@article{SchulzeMakuchWagnerKounavesetal.2018, author = {Schulze-Makuch, Dirk and Wagner, Dirk and Kounaves, Samuel P. and Mangelsdorf, Kai and Devine, Kevin G. and de Vera, Jean-Pierre and Schmitt-Kopplin, Philippe and Grossart, Hans-Peter and Parro, Victor and Kaupenjohann, Martin and Galy, Albert and Schneider, Beate and Airo, Alessandro and Froesler, Jan and Davila, Alfonso F. and Arens, Felix L. and Caceres, Luis and Cornejo, Francisco Solis and Carrizo, Daniel and Dartnell, Lewis and DiRuggiero, Jocelyne and Flury, Markus and Ganzert, Lars and Gessner, Mark O. and Grathwohl, Peter and Guan, Lisa and Heinz, Jacob and Hess, Matthias and Keppler, Frank and Maus, Deborah and McKay, Christopher P. and Meckenstock, Rainer U. and Montgomery, Wren and Oberlin, Elizabeth A. and Probst, Alexander J. and Saenz, Johan S. and Sattler, Tobias and Schirmack, Janosch and Sephton, Mark A. and Schloter, Michael and Uhl, Jenny and Valenzuela, Bernardita and Vestergaard, Gisle and Woermer, Lars and Zamorano, Pedro}, title = {Transitory microbial habitat in the hyperarid Atacama Desert}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {115}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {11}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1714341115}, pages = {2670 -- 2675}, year = {2018}, language = {en} } @article{SchulzeWehrholdHille2018, author = {Schulze, Sven and Wehrhold, Michel and Hille, Carsten}, title = {Femtosecond-Pulsed laser written and etched fiber bragg gratings for fiber-optical biosensing}, series = {Sensors}, volume = {18}, journal = {Sensors}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s18092844}, pages = {20}, year = {2018}, abstract = {We present the development of a label-free, highly sensitive fiber-optical biosensor for online detection and quantification of biomolecules. Here, the advantages of etched fiber Bragg gratings (eFBG) were used, since they induce a narrowband Bragg wavelength peak in the reflection operation mode. The gratings were fabricated point-by-point via a nonlinear absorption process of a highly focused femtosecond-pulsed laser, without the need of prior coating removal or specific fiber doping. The sensitivity of the Bragg wavelength peak to the surrounding refractive index (SRI), as needed for biochemical sensing, was realized by fiber cladding removal using hydrofluoric acid etching. For evaluation of biosensing capabilities, eFBG fibers were biofunctionalized with a single-stranded DNA aptamer specific for binding the C-reactive protein (CRP). Thus, the CRP-sensitive eFBG fiber-optical biosensor showed a very low limit of detection of 0.82 pg/L, with a dynamic range of CRP detection from approximately 0.8 pg/L to 1.2 mu g/L. The biosensor showed a high specificity to CRP even in the presence of interfering substances. These results suggest that the proposed biosensor is capable for quantification of CRP from trace amounts of clinical samples. In addition, the adaption of this eFBG fiber-optical biosensor for detection of other relevant analytes can be easily realized.}, language = {en} } @phdthesis{Schulze2018, author = {Schulze, Sven}, title = {Entwicklung und Charakterisierung optischer Biosensorplattformen basierend auf photonischen Kristallen und Faser-Bragg-Gitter}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-422139}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 149, A-23, B-2, C-8}, year = {2018}, abstract = {In dieser Arbeit steht die Entwicklung einer Sensorplattform f{\"u}r biochemische Anwendungen, welche auf einem optischen Detektionsprinzips beruht, im Vordergrund. W{\"a}hrend der Entwicklung wurden zwei komplement{\"a}re Konzeptideen behandelt, zum einen ein Sensor, der auf photonischen Kristallen und Wellenleiterstrukturen basiert und zum anderen einen faserbasierten Sensor, der chemisch modifizierte Faser-Bragg-Gitter enth{\"a}lt. Das optische Detektionsprinzip in beiden Sensorideen ist die resultierende Brechungsindex{\"a}nderung als messbare physikochemische Kenngr{\"o}ße. Das aus der Natur bekannte Ph{\"a}nomen der photonischen Kristalle, das u. a. bei Opalen und bei Schmetterlingen zu finden ist, wurde bereits 1887 von Lord Rayleigh beschrieben. Er beschrieb die optischen Eigenschaften von periodischen mehrschichtigen Filmen, welche als vereinfachtes Modell eines eindimensionalen photonischen Kristalls verstanden werden k{\"o}nnen. Die Periodizit{\"a}t der Brechungsindex{\"a}nderung resultiert in einem optischen Filter f{\"u}r Frequenzen in einem bestimmten spektralen Bereich, weshalb dann dort keine Lichtausbreitung mehr m{\"o}glich ist. Wird dieses System aber durch eine Defektstelle in der Brechungsindexperiodizit{\"a}t gest{\"o}rt, sodass daraus zwei perfekt periodische Systeme entstehen, ist die Lichtausbreitung f{\"u}r eine bestimmte Frequenz dennoch m{\"o}glich. In der Folge resultiert daraus ein schmalbandiges Signal im Transmissionsspektrum. Die erlaubte Frequenz ist dabei u. a. abh{\"a}ngig vom Brechungsindexunterschied des periodischen Systems, d.h. Ver{\"a}nderung des Brechungsindexes einer Schicht f{\"u}hrt zu einer spektralen Verschiebung der erlaubten Frequenz, dadurch kann dieses Sensorkonzept f{\"u}r biochemische Sensorik ausgenutzt werden [1]. Diese Entwicklung des auf photonischen Kristallen basierenden Sensors war eine Kooperation mit dem Industriepartner „Nanoplus GmbH". In der Doktorarbeit wurden Simulationen und praktischen Arbeiten zur Designentwicklung des Sensors und die Arbeiten an einem ersten Modellaufbau f{\"u}r die biochemischen Anwendungen durchgef{\"u}hrt. F{\"u}r den faserbasierten Sensor wurden Faser-Bragg-Gitter in den Faserkern hineingeschrieben. Hill et al. entdeckten 1978, dass solche Gitterstrukturen genau wie photonische Kristalle als optische Filter fungieren [2]. Die Gitter bestehen dabei aus {\"A}nderungen des Brechungsindexes im Faserkern. Im Laufe der n{\"a}chsten vierzig Jahren wurden verschiedene Einschreibetechniken und Gitterstrukturen entwickelt, weshalb die Eigenschaften der jeweiligen Gitterstrukturen variieren. Eine solche Gitterstruktur sind u. a. die Faser-Bragg-Gitter, deren Gitterperiode, d. h. die Abst{\"a}nde der Brechungsindexmodifikationen, sich im Nanometer- bis Mikrometerbereich befinden. Aufgrund der kleinen Gitterperiode wird eine r{\"u}ckw{\"a}rtsf{\"u}hrende Welle im Kern f{\"u}r eine bestimmte Frequenz bzw. Wellenl{\"a}nge, der Bragg-Wellenl{\"a}nge, erzeugt. Im Endeffekt resultiert daraus ein schmalbandiges Signal sowohl im Transmissionsspektrum, als auch im Reflexionsspektrum. Die Resonanzwellenl{\"a}nge ist dabei proportional zu der Gitterperiode und dem effektiven Brechungsindex, welcher vom Brechungsindex des Kerns und des kernumgebenen Materials abh{\"a}ngig ist. Letztlich eignet sich diese Technik f{\"u}r physikochemische Sensorik. Im Rahmen dieser Arbeit wurden die Gitter mit Hilfe einer relativen neuen Herstellungsmethode in die Fasern geschrieben [3]. Anschließend stand die Entwicklung eines Biosensors im Vordergrund, wobei zun{\"a}chst ein Protokoll zum {\"A}tzen der Faser mit Flusss{\"a}ure entwickelt worden ist, dass das System sensitiv zum umgebenen Brechungsindex macht. Am Ende wurde ein Modellaufbau realisiert, indem ein Modellsystem, hier die Detektion vom C-reaktiven Protein mittels spezifischen einzelstr{\"a}ngigen DNS-Aptameren, erfolgreich getestet und quantifiziert worden ist. 1 Mandal, S.; Erickson, D. Nanoscale Optofluidic Sensor Arrays. Opt. Express 2008, 16 (3), 1623-1631. 2 Hill, K. O.; Fujii, Y.; Johnson, D. C.; Kawasaki, B. S. Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication. Appl. Phys. Lett. 1978, 32 (10), 647-649. 3 Mart{\´i}nez, A.; Dubov, M.; Khrushchev, I.; Bennion, I. Direct Writing of Fibre Bragg Gratings by Femtosecond Laser. Electron. Lett. 2004, 40 (19), 1170.}, language = {de} }