@article{SchueringsNevskyiEliaschetal.2016, author = {Sch{\"u}rings, Marco-Philipp and Nevskyi, Oleksii and Eliasch, Kamill and Michel, Ann-Katrin and Liu, Bing and Pich, Andrij and B{\"o}ker, Alexander and von Plessen, Gero and W{\"o}ll, Dominik}, title = {Diffusive Motion of Linear Microgel Assemblies in Solution}, series = {Polymers}, volume = {8}, journal = {Polymers}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym8120413}, pages = {14}, year = {2016}, abstract = {Due to the ability of microgels to rapidly contract and expand in response to external stimuli, assemblies of interconnected microgels are promising for actuation applications, e.g., as contracting fibers for artificial muscles. Among the properties determining the suitability of microgel assemblies for actuation are mechanical parameters such as bending stiffness and mobility. Here, we study the properties of linear, one-dimensional chains of poly(N-vinylcaprolactam) microgels dispersed in water. They were fabricated by utilizing wrinkled surfaces as templates and UV-cross-linking the microgels. We image the shapes of the chains on surfaces and in solution using atomic force microscopy (AFM) and fluorescence microscopy, respectively. In solution, the chains are observed to execute translational and rotational diffusive motions. Evaluation of the motions yields translational and rotational diffusion coefficients and, from the translational diffusion coefficient, the chain mobility. The microgel chains show no perceptible bending, which yields a lower limit on their bending stiffness.}, language = {en} }