@phdthesis{Behrendt2018, author = {Behrendt, Felix Nicolas}, title = {New bio-based polymers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418316}, school = {Universit{\"a}t Potsdam}, pages = {vii, 153}, year = {2018}, abstract = {Redox-responsive polymers, such as poly(disulfide)s, are a versatile class of polymers with potential applications including gene- and drug-carrier systems. Their degradability under reductive conditions allows for a controlled response to the different redox states that are present throughout the body. Poly(disulfide)s are typically synthesized by step growth polymerizations. Step growth polymerizations, however, may suffer from low conversions and therefore low molar masses, limiting potential applications. The purpose of this thesis was therefore to find and investigate new synthetic routes towards the synthesis of amino acid-based poly(disulfide)s. The different routes in this thesis include entropy-driven ring opening polymerizations of novel macrocyclic monomers, derived from cystine derivatives. These monomers were obtained with overall yields of up to 77\% and were analyzed by mass spectrometry as well as by 1D and 2D NMR spectroscopy. The kinetics of the entropy-driven ring-opening metathesis polymerization (ED-ROMP) were thoroughly investigated in dependence of temperature, monomer concentration, and catalyst concentration. The polymerization was optimized to yield poly(disulfide)s with weight average molar masses of up to 80 kDa and conversions of ~80\%, at the thermodynamic equilibrium. Additionally, an alternative metal free polymerization, namely the entropy-driven ring-opening disulfide metathesis polymerization (ED-RODiMP) was established for the polymerization of the macrocyclic monomers. The effect of different solvents, concentrations and catalyst loadings on the polymerization process and its kinetics were studied. Polymers with very high weight average molar masses of up to 177 kDa were obtained. Moreover, various post-polymerization reactions were successfully performed. This work provides the first example of the homopolymerization of endo-cyclic disulfides by ED-ROMP and the first substantial study into the kinetics of the ED-RODiMP process.}, language = {en} } @phdthesis{Debsharma2019, author = {Debsharma, Tapas}, title = {Cellulose derived polymers}, doi = {10.25932/publishup-44131}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441312}, school = {Universit{\"a}t Potsdam}, pages = {x, 103}, year = {2019}, abstract = {Plastics, such as polyethylene, polypropylene, and polyethylene terephthalate are part of our everyday lives in the form of packaging, household goods, electrical insulation, etc. These polymers are non-degradable and create many environmental problems and public health concerns. Additionally, these polymers are produced from finite fossils resources. With the continuous utilization of these limited resources, it is important to look towards renewable sources along with biodegradation of the produced polymers, ideally. Although many bio-based polymers are known, such as polylactic acid, polybutylene succinate adipate or polybutylene succinate, none have yet shown the promise of replacing conventional polymers like polyethylene, polypropylene and polyethylene terephthalate. Cellulose is one of the most abundant renewable resources produced in nature. It can be transformed into various small molecules, such as sugars, furans, and levoglucosenone. The aim of this research is to use the cellulose derived molecules for the synthesis of polymers. Acid-treated cellulose was subjected to thermal pyrolysis to obtain levoglucosenone, which was reduced to levoglucosenol. Levoglucosenol was polymerized, for the first time, by ring-opening metathesis polymerization (ROMP) yielding high molar mass polymers of up to ~150 kg/mol. The poly(levoglucosenol) is thermally stable up to ~220 ℃, amorphous, and is exhibiting a relatively high glass transition temperature of ~100 ℃. The poly(levoglucosenol) can be converted to a transparent film, resembling common plastic, and was found to degrade in a moist acidic environment. This means that poly(levoglucosenol) may find its use as an alternative to conventional plastic, for instance, polystyrene. Levoglucosenol was also converted into levoglucosenyl methyl ether, which was polymerized by cationic ring-opening metathesis polymerization (CROP). Polymers were obtained with molar masses up to ~36 kg/mol. These polymers are thermally stable up to ~220 ℃ and are semi-crystalline thermoplastics, having a glass transition temperature of ~35 ℃ and melting transition of 70-100 ℃. Additionally, the polymers underwent cross-linking, hydrogenation and thiol-ene click chemistry.}, language = {en} }