@article{RumschoettelKosmellaPrietzeletal.2017, author = {Rumschoettel, Jens and Kosmella, Sabine and Prietzel, Claudia Christina and Appelhans, Dietmar and Koetz, Joachim}, title = {DNA polyplexes with dendritic glycopolymer-entrapped gold nanoparticles}, series = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, volume = {154}, journal = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7765}, doi = {10.1016/j.colsurfb.2017.03.001}, pages = {74 -- 81}, year = {2017}, abstract = {Polyplexes, composed of Salmon DNA and very small gold nanoparticles embedded into a dendritic glycopolymer architecture of sugar-modified poly(ethyleneimine) (PEI-Mal) with a molar mass of about 25,000 g/mol, were characterized by dynamic light scattering (DLS), zeta potential measurements, micro differential scanning calorimetry (mu-DSC) and transmission electron microscopy (TEM). The PEI-Mal-entrapped gold nanoparticles of about 2 nm in diameter influence the polyplex formation of the hyperbranched PEI containing bulky maltose, and in consequence the DNA is more compactized in the inner part of spherical polyplex particles of about 150 nm in diameter. The resulting more compact core shell polyplex particles with embedded gold nanoparticles in the outer polymer shell will be used as components in forthcoming gene delivery experiments. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @article{RumschoettelBausKosmellaetal.2017, author = {Rumsch{\"o}ttel, Jens and Baus, Susann and Kosmella, Sabine and Appelhans, Dietmar and Koetz, Joachim}, title = {Incorporation of DNA/PEI polyplexes into gelatin/chitosan hydrogel scaffolds}, series = {Composite interfaces}, volume = {25}, journal = {Composite interfaces}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1568-5543}, doi = {10.1080/09276440.2017.1302725}, pages = {1 -- 11}, year = {2017}, abstract = {Polyplexes between a double-stranded Salmon DNA and hyperbranched poly(ethyleneimine) (PEI) as well as a maltosylated PEI-Mal were incorporated into a gelatin/chitosan hydrogel scaffold. Calorimetric experiments of the polyplexes show a decrease of the melting temperature in presence of PEI and a peak splitting in presence of PEI-Mal, which can be interpreted to a partial compaction of the DNA strands in presence of PEI-Mal. When the polyplexes are incorporated into a gelatin/chitosan scaffold in the swollen state, the DNA melting peaks at 90 and 93 degrees C, respectively, indicate in both cases the release of the DNA at the surface of the hydrogel scaffold in a more compact form. Specific interactions between the PEI-Mal shell and gelatin are responsible for the tuning of the release properties in presence of the maltose units in the hyperbranched PEI.}, language = {en} }