@phdthesis{Lee2018, author = {Lee, Hui-Chun}, title = {Toward ultimate control of polymerization and catalytic property}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414973}, school = {Universit{\"a}t Potsdam}, pages = {vii, iii, 150}, year = {2018}, abstract = {Reversible-deactivation radical polymerization (RDRP) is without any doubt one of the most prevalent and powerful strategies for polymer synthesis, by which well-defined living polymers with targeted molecular weight (MW), low molar dispersity (Ɖ) and diverse morphologies can be prepared in a controlled fashion. Atom transfer radical polymerization (ATRP) as one of the most extensive studied types of RDRP has been particularly emphasized due to the high accessibility to hybrid materials, multifunctional copolymers and diverse end group functionalities via commercially available precursors. However, due to catalyst-induced side reactions and chain-chain coupling termination in bulk environment, synthesis of high MW polymers with uniform chain length (low Ɖ) and highly-preserved chain-end fidelity is usually challenging. Besides, owing to the inherited radical nature, the control of microstructure, namely tacticity control, is another laborious task. Considering the applied catalysts, the utilization of large amounts of non-reusable transition metal ions which lead to cumbersome purification process, product contamination and complicated reaction procedures all delimit the scope ATRP techniques. Metal-organic frameworks (MOFs) are an emerging type of porous materials combing the properties of both organic polymers and inorganic crystals, characterized with well-defined crystalline framework, high specific surface area, tunable porous structure and versatile nanochannel functionalities. These promising properties of MOFs have thoroughly revolutionized academic research and applications in tremendous aspects, including gas processing, sensing, photoluminescence, catalysis and compartmentalized polymerization. Through functionalization, the microenvironment of MOF nanochannel can be precisely devised and tailored with specified functional groups for individual host-guest interactions. Furthermore, properties of high transition metal density, accessible catalytic sites and crystalline particles all indicate MOFs as prominent heterogeneous catalysts which open a new avenue towards unprecedented catalytic performance. Although beneficial properties in catalysis, high agglomeration and poor dispersibility restrain the potential catalytic capacity to certain degree. Due to thriving development of MOF sciences, fundamental polymer science is undergoing a significant transformation, and the advanced polymerization strategy can eventually refine the intrinsic drawbacks of MOF solids reversely. Therefore, in the present thesis, a combination of low-dimensional polymers with crystalline MOFs is demonstrated as a robust and comprehensive approach to gain the bilateral advantages from polymers (flexibility, dispersibility) and MOFs (stability, crystallinity). The utilization of MOFs for in-situ polymerizations and catalytic purposes can be realized to synthesize intriguing polymers in a facile and universal process to expand the applicability of conventional ATRP methodology. On the other hand, through the formation of MOF/polymer composites by surface functionalization, the MOF particles with environment-adjustable dispersibility and high catalytic property can be as-prepared. In the present thesis, an approach via combination of confined porous textures from MOFs and controlled radical polymerization is proposed to advance synthetic polymer chemistry. Zn2(bdc)2(dabco) (Znbdc) and the initiator-functionalized Zn MOFs, ZnBrbdc, are utilized as a reaction environment for in-situ polymerization of various size-dependent methacrylate monomers (i.e. methyl, ethyl, benzyl and isobornyl methacrylate) through (surface-initiated) activators regenerated by electron transfer (ARGET/SI-ARGET) ATRP, resulting in polymers with control over dispersity, end functionalities and tacticity with respect to distinct molecular size. While the functionalized MOFs are applied, due to the strengthened compartmentalization effect, the accommodated polymers with molecular weight up to 392,000 can be achieved. Moreover, a significant improvement in end-group fidelity and stereocontrol can be observed. The results highlight a combination of MOFs and ATRP is a promising and universal methodology to synthesize versatile well-defined polymers with high molecular weight, increment in isotactic trial and the preserved chain-end functionality. More than being a host only, MOFs can act as heterogeneous catalysts for metal-catalyzed polymerizations. A Cu(II)-based MOF, Cu2(bdc)2(dabco), is demonstrated as a heterogeneous, universal catalyst for both thermal or visible light-triggered ARGET ATRP with expanded monomer range. The accessible catalytic metal sites enable the Cu(II) MOF to polymerize various monomers, including benzyl methacrylate (BzMA), styrene, methyl methacrylate (MMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA) in the fashion of ARGET ATRP. Furthermore, due to the robust frameworks, surpassing the conventional homogeneous catalyst, the Cu(II) MOF can tolerate strongly coordinating monomers and polymerize challenging monomers (i.e. 4-vinyl pyridine, 2-vinyl pyridine and isoprene), in a well-controlled fashion. Therefore, a synthetic procedure can be significantly simplified, and catalyst-resulted chelation can be avoided as well. Like other heterogeneous catalysts, the Cu(II) MOF catalytic complexes can be easily collected by centrifugation and recycled for an arbitrary amount of times. The Cu(II) MOF, composed of photostimulable metal sites, is further used to catalyze controlled photopolymerization under visible light and requires no external photoinitiator, dye sensitizer or ligand. A simple light trigger allows the photoreduction of Cu(II) to the active Cu(I) state, enabling controlled polymerization in the form of ARGET ATRP. More than polymerization application, the synergic effect between MOF frameworks and incorporated nucleophilic monomers/molecules is also observed, where the formation of associating complexes is able to adjust the photochemical and electrochemical properties of the Cu(II) MOF, altering the band gap and light harvesting behavior. Owing to the tunable photoabsorption property resulting from the coordinating guests, photoinduced Reversible-deactivation radical polymerization (PRDRP) can be achieved to further simplify and fasten the polymerization. More than the adjustable photoabsorption ability, the synergistic strategy via a combination of controlled/living polymerization technique and crystalline MOFs can be again evidenced as demonstrated in the MOF-based heterogeneous catalysts with enhanced dispersibility in solution. Through introducing hollow pollen pivots with surface immobilized environment-responsive polymer, PDMAEMA, highly dispersed MOF nanocrystals can be prepared after associating on polymer brushes via the intrinsic amine functionality in each DMAEMA monomer. Intriguingly, the pollen-PDMAEMA composite can serve as a "smart" anchor to trap nanoMOF particles with improved dispersibility, and thus to significantly enhance liquid-phase photocatalytic performance. Furthermore, the catalytic activity can be switched on and off via stimulable coil-to-globule transition of the PDMAEMA chains exposing or burying MOF catalytic sites, respectively.}, language = {en} } @phdthesis{Schlaad2005, author = {Schlaad, Helmut}, title = {Polymer self-assembly : adding complexity to mesostructures of diblock copolymers by specific interactions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001824}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {In dieser Arbeit wurde die Rolle selektiver, nicht-kovalenter Wechselwirkungen bei der Selbstorganisation von Diblockcopolymeren untersucht. Durch Einf{\"u}hrung elektrostatischer, dipolarer Wechselwirkungen oder Wasserstoffbr{\"u}ckenbindungen sollte es gelingen, komplexe Mesostrukturen zu erzeugen und die Ordnung vom Nanometerbereich auf gr{\"o}ßere L{\"a}ngenskalen auszuweiten. Diese Arbeit ist im Rahmen von Biomimetik zu sehen, da sie Konzepte der synthetischen Polymer- und Kolloidchemie und Grundprinzipien der Strukturbildung in supramolekularen und biologischen Systemen verbindet. Folgende Copolymersysteme wurden untersucht: (i) Blockionomere, (ii) Blockcopolymere mit chelatisierenden Acetoacetoxyeinheiten und (iii) Polypeptid-Blockcopolymere.}, language = {en} }