F crisis. In contrast, multiple tuffaceous layers throughout the F-F boundary succession indicate frequent volcanic activity, which could have released massive amounts of greenhouse gases into the atmosphere, inducing climate warming. This scenario may have increased continental weathering and riverine fluxes into the ocean, reconciling the increases in Al2O3 content and Al/(Al + Fe + Mn) ratio across the F-F boundary. Documentation of persistently oxic conditions and frequent volcanic activitiy provides new perspectives on the inter-relationship between volcanism, climate, and oceanic redox fluctuation during the F-F biotic crisis.}, language = {en} } @article{BrillPassuniPinedaEspichanCuyaetal.2020, author = {Brill, Fabio Alexander and Passuni Pineda, Silvia and Espichan Cuya, Bruno and Kreibich, Heidi}, title = {A data-mining approach towards damage modelling for El Nino events in Peru}, series = {Geomatics, natural hazards and risk}, volume = {11}, journal = {Geomatics, natural hazards and risk}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1947-5705}, doi = {10.1080/19475705.2020.1818636}, pages = {1966 -- 1990}, year = {2020}, abstract = {Compound natural hazards likeEl Ninoevents cause high damage to society, which to manage requires reliable risk assessments. Damage modelling is a prerequisite for quantitative risk estimations, yet many procedures still rely on expert knowledge, and empirical studies investigating damage from compound natural hazards hardly exist. A nationwide building survey in Peru after theEl Ninoevent 2017 - which caused intense rainfall, ponding water, flash floods and landslides - enables us to apply data-mining methods for statistical groundwork, using explanatory features generated from remote sensing products and open data. We separate regions of different dominant characteristics through unsupervised clustering, and investigate feature importance rankings for classifying damage via supervised machine learning. Besides the expected effect of precipitation, the classification algorithms select the topographic wetness index as most important feature, especially in low elevation areas. The slope length and steepness factor ranks high for mountains and canyons. Partial dependence plots further hint at amplified vulnerability in rural areas. An example of an empirical damage probability map, developed with a random forest model, is provided to demonstrate the technical feasibility.}, language = {en} } @article{WietzkeMerzGerlitzetal.2020, author = {Wietzke, Luzie M. and Merz, Bruno and Gerlitz, Lars and Kreibich, Heidi and Guse, Bj{\"o}rn and Castellarin, Attilio and Vorogushyn, Sergiy}, title = {Comparative analysis of scalar upper tail indicators}, series = {Hydrological sciences journal = Journal des sciences hydrologiques}, volume = {65}, journal = {Hydrological sciences journal = Journal des sciences hydrologiques}, number = {10}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0262-6667}, doi = {10.1080/02626667.2020.1769104}, pages = {1625 -- 1639}, year = {2020}, abstract = {Different upper tail indicators exist to characterize heavy tail phenomena, but no comparative study has been carried out so far. We evaluate the shape parameter (GEV), obesity index, Gini index and upper tail ratio (UTR) against a novel benchmark of tail heaviness - the surprise factor. Sensitivity analyses to sample size and changes in scale-to-location ratio are carried out in bootstrap experiments. The UTR replicates the surprise factor best but is most uncertain and only comparable between records of similar length. For samples with symmetric Lorenz curves, shape parameter, obesity and Gini indices provide consistent indications. For asymmetric Lorenz curves, however, the first two tend to overestimate, whereas Gini index tends to underestimate tail heaviness. We suggest the use of a combination of shape parameter, obesity and Gini index to characterize tail heaviness. These indicators should be supported with calculation of the Lorenz asymmetry coefficients and interpreted with caution.}, language = {en} } @article{KruseKolmogorovPestryakovaetal.2020, author = {Kruse, Stefan and Kolmogorov, Aleksey I. and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Long-lived larch clones may conserve adaptations that could restrict treeline migration in northern Siberia}, series = {Ecology and evolution}, volume = {10}, journal = {Ecology and evolution}, number = {18}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.6660}, pages = {10017 -- 10030}, year = {2020}, abstract = {The occurrence of refugia beyond the arctic treeline and genetic adaptation therein play a crucial role of largely unknown effect size. While refugia have potential for rapidly colonizing the tundra under global warming, the taxa may be maladapted to the new environmental conditions. Understanding the genetic composition and age of refugia is thus crucial for predicting any migration response. Here, we genotype 194 larch individuals from an similar to 1.8 km(2)area in northcentral Siberia on the southern Taimyr Peninsula by applying an assay of 16 nuclear microsatellite markers. For estimating the age of clonal individuals, we counted tree rings at sections along branches to establish a lateral growth rate that was then combined with geographic distance. Findings reveal that the predominant reproduction type is clonal (58.76\%) by short distance spreading of ramets. One outlier of clones 1 km apart could have been dispersed by reindeer. In clonal groups and within individuals, we find that somatic mutations accumulate with geographic distance. Clonal groups of two or more individuals are observed. Clonal age estimates regularly suggest individuals as old as 2,200 years, which coincides with a major environmental change that forced a treeline retreat in the region. We conclude that individuals with clonal growth mode were naturally selected as it lowers the likely risk of extinction under a harsh environment. We discuss this legacy from the past that might now be a maladaptation and hinder expansion under currently strongly increasing temperatures.}, language = {en} } @article{VossBookhagenSachseetal.2020, author = {Voss, Katalyn A. and Bookhagen, Bodo and Sachse, Dirk and Chadwick, Oliver A.}, title = {Variation of deuterium excess in surface waters across a 5000-m elevation gradient in eastern Nepal}, series = {Journal of hydrology}, volume = {586}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2020.124802}, pages = {17}, year = {2020}, abstract = {The strong elevation gradient of the Himalaya allows for investigation of altitude and orographic impacts on surface water delta O-18 and delta D stable isotope values. This study differentiates the time- and altitude-variable contributions of source waters to the Arun River in eastern Nepal. It provides isotope data along a 5000-m gradient collected from tributaries as well as groundwater, snow, and glacial-sourced surface waters and time-series data from April to October 2016. We find nonlinear trends in delta O-18 and delta D lapse rates with high-elevation lapse rates (4000-6000 masl) 5-7 times more negative than low-elevation lapse rates (1000-3000 masl). A distinct seasonal signal in delta O-18 and delta D lapse rates indicates time-variable source-water contributions from glacial and snow meltwater as well as precipitation transitions between the Indian Summer Monsoon and Winter Westerly Disturbances. Deuterium excess correlates with the extent of snowpack and tracks melt events during the Indian Summer Monsoon season. Our analysis identifies the influence of snow and glacial melt waters on river composition during low-flow conditions before the monsoon (April/May 2016) followed by a 5-week transition to the Indian Summer Monsoon-sourced rainfall around mid-June 2016. In the post-monsoon season, we find continued influence from glacial melt waters as well as ISM-sourced groundwater.}, language = {en} } @article{GanguliPaprotnyHasanetal.2020, author = {Ganguli, Poulomi and Paprotny, Dominik and Hasan, Mehedi and G{\"u}ntner, Andreas and Merz, Bruno}, title = {Projected changes in compound flood hazard from riverine and coastal floods in northwestern Europe}, series = {Earth's future}, volume = {8}, journal = {Earth's future}, number = {11}, publisher = {Wiley-Blackwell}, address = {Hoboken, NJ}, issn = {2328-4277}, doi = {10.1029/2020EF001752}, pages = {19}, year = {2020}, abstract = {Compound flooding in coastal regions, that is, the simultaneous or successive occurrence of high sea levels and high river flows, is expected to increase in a warmer world. To date, however, there is no robust evidence on projected changes in compound flooding for northwestern Europe. We combine projected storm surges and river floods with probabilistic, localized relative sea-level rise (SLR) scenarios to assess the future compound flood hazard over northwestern coastal Europe in the high (RCP8.5) emission scenario. We use high-resolution, dynamically downscaled regional climate models (RCM) to drive a storm surge model and a hydrological model, and analyze the joint occurrence of high coastal water levels and associated river peaks in a multivariate copula-based approach. The RCM-forced multimodel mean reasonably represents the observed spatial pattern of the dependence strength between annual maxima surge and peak river discharge, although substantial discrepancies exist between observed and simulated dependence strength. All models overestimate the dependence strength, possibly due to limitations in model parameterizations. This bias affects compound flood hazard estimates and requires further investigation. While our results suggest decreasing compound flood hazard over the majority of sites by 2050s (2040-2069) compared to the reference period (1985-2005), an increase in projected compound flood hazard is limited to around 34\% of the sites. Further, we show the substantial role of SLR, a driver of compound floods, which has frequently been neglected. Our findings highlight the need to be aware of the limitations of the current generation of Earth system models in simulating coastal compound floods.}, language = {en} } @article{VogtVincentLippoldKabothBahretal.2020, author = {Vogt-Vincent, Noam and Lippold, J{\"o}rg and Kaboth-Bahr, Stefanie and Blaser, Patrick}, title = {Ice-rafted debris as a source of non-conservative behaviour for the epsilon Nd palaeotracer}, series = {Geo-marine letters : an international journal of marine geology}, volume = {40}, journal = {Geo-marine letters : an international journal of marine geology}, number = {3}, publisher = {Springer}, address = {Berlin}, issn = {0276-0460}, doi = {10.1007/s00367-020-00643-x}, pages = {325 -- 340}, year = {2020}, abstract = {Neodymium isotopic composition (epsilon Nd) has enjoyed widespread use as a palaeotracer, principally because it behaves quasi-conservatively in the modern ocean. However, recent bottom water epsilon Nd reconstructions from the eastern North Atlantic are difficult to interpret under assumptions of conservative behaviour. The observation that this apparent departure from conservative behaviour increases with enhanced ice-rafted debris (IRD) fluxes has resulted in the suggestion that IRD leads to the overprinting of bottom water epsilon Nd through reversible scavenging. In this study, a simple water column model successfully reproduces epsilon Nd reconstructions from the eastern North Atlantic at the Last Glacial Maximum and Heinrich Stadial 1, and demonstrates that the changes in scavenging intensity required for good model-data fit is in good agreement with changes in the observed IRD flux. Although uncertainties in model parameters preclude a more definitive conclusion, the results indicate that the suggestion of IRD as a source of non-conservative behaviour in the epsilon Nd tracer is reasonable and that further research into the fundamental chemistry underlying the marine neodymium cycle is necessary to increase confidence in assumptions of conservative epsilon Nd behaviour in the past.}, language = {en} } @article{HuangHerzschuhPestryakovaetal.2020, author = {Huang, Sichao and Herzschuh, Ulrike and Pestryakova, Luidmila Agafyevna and Zimmermann, Heike Hildegard and Davydova, Paraskovya and Biskaborn, Boris and Shevtsova, Iuliia and Stoof-Leichsenring, Kathleen Rosemarie}, title = {Genetic and morphologic determination of diatom community composition in surface sediments from glacial and thermokarst lakes in the Siberian Arctic}, series = {Journal of paleolimnolog}, volume = {64}, journal = {Journal of paleolimnolog}, number = {3}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-020-00133-1}, pages = {225 -- 242}, year = {2020}, abstract = {Lakes cover large parts of the climatically sensitive Arctic landscape and respond rapidly to environmental change. Arctic lakes have different origins and include the predominant thermokarst lakes, which are small, young and highly dynamic, as well as large, old and stable glacial lakes. Freshwater diatoms dominate the primary producer community in these lakes and can be used to detect biotic responses to climate and environmental change. We used specific diatom metabarcoding on sedimentary DNA, combined with next-generation sequencing and diatom morphology, to assess diatom diversity in five glacial and 15 thermokarst lakes within the easternmost expanse of the Siberian treeline ecotone in Chukotka, Russia. We obtained 163 verified diatom sequence types and identified 176 diatom species morphologically. Although there were large differences in taxonomic assignment using the two approaches, they showed similar high abundances and diversity of Fragilariceae and Aulacoseiraceae. In particular, the genetic approach detected hidden within-lake variations of fragilarioids in glacial lakes and dominance of centric Aulacoseira species, whereas Lindavia ocellata was predominant using morphology. In thermokarst lakes, sequence types and valve counts also detected high diversity of Fragilariaceae, which followed the vegetation gradient along the treeline. Ordination analyses of the genetic data from glacial and thermokarst lakes suggest that concentrations of sulfate (SO42-), an indicator of the activity of sulfate-reducing microbes under anoxic conditions, and bicarbonate (HCO3-), which relates to surrounding vegetation, have a significant influence on diatom community composition. For thermokarst lakes, we also identified lake depth as an important variable, but SO42- best explains diatom diversity derived from genetic data, whereas HCO3- best explains the data from valve counts. Higher diatom diversity was detected in glacial lakes, most likely related to greater lake age and different edaphic settings, which gave rise to diversification and endemism. In contrast, small, dynamic thermokarst lakes are inhabited by stress-tolerant fragilarioids and are related to different vegetation types along the treeline ecotone. Our study demonstrated that genetic investigations of lake sediments can be used to interpret climate and environmental responses of diatoms. It also showed how lake type affects diatom diversity, and that such genetic analyses can be used to track diatom community changes under ongoing warming in the Arctic.}, language = {en} } @article{GuzmanSamprognaMohorMendiondo2020, author = {Guzman, Diego A. and Samprogna Mohor, Guilherme and Mendiondo, Eduardo Mario}, title = {Multi-year index-based insurance for adapting Water Utility Companies to hydrological drought}, series = {Water}, volume = {12}, journal = {Water}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w12112954}, pages = {22}, year = {2020}, abstract = {The sustainability of water utility companies is threatened by non-stationary drivers, such as climate and anthropogenic changes. To cope with potential economic losses, instruments such as insurance are useful for planning scenarios and mitigating impacts, but data limitations and risk uncertainties affect premium estimation and, consequently, business sustainability. This research estimated the possible economic impacts of business interruption to the Sao Paulo Water Utility Company derived from hydrological drought and how this could be mitigated with an insurance scheme. Multi-year insurance (MYI) was proposed through a set of "change" drivers: the climate driver, through forcing the water evaluation and planning system (WEAP) hydrological tool; the anthropogenic driver, through water demand projections; and the economic driver, associated with recent water price policies adopted by the utility company during water scarcity periods. In our study case, the evaluated indices showed that MYI contracts that cover only longer droughts, regardless of the magnitude, offer better financial performance than contracts that cover all events (in terms of drought duration). Moreover, through MYI contracts, we demonstrate solvency for the insurance fund in the long term and an annual average actuarially fair premium close to the total expected revenue reduction.}, language = {en} } @article{IzgiEkenGaebleretal.2020, author = {Izgi, Gizem and Eken, Tuna and Gaebler, Peter and Eulenfeld, Tom and Taymaz, Tuncay}, title = {Crustal seismic attenuation parameters in the western region of the North Anatolian Fault Zone}, series = {Journal of geodynamics}, volume = {134}, journal = {Journal of geodynamics}, publisher = {Elsevier}, address = {Oxford}, issn = {0264-3707}, doi = {10.1016/j.jog.2020.101694}, pages = {10}, year = {2020}, abstract = {Detailed knowledge of the crustal structure along the North Anatolian Fault Zone can help in understanding past and present tectonic processes in relation to the deformation history. To estimate the frequency-dependent crustal attenuation parameters beneath the western part of the North Anatolian Fault Zone we apply acoustic radiative transfer theory under the assumption of multiple isotropic scattering to generate synthetic seismogram envelopes. The inversion depends on finding an optimal fit between observed and synthetically computed coda wave envelopes in five frequency bands. 2-D lateral variation of intrinsic and scattering attenuation at various frequencies tends to three crustal blocks (i.e., Armutlu-Almacik, Istanbul-Zonguldak and Sakarya Zones) separated by the southern and northern branches of the western part of the North Anatolian Fault Zone. Overall, scattering attenuation appears to be dominant over intrinsic attenuation in the study area at lower frequencies. Relatively low attenuation properties are observed beneath the older Istanbul Zone whereas higher attenuation properties are found for the younger Sakarya Zone. The Armutlu Almacik Zone exhibits more complex lateral variations. Very high attenuation values towards the west characterize the area of the Kuzuluk Basin, a pull-apart basin formed under west-east extension. Our coda-derived moment magnitudes are similar to the local magnitude estimates that were previously calculated for the same earthquakes. For smaller earthquakes (M-L < 2.5), however, the relation between local and moment magnitudes appears to lose its coherency. This may stem from various reasons including the use of seismic data recorded in finite sampling interval, possible biases in local magnitude estimates of earthquake catalogues as well as biases due to wrong assumptions to consider anelastic attenuation terms.}, language = {en} } @article{ReschkeKroenerLaepple2020, author = {Reschke, Maria and Kr{\"o}ner, Igor and Laepple, Thomas}, title = {Testing the consistency of Holocene and Last Glacial Maximum spatial correlations in temperature proxy records}, series = {Journal of quaternary science : JQS}, volume = {36}, journal = {Journal of quaternary science : JQS}, number = {1}, publisher = {Wiley}, address = {New York}, issn = {0267-8179}, doi = {10.1002/jqs.3245}, pages = {20 -- 28}, year = {2020}, abstract = {Holocene temperature proxy records are commonly used in quantitative synthesis and model-data comparisons. However, comparing correlations between time series from records collected in proximity to one another with the expected correlations based on climate model simulations indicates either regional or noisy climate signals in Holocene temperature proxy records. In this study, we evaluate the consistency of spatial correlations present in Holocene proxy records with those found in data from the Last Glacial Maximum (LGM). Specifically, we predict correlations expected in LGM proxy records if the only difference to Holocene correlations would be due to more time uncertainty and more climate variability in the LGM. We compare this simple prediction to the actual correlation structure in the LGM proxy records. We found that time series data of ice-core stable isotope records and planktonic foraminifera Mg/Ca ratios were consistent between the Holocene and LGM periods, while time series of Uk'37 proxy records were not as we found no correlation between nearby LGM records. Our results support the finding of highly regional or noisy marine proxy records in the compilation analysed here and suggest the need for further studies on the role of climate proxies and the processes of climate signal recording and preservation.}, language = {en} } @article{ZimmermannStoofLeichsenringKruseetal.2020, author = {Zimmermann, Heike Hildegard and Stoof-Leichsenring, Kathleen Rosemarie and Kruse, Stefan and M{\"u}ller, Juliane and Stein, Ruediger and Tiedemann, Ralf and Herzschuh, Ulrike}, title = {Changes in the composition of marine and sea-ice diatoms derived from sedimentary ancient DNA of the eastern Fram Strait over the past 30 000 years}, series = {Ocean science}, volume = {16}, journal = {Ocean science}, number = {5}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1812-0784}, doi = {10.5194/os-16-1017-2020}, pages = {1017 -- 1032}, year = {2020}, abstract = {The Fram Strait is an area with a relatively low and irregular distribution of diatom microfossils in surface sediments, and thus microfossil records are scarce, rarely exceed the Holocene, and contain sparse information about past richness and taxonomic composition. These attributes make the Fram Strait an ideal study site to test the utility of sedimentary ancient DNA (sedaDNA) metabarcoding. Amplifying a short, partial rbcL marker from samples of sediment core MSM05/5-712-2 resulted in 95.7\% of our sequences being assigned to diatoms across 18 different families, with 38.6\% of them being resolved to species and 25.8\% to genus level. Independent replicates show a high similarity of PCR products, especially in the oldest samples. Diatom sedaDNA richness is highest in the Late Weichselian and lowest in Mid- and Late Holocene samples. Taxonomic composition is dominated by cold-water and sea-ice-associated diatoms and suggests several reorganisations - after the Last Glacial Maximum, after the Younger Dryas, and after the Early and after the Mid-Holocene. Different sequences assigned to, amongst others, Chaetoceros socialis indicate the detectability of intra-specific diversity using sedaDNA. We detect no clear pattern between our diatom sedaDNA record and the previously published IP25 record of this core, although proportions of pennate diatoms increase with higher IP25 concentrations and proportions of Nitzschia cf. frigida exceeding 2\% of the assemblage point towards past sea-ice presence.}, language = {en} } @article{MonteroLopezHongnLopezSteinmetzetal.2020, author = {Montero-Lopez, Carolina and Hongn, Fernando D. and Lopez Steinmetz, Romina L. and Aramayo, Alejandro and Pingel, Heiko and Strecker, Manfred and Cottle, John and Bianchi, Carlos}, title = {Development of an incipient Paleogene topography between the present-day Eastern Andean Plateau (Puna) and the Eastern Cordillera, southern Central Andes, NW Argentina}, series = {Basin research / publ. in conjunction with the European Association of Geoscientists \& Engineers and the International Association of Sedimentologists}, volume = {33}, journal = {Basin research / publ. in conjunction with the European Association of Geoscientists \& Engineers and the International Association of Sedimentologists}, number = {2}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {0950-091X}, doi = {10.1111/bre.12510}, pages = {1194 -- 1217}, year = {2020}, abstract = {The structural and topographic evolution of orogenic plateaus is an important research topic because of its impact on atmospheric circulation patterns, the amount and distribution of rainfall, and resulting changes in surface processes. The Puna region in the north-western Argentina (between 13 degrees S and 27 degrees S) is part of the Andean Plateau, which is the world's second largest orogenic plateau. In order to investigate the deformational events responsible for the initial growth of this part of the Andean plateau, we carried out structural and stratigraphic investigations within the present-day transition zone between the northern Puna and the adjacent Eastern Cordillera to the east. This transition zone is characterized by ubiquitous exposures of continental middle Eocene redbeds of the Casa Grande Formation. Our structural mapping, together with a sedimentological analysis of these units and their relationships with the adjacent mountain ranges, has revealed growth structures and unconformities that are indicative of syntectonic deposition. These findings support the notion that tectonic shortening in this part of the Central Andes was already active during the middle Paleogene, and that early Cenozoic deformation in the region that now constitutes the Puna occurred in a spatially irregular manner. The patterns of Paleogene deformation and uplift along the eastern margin of the present-day plateau correspond to an approximately north-south oriented swath of reactivated basement heterogeneities (i.e. zones of mechanical weakness) stemming from regional Paleozoic mountain building that may have led to local concentration of deformation belts.}, language = {en} } @article{ZhouAitchisonLokhoetal.2020, author = {Zhou, Renjie and Aitchison, Jonathan C. and Lokho, Kapesa and Sobel, Edward and Feng, Yuexing and Zhao, Jian-xin}, title = {Unroofing the Ladakh Batholith: constraints from autochthonous molasse of the Indus Basin, NW Himalaya}, series = {Journal of the Geological Society}, volume = {177}, journal = {Journal of the Geological Society}, number = {4}, publisher = {Geological Society (London)}, address = {London}, issn = {0016-7649}, doi = {10.1144/jgs2019-188}, pages = {818 -- 825}, year = {2020}, abstract = {The Indus Molasse records orogenic sedimentation associated with uplift and erosion of the southern margin of Asia in the course of ongoing India-Eurasia collision. Detailed field investigation clarifies the nature and extent of the depositional contact between this molasse and the underlying basement units. We report the first dataset on detrital zircon U-Pb ages, Hf isotopes and apatite U-Pb ages for the autochthonous molasse in the Indus Suture Zone. A latest Oligocene depositional age is proposed on the basis of the youngest detrital zircon U-Pb age peak and is consistent with published biostratigraphic data. Multiple provenance indicators suggest exclusively northerly derivation with no input from India in the lowermost parts of the section. The results provide constraints on the uplift and erosion history of the Ladakh Range following the initial India-Asia collision.}, language = {en} } @article{BahrKolberKabothBahretal.2020, author = {Bahr, Andr{\´e} and Kolber, Gilles and Kaboth-Bahr, Stefanie and Reinhardt, Lutz and Friedrich, Oliver and Pross, J{\"o}rg}, title = {Mega-monsoon variability during the late Triassic}, series = {Sedimentology : the journal of the International Association of Sedimentologists}, volume = {67}, journal = {Sedimentology : the journal of the International Association of Sedimentologists}, number = {2}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {0037-0746}, doi = {10.1111/sed.12668}, pages = {951 -- 970}, year = {2020}, abstract = {The formation of the supercontinent Pangaea during the Permo-Triassic gave rise to an extreme monsoonal climate (often termed 'mega-monsoon') that has been documented by numerous palaeo-records. However, considerable debate exists about the role of orbital forcing in causing humid intervals in an otherwise arid climate. To shed new light on the forcing of monsoonal variability in subtropical Pangaea, this study focuses on sediment facies and colour variability of playa and alluvial fan deposits in an outcrop from the late Carnian (ca 225 Ma) in the southern Germanic Basin, south-western Germany. The sediments were deposited against a background of increasingly arid conditions following the humid Carnian Pluvial Event (ca 234 to 232 Ma). The ca 2 center dot 4 Myr long sedimentary succession studied shows a tripartite long-term evolution, starting with a distal mud-flat facies deposited under arid conditions. This phase was followed by a highly variable playa-lake environment that documents more humid conditions and finally a regression of the playa-lake due to a return of arid conditions. The red-green (a*) and lightness (L*) records show that this long-term variability was overprinted by alternating wet/dry cycles driven by orbital precession and ca 405 kyr eccentricity, without significant influence of obliquity. The absence of obliquity in this record indicates that high-latitude forcing played only a minor role in the southern Germanic Basin during the late Carnian. This is different from the subsequent Norian when high-latitude signals became more pronounced, potentially related to the northward drift of the Germanic Basin. The recurring pattern of pluvial events during the late Triassic demonstrates that orbital forcing, in particular eccentricity, stimulated the occurrence and intensity of wet phases. It also highlights the possibility that the Carnian Pluvial Event, although most likely triggered by enhanced volcanic activity, may also have been modified by an orbital stimulus.}, language = {en} }