@article{Koetz2020, author = {Koetz, Joachim}, title = {The Effect of Surface Modification of Gold Nanotriangles for Surface-Enhanced Raman Scattering Performance}, series = {Nanomaterials}, volume = {10}, journal = {Nanomaterials}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2079-4991}, doi = {10.3390/nano10112187}, pages = {13}, year = {2020}, abstract = {A surface modification of ultraflat gold nanotriangles (AuNTs) with different shaped nanoparticles is of special relevance for surface-enhanced Raman scattering (SERS) and the photo-catalytic activity of plasmonic substrates. Therefore, different approaches are used to verify the flat platelet morphology of the AuNTs by oriented overgrowth with metal nanoparticles. The most important part for the morphological transformation of the AuNTs is the coating layer, containing surfactants or polymers. By using well established AuNTs stabilized by a dioctyl sodium sulfosuccinate (AOT) bilayer, different strategies of surface modification with noble metal nanoparticles are possible. On the one hand undulated superstructures were synthesized by in situ growth of hemispherical gold nanoparticles in the polyethyleneimine (PEI)-coated AOT bilayer of the AuNTs. On the other hand spiked AuNTs were obtained by a direct reduction of Au³⁺ ions in the AOT double layer in presence of silver ions and ascorbic acid as reducing agent. Additionally, crumble topping of the smooth AuNTs can be realized after an exchange of the AOT bilayer by hyaluronic acid, followed by a silver-ion mediated reduction with ascorbic acid. Furthermore, a decoration with silver nanoparticles after coating the AOT bilayer with the cationic surfactant benzylhexadecyldimethylammonium chloride (BDAC) can be realized. In that case the ultraviolet (UV)-absorption of the undulated Au@Ag nanoplatelets can be tuned depending on the degree of decoration with silver nanoparticles. Comparing the Raman scattering data for the plasmon driven dimerization of 4-nitrothiophenol (4-NTP) to 4,4′-dimercaptoazobenzene (DMAB) one can conclude that the most important effect of surface modification with a 75 times higher enhancement factor in SERS experiments becomes available by decoration with gold spikes.}, language = {en} } @article{HaubitzFudickarLinkeretal.2020, author = {Haubitz, Toni and Fudickar, Werner and Linker, Torsten and Kumke, Michael Uwe}, title = {pH-sensitive fluorescence switching of pyridylanthracenes}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {124}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {52}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.0c09911}, pages = {11017 -- 11024}, year = {2020}, abstract = {9,10-substituted anthracenes are known for their useful optical properties like fluorescence, which makes them frequently used probes in sensing applications. In this article, we investigate the fundamental photophysical properties of three pyridyl-substituted variants. The nitrogen atoms in the pyridinium six-membered rings are located in the ortho-, meta-, and para-positions in relation to the anthracene core. Absorption, fluorescence, and transient absorption measurements were carried out and were complemented by theoretical calculations. We monitored the photophysics of the anthracene derivatives in chloroform and water investigating the protonated as well as their nonprotonated forms. We found that the optical properties of the nonprotonated forms are strongly determined by the anthracene chromophore, with only small differences to other 9,10-substituted anthracenes, for example diphenyl anthracene. In contrast, protonation leads to a strong decrease in fluorescence intensity and lifetime. Transient absorption measurements and theoretical calculations revealed the formation of a charge-transfer state in the protonated chromophores, where electron density is shifted from the anthracene moiety toward the protonated pyridyl substituents. While the para- and ortho-derivatives' charge transfer is still moderately fluorescent, the meta-derivative is affected much stronger and shows nearly no fluorescence. This nitrogen-atom-position-dependent sensitivity to hydronium activity makes a combination of these fluorophores very attractive for pH-sensing applications covering a broadened pH range.}, language = {en} } @article{WessigFreyseSchusteretal.2020, author = {Wessig, Pablo and Freyse, Daniel and Schuster, David and Kelling, Alexandra}, title = {Fluorescent dyes with large stokes shifts based on Benzo[1,2-d:4,5-d']bis([1,3]dithiole) ("S4-DBD Dyes")}, series = {Europan journal of organic chemistry}, volume = {2020}, journal = {Europan journal of organic chemistry}, number = {11}, publisher = {Wiley}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.202000093}, pages = {1732 -- 1744}, year = {2020}, abstract = {We report on a further development of [1,3]-dioxolo[4.5-f]benzodioxole (DBD) fluorescent dyes by replacement of the four oxygen atoms of the heterocyclic core by sulfur atoms. This variation causes striking changes of the photophysical properties. Whereas absorption and emission significantly shifted to longer wavelength, the fluorescence lifetimes and quantum yields are diminished compared to DBD dyes. The latter effect is presumably caused by an enhanced intersystem crossing to the triplet state due to the sulfur atoms. The very large Stokes shifts of the S-4-DBD dyes ranging from 3000 cm(-1) to 7400 cm(-1) (67 nm to 191 nm) should be especially emphasized. By analogy with DBD dyes a broad variation of absorption and emission wavelength is possible by introducing different electron withdrawing substituents. Moreover, some derivatives for coupling with biomolecules were developed.}, language = {en} } @article{LoodSchmidt2020, author = {Lood, Kajsa and Schmidt, Bernd}, title = {Stereoselective synthesis of conjugated polyenes based on tethered olefin metathesis and carbonyl olefination}, series = {The journal of organic chemistry}, volume = {85}, journal = {The journal of organic chemistry}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.0c00446}, pages = {5122 -- 5130}, year = {2020}, abstract = {The combination of a highly stereoselective tethered olefin metathesis reaction and a Julia-Kocienski olefination is presented as a strategy for the synthesis of conjugated polyenes with at least one Z-configured C=C bond. The strategy is exemplified by the synthesis of the marine natural product (+)-bretonin B.}, language = {en} } @article{MaiLindeLinker2020, author = {Mai-Linde, Yasemin and Linker, Torsten}, title = {Radical clock probes to determine carbohydrate radical stabilities}, series = {Organic letters}, volume = {22}, journal = {Organic letters}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {1523-7060}, doi = {10.1021/acs.orglett.0c00111}, pages = {1525 -- 1529}, year = {2020}, abstract = {Carbohydrate radical stabilities in the 1- and 2-position have been determined by a radical clock approach, starting from cyclopropanated sugars with xanthates as precursors. Various hexoses and pentoses afforded 1-deoxy sugars as main products, indicating that anomeric radicals are more stable than radicals in the 2-position. An additional influence of the configurations on radical stabilities has been observed. Our results should be interesting for the understanding of 1,2-radical rearrangements in carbohydrate chemistry and offer an easy access to deoxy-vinyl sugars.}, language = {en} } @article{SchultzeFossSchmidt2020, author = {Schultze, Christiane and Foß, Stefan and Schmidt, Bernd}, title = {8-Prenylflavanones through microwave promoted tandem claisen rearrangement/6-endo-trig cyclization and cross metathesis}, series = {European journal of organic chemistry}, volume = {2020}, journal = {European journal of organic chemistry}, number = {47}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-193X}, doi = {10.1002/ejoc.202001378}, pages = {7373 -- 7384}, year = {2020}, abstract = {Prenylated flavanones were obtained from ortho-allyloxy chalcones through a one-pot sequence of Claisen rearrangement and 6-endo-trig cyclization, followed by olefin cross metathesis of the intermediate allyl flavanones with 2-methyl-2-butene. The synthetic utility of this route is illustrated for the synthesis of several naturally occurring prenyl flavanones.}, language = {en} } @article{SchwarzeRiemer2020, author = {Schwarze, Thomas and Riemer, Janine}, title = {Highly K+ selective probes with fluorescence emission wavelengths higher than 500 nm in water}, series = {ChemistrySelect}, volume = {5}, journal = {ChemistrySelect}, number = {42}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2365-6549}, doi = {10.1002/slct.202003785}, pages = {13174 -- 13178}, year = {2020}, abstract = {Herein, we report on the synthesis of highly K+/Na+ selective fluorescent probes in a feasible number of synthetic steps. These K+ selective fluorescent probes, so called fluoroionophores, 1 and 2 consists of different highly K+/Na+ selective building blocks the alkoxy-substituted N-phenylaza-18-crown-6 lariat ethers (ionophores) and "green" (cf. coumarin unit in 1) or "red" (cf. nile red unit in 2) fluorescent moieties (fluorophores). The fluorescent probes 1 and 2 show K+ induced fluorescence enhancement factors of 4.1 for 1 and 1.9 for 2 and dissociation constants for the corresponding K+ complexes of 43 mM (1+K+) and 18 mM (2+K+) in buffered aqueous solution. The fluorescence signal of 1 and 2 is changed by less than 5 \% by pH values in the range of 6.8 to 8.8. Thus, 1 and 2 are capable fluorescent tools to determine extracellular K+ levels by fluorescence enhancements at wavelengths higher than 500 nm.}, language = {en} } @article{HermannsSchmidtGlowinskietal.2020, author = {Hermanns, Jolanda and Schmidt, Bernd and Glowinski, Ingrid and Keller, David}, title = {Online teaching in the course "organic chemistry" for nonmajor chemistry students}, series = {Journal of chemical education}, volume = {97}, journal = {Journal of chemical education}, number = {9}, publisher = {American Chemical Society}, address = {Washington}, issn = {0021-9584}, doi = {10.1021/acs.jchemed.0c00658}, pages = {3140 -- 3146}, year = {2020}, abstract = {In this communication the development of an online course on the topic organic chemistry for nonmajor chemistry students is described and discussed. For this online course, the existing classroom course was further developed. New elements such as podcasts, task navigators, and a forum for discussing the solving of tasks or problems with the content were added. This new online course was evaluated. Therefore, a questionnaire was developed. This consists of questions with regard to the longtime learning behavior of the students and to the online learning. The results of this evaluation show that a preference for online learning and a preference for classroom teaching can be measured separately in two scales. Students values on the scale representing a preference for online learning correlate positively and significantly with confidence in the choice of the study subject, enthusiasm about the subject, and the ability to organize their learning, learning environment, and time management. They correlate also with the satisfaction concerning the materials provided. Students values for one of those teaching methods also correlate with their rating with regard to their exam preparation. Values representing a preference for online teaching correlate positively with students better feeling of exam preparation. Values representing a preference for classroom teaching show negative correlations with the values representing students similar or even better preparation for the exams as a result of online teaching. It is therefore not surprising that the ratings for the two scales correlate with the wish for a combination of online teaching and classroom teaching in the future. As a solution, a new course concept for the time after the corona virus crisis that suits all students is outlined in the outlook.}, language = {en} } @article{FudickarLinker2020, author = {Fudickar, Werner and Linker, Torsten}, title = {Structural motives controlling the binding affinity of 9,10-bis(methylpyridinium)anthracenes towards DNA}, series = {Bioorganic \& medicinal chemistry : a Tetrahedron publication for the rapid dissemination of full original research papers and critical reviews on biomolecular chemistry, medicinal chemistry and related disciplines}, volume = {28}, journal = {Bioorganic \& medicinal chemistry : a Tetrahedron publication for the rapid dissemination of full original research papers and critical reviews on biomolecular chemistry, medicinal chemistry and related disciplines}, number = {8}, publisher = {Elsevier}, address = {Oxford}, issn = {0968-0896}, doi = {10.1016/j.bmc.2020.115432}, pages = {7}, year = {2020}, abstract = {In the search of new DNA groove binding agents a series of substituted 9,10-methylpyridiniumanthracenes have been synthesized and their interactions with DNA have been studied by UV/vis absorption, CD and fluorescence spectroscopy. A minor groove binding mode is confirmed by DNA melting studies, strong CD effects, the dependence of the binding affinity on ionic strength, and the differentiation between AT and GC base pairs. No binding occurs to GC sequences. Binding constants to calf thymus DNA (ct-DNA) and poly(dA:dT) in the range between 1 x 10(4) and 3 x 10(5) M-1 have been determined. The binding strength decreases with the size of substituents attached at the anthracene site. Variation of the substitution pattern of the charged groups shows that methyl groups in meta position cause slightly stronger binding than methyl groups in para position. In contrast, with these groups in ortho position, no binding interaction has been observed. The strongest binding is achieved with an expansion of the peripheral heterocycle from pyridine to quinoline. Molecular modeling reveals the pivotal role of the substitution pattern: Anthracenes with para and meta pyridines align along the minor grooves. On the other hand, the ortho derivative adopts no groove-alignment.}, language = {en} } @article{PerovicQinOschatz2020, author = {Perovic, Milena and Qin, Qing and Oschatz, Martin}, title = {From molecular precursors to nanoparticles}, series = {Advanced functional materials}, volume = {30}, journal = {Advanced functional materials}, number = {41}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201908371}, pages = {21}, year = {2020}, abstract = {Nanoporous carbon materials (NCMs) provide the "function" of high specific surface area and thus have large interface area for interactions with surrounding species, which is of particular importance in applications related to adsorption processes. The strength and mechanism of adsorption depend on the pore architecture of the NCMs. In addition, chemical functionalization can be used to induce changes of electron density and/or electron density distribution in the pore walls, thus further modifying the interactions between carbons and guest species. Typical approaches for functionalization of nanoporous materials with regular atomic construction like porous silica, metal-organic frameworks, or zeolites, cannot be applied to NCMs due to their less defined local atomic construction and abundant defects. Therefore, synthetic strategies that offer a higher degree of control over the process of functionalization are needed. Synthetic approaches for covalent functionalization of NCMs, that is, for the incorporation of heteroatoms into the carbon backbone, are critically reviewed with a special focus on strategies following the concept "from molecules to materials." Approaches for coordinative functionalization with metallic species, and the functionalization by nanocomposite formation between pristine carbon materials and heteroatom-containing carbons, are introduced as well. Particular focus is given to the influences of these functionalizations in adsorption-related applications.}, language = {en} } @article{PruefertUrbanFischeretal.2020, author = {Pr{\"u}fert, Chris and Urban, Raphael David and Fischer, Tillmann Georg and Villatoro, Jos{\´e} Andr{\´e}s and Riebe, Daniel and Beitz, Toralf and Belder, Detlev and Zeitler, Kirsten and L{\"o}hmannsr{\"o}ben, Hans-Gerd}, title = {In situ monitoring of photocatalyzed isomerization reactions on a microchip flow reactor by IR-MALDI ion mobility spectrometry}, series = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica}, volume = {412}, journal = {Analytical and bioanalytical chemistry : a merger of Fresenius' journal of analytical chemistry, Analusis and Quimica analitica}, number = {28}, publisher = {Springer}, address = {Heidelberg}, issn = {1618-2642}, doi = {10.1007/s00216-020-02923-y}, pages = {7899 -- 7911}, year = {2020}, abstract = {The visible-light photocatalyticE/Zisomerization of olefins can be mediated by a wide spectrum of triplet sensitizers (photocatalysts). However, the search for the most efficient photocatalysts through screenings in photo batch reactors is material and time consuming. Capillary and microchip flow reactors can accelerate this screening process. Combined with a fast analytical technique for isomer differentiation, these reactors can enable high-throughput analyses. Ion mobility (IM) spectrometry is a cost-effective technique that allows simple isomer separation and detection on the millisecond timescale. This work introduces a hyphenation method consisting of a microchip reactor and an infrared matrix-assisted laser desorption ionization (IR-MALDI) ion mobility spectrometer that has the potential for high-throughput analysis. The photocatalyzedE/Zisomerization of ethyl-3-(pyridine-3-yl)but-2-enoate (E-1) as a model substrate was chosen to demonstrate the capability of this device. Classic organic triplet sensitizers as well as Ru-, Ir-, and Cu-based complexes were tested as catalysts. The ionization efficiency of theZ-isomer is much higher at atmospheric pressure which is due to a higher proton affinity. In order to suppress proton transfer reactions by limiting the number of collisions, an IM spectrometer working at reduced pressure (max. 100 mbar) was employed. This design reduced charge transfer reactions and allowed the quantitative determination of the reaction yield in real time. Among 14 catalysts tested, four catalysts could be determined as efficient sensitizers for theE/Zisomerization of ethyl cinnamate derivativeE-1. Conversion rates of up to 80\% were achieved in irradiation time sequences of 10 up to 180 s. With respect to current studies found in the literature, this reduces the acquisition times from several hours to only a few minutes per scan.}, language = {en} } @article{QinOschatz2020, author = {Qin, Qing and Oschatz, Martin}, title = {Overcoming chemical inertness under ambient conditions}, series = {ChemElectroChem}, volume = {7}, journal = {ChemElectroChem}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2196-0216}, doi = {10.1002/celc.201901970}, pages = {878 -- 889}, year = {2020}, abstract = {Ammonia (NH3) synthesis by the electrochemical N-2 reduction reaction (NRR) is increasingly studied and proposed as an alternative process to overcome the disadvantages of Haber-Bosch synthesis by a more energy-efficient, carbon-free, delocalized, and sustainable process. An ever-increasing number of scientists are working on the improvement of the faradaic efficiency (FE) and NH3 production rate by developing novel catalysts, electrolyte concepts, and/or by contributing theoretical studies. The present Minireview provides a critical view on the interplay of different crucial aspects in NRR from the electrolyte, over the mechanism of catalytic activation of N-2, to the full electrochemical cell. Five critical questions are asked, discussed, and answered, each coupled with a summary of recent developments in the respective field. This article is not supposed to be a complete summary of recent research about NRR but provides a rather critical personal view on the field. It is the major aim to give an overview over crucial influences on different length scales to shine light on the sweet spots into which room for revolutionary instead of incremental improvements may exist.}, language = {en} } @article{HaubitzJohnFreyseetal.2020, author = {Haubitz, Toni and John, Leonard and Freyse, Daniel and Wessig, Pablo and Kumke, Michael Uwe}, title = {Investigating the Sulfur "Twist" on the Photophysics of DBD Dyes}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {124}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {22}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.0c01880}, pages = {4345 -- 4353}, year = {2020}, abstract = {The so-called DBD ([1,3]dioxolo[4,5-f][1,3]benzodioxole) dyes are a new class of fluorescent dyes, with tunable photophysical properties like absorption, fluorescence lifetime, and Stokes shift. With the development of sulfur based DBDs, this dye class is extended even further for possible applications in spectroscopy and microscopy. In this paper we are investigating the basic photophysical properties and their implications for future applications for S-4-DBD as well as O-4-DBD. On the basis of time-resolved laser fluorescence spectroscopy, transient absorption spectroscopy, and UV/vis-spectroscopy, we determined the rate constants of the radiative and nonradiative deactivation processes as well as the energy of respective electronic states involved in the electronic deactivation of S-4-DBD and of O-4-DBD. For S-4-DBD we unraveled the triplet formation with intersystem crossing quantum yields of up to 80\%. By TD-DFT calculations we estimated a triplet energy of around 13500-14700 cm(-1) depending on the DBD dye and solvent. Through solvent dependent measurements, we found quadrupole moments in the range of 2 B.}, language = {en} } @article{EbertZiemannWandtetal.2020, author = {Ebert, Franziska and Ziemann, Vanessa and Wandt, Viktoria Klara Veronika and Witt, Barbara and M{\"u}ller, Sandra Marie and Guttenberger, Nikolaus and Bankoglu, Ezgi Eyluel and Stopper, Helga and Raber, Georg and Francesconi, Kevin A. and Schwerdtle, Tanja}, title = {Cellular toxicological characterization of a thioxolated arsenic-containing hydrocarbon}, series = {Journal of trace elements in medicine and biology}, volume = {61}, journal = {Journal of trace elements in medicine and biology}, publisher = {Elsevier}, address = {M{\"u}nchen}, doi = {10.1016/j.jtemb.2020.126563}, year = {2020}, abstract = {Arsenolipids, especially arsenic-containing hydrocarbons (AsHC), are an emerging class of seafood originating contaminants. Here we toxicologically characterize a recently identified oxo-AsHC 332 metabolite, thioxo-AsHC 348 in cultured human liver (HepG2) cells. Compared to results of previous studies of the parent compound oxo-AsHC 332, thioxo-AsHC 348 substantially affected cell viability in the same concentration range but exerted about 10-fold lower cellular bioavailability. Similar to oxo-AsHC 332, thioxo-AsHC 348 did not substantially induce oxidative stress nor DNA damage. Moreover, in contrast to oxo-AsHC 332 mitochondria seem not to be a primary subcellular toxicity target for thioxo-AsHC 348. This study indicates that thioxo-AsHC 348 is at least as toxic as its parent compound oxo-AsHC 332 but very likely acts via a different mode of toxic action, which still needs to be identified.}, language = {en} } @article{DuttaSchuermannBalko2020, author = {Dutta, Anushree and Sch{\"u}rmann, Robin Mathis and Balko, Ilko}, title = {Plasmon mediated decomposition of brominated nucleobases on silver nanoparticles}, series = {The european physical journal D}, volume = {74}, journal = {The european physical journal D}, number = {19}, publisher = {Springer}, address = {Berlin}, issn = {1434-6079}, doi = {10.1140/epjd/e2019-100115-1}, year = {2020}, abstract = {The localized surface plasmon resonances (LSPRs) of silver nanoparticles (AgNPs) give rise to the generation of so called hot electrons and a high local electric field enhancement, which enable an application of AgNPs in different fields ranging from catalysis to sensing. Hot electrons generated upon the decay of LSPRs are transferred to molecules adsorbed on the surface of the NPs and trigger chemical reactions via dissociative electron attachment (DEA). Herein, we report on the hot electron induced decomposition of the brominated nucleobases - 8-bromoadenine, 8-bromoguanine, 5-bromocytosine and 5-bromouracil on laser illuminated AgNP surfaces. Surface enhanced Raman scattering (SERS) spectra of all canonical nucleobases and their brominated analogues have been recorded at different laser illumination times, and for the very first time we present SERS measurements of 8-bromoguanine and 5-bromocytosine. Reaction products have been identified by their vibrational fingerprint revealing the cleavage of the carbon bromide bond in all cases even under mild illumination conditions. These results indicate that the well-known reactions from DEA experiments in the gas phase (i) are also taking place on nanoparticle surfaces under ambient conditions, (ii) can be monitored by SERS, and (iii) are also of importance in analytical SERS applications involving electrophilic molecules, as the bands originating from reaction products need to be identified.}, language = {en} } @article{SchwarzeSprengerRiemer2020, author = {Schwarze, Thomas and Sprenger, Tobias and Riemer, Janine}, title = {1,2,3-Triazol-1,4-diyl-Fluoroionophores for Zn2+, Mg2+ and Ca2+ based on Fluorescence Intensity Enhancements in Water}, series = {ChemistrySelect}, volume = {5}, journal = {ChemistrySelect}, number = {41}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2365-6549}, doi = {10.1002/slct.202003695}, pages = {12727 -- 12735}, year = {2020}, abstract = {Herein, we represent cation-responsive fluorescent probes for the divalent cations Zn2+, Mg2+ and Ca2+, which show cation-induced fluorescence enhancements (FE) in water. The Zn2+-responsive probes Zn1, Zn2, Zn3 and Zn4 are based on o-aminoanisole-N,N-diacetic acid (AADA) derivatives and show in the presence of Zn2+ FE factors of 11.4, 13.9, 6.1 and 8.2, respectively. Most of all, Zn1 and Zn2 show higher Zn2+ induced FE than the regioisomeric triazole linked fluorescent probes Zn3 and Zn4, respectively. In this set, ZN2 is the most suitable probe to detect extracellular Zn2+ levels. For the Mg2+-responsive fluorescent probes Mg1, Mg2 and Mg3 based on o-aminophenol-N,N,O-triacetic acid (APTRA) derivatives, we also found that the regioisomeric linkage influences the fluorescence responds towards Mg2+ (Mg1+100 mM Mg2+ (FEF=13.2) and Mg3+100 mM Mg2+ (FEF=2.1)). Mg2 shows the highest Mg2+-induced FE by a factor of 25.7 and an appropriate K-d value of 3 mM to measure intracellular Mg2+ levels. Further, the Ca2+-responsive fluorescent probes Ca1 and Ca2 equipped with a 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) derivative show high Ca2+-induced FEs (Ca1 (FEF=22.1) and Ca2 (FEF=23.0)). Herein, only Ca1 (K-d=313 nM) is a suitable Ca2+ fluorescent indicator to determine intracellular Ca2+ levels.}, language = {en} } @article{RottkeHeyneReinicke2020, author = {Rottke, Falko O. and Heyne, Marie-Victoria and Reinicke, Stefan}, title = {Switching enzyme activity by a temperature responsive inhibitor modified polymer}, series = {Chemical communications}, volume = {56}, journal = {Chemical communications}, number = {16}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c9cc09385k}, pages = {2459 -- 2462}, year = {2020}, abstract = {A thermoresponsive NIPAAm-based polymer is combined with the selective acetylcholinesterase inhibitor tacrine in order to create a strict in sense on/off switch for enzymatic activity. This polymer-inhibitor conjugate inhibits AChE at room temperature and enables reactivation of AChE by heating above the cloud point of the conjugate.}, language = {en} } @article{HenningLiebigPrietzeletal.2020, author = {Henning, Ricky and Liebig, Ferenc and Prietzel, Claudia Christina and Klemke, Bastian and Koetz, Joachim}, title = {Gold nanotriangles with magnetite satellites}, series = {Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects}, volume = {600}, journal = {Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7757}, doi = {10.1016/j.colsurfa.2020.124913}, pages = {7}, year = {2020}, abstract = {This work describes the synthesis of hybrid particles of gold nanotriangles (AuNTs) with magnetite nanoparticles (MNPs) by using 1-mercaptopropyl-3-trimethoxysilan (MPTMS) and L-cysteine as linker molecules. Due to the combination of superparamagnetic properties of MNPs with optical properties of the AuNTs, nanoplatelet-satellite hybrid nanostructures with combined features become available. By using MPTMS with silan groups as linker molecule a magnetic "cloud" with embedded AuNTs can be separated. In presence of L-cysteine as linker molecule at pH > pH(iso) a more unordered aggregate structure of MNPs is obtained due to the dimerization of the L-cysteine. At pH < pH(iso) water soluble positively charged AuNTs with satellite MNPs can be synthesized. The time-dependent loading with MNP satellites under release of the extinction and magnetization offer a hybrid material, which is of special relevance for biomedical applications and plasmonic catalysis.}, language = {en} } @article{RauschBrockmeyerSchwerdtle2020, author = {Rausch, Ann-Kristin and Brockmeyer, Robert and Schwerdtle, Tanja}, title = {Development and Validation of a QuEChERS-Based Liquid Chromatography Tandem Mass Spectrometry Multi-Method for the Determination of 38 Native and Modified Mycotoxins in Cereals}, series = {Journal of Agricultural and Food Chemistry}, volume = {68}, journal = {Journal of Agricultural and Food Chemistry}, number = {16}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {0021-8561}, doi = {10.1021/acs.jafc.9b07491}, pages = {4657 -- 4669}, year = {2020}, abstract = {Here, a reliable and sensitive method for the determination of 38 (modified) mycotoxins was developed. Using a QuEChERS-based extraction method [acetonitrile/water/formic acid (75:20:5, v/v/v)], followed by two runs of high performance liquid chromatography tandem mass spectrometry with different conditions, relevant mycotoxins in cereals were analyzed. The method was validated according to the performance criteria defined by the European Commission (EC) in Commission Decision no. 657/2002. Limits of quantification ranged from 0.05 to 150 μg/kg. Good linearity (R2 > 0.99), recovery (61-120\%), repeatability (RSDr < 15\%), and reproducibility (RSDR < 20\%) were obtained for most mycotoxins. However, validation results for Alternaria toxins and fumonisins were unsatisfying. Matrix effects (-69 to +59\%) were compensated for using standard addition. Application on reference materials gave correct results while analysis of samples from local retailers revealed contamination, especially with deoxynivalenol, deoxynivalenol-3-glucoside, fumonisins, and zearalenone, in concentrations up to 369, 58, 1002, and 21 μg/kg, respectively.}, language = {en} } @article{LiuGouldKratzetal.2020, author = {Liu, Yue and Gould, Oliver E. C. and Kratz, Karl and Lendlein, Andreas}, title = {Shape-memory actuation of individual micro-/nanofibers}, series = {MRS Advances}, volume = {5}, journal = {MRS Advances}, number = {46-47}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {2059-8521}, doi = {10.1557/adv.2020.276}, pages = {2391 -- 2399}, year = {2020}, abstract = {Advances in the fabrication and characterization of polymeric nanomaterials has greatly advanced the miniaturization of soft actuators, creating materials capable of replicating the functional physical behavior previously limited to the macroscale. Here, we demonstrate how a reversible shape-memory polymer actuation can be generated in a single micro/nano object, where the shape change during actuation of an individual fiber can be dictated by programming using an AFM-based method. Electrospinning was used to prepare poly(epsilon-caprolactone) micro-/nanofibers, which were fixed and crosslinked on a structured silicon wafer. The programming as well as the observation of recovery and reversible displacement of the fiber were performed by vertical three point bending, using an AFM testing platform introduced here. A plateau tip was utilized to improve the stability of the fiber contact and working distance, enabling larger deformations and greater rbSMPA performance. Values for the reversible elongation of epsilon(rev)= 3.4 +/- 0.1\% and 10.5 +/- 0.1\% were obtained for a single micro (d = 1.0 +/- 0.2 mu m) and nanofiber (d = 300 +/- 100 nm) in cyclic testing between the temperatures 10 and 60 degrees C. The reversible actuation of the nanofiber was successfully characterized for 10 cycles. The demonstration and characterization of individual shape-memory nano and microfiber actuators represents an important step in the creation of miniaturized robotic devices capable of performing complex physical functions at the length scale of cells and structural component of the extracellular matrix.}, language = {en} } @article{SchuermannLuxfordVinklareketal.2020, author = {Sch{\"u}rmann, Robin Mathis and Luxford, Thomas and Vinkl{\´a}rek, Ivo and Kočišek, Jaroslav and Zawadzki, Mateusz and Balko, Ilko}, title = {Interaction of 4-nitrothiophenol with low energy electrons}, series = {Journal of chemical physics}, volume = {153}, journal = {Journal of chemical physics}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1089-7690}, doi = {10.1063/5.0018784}, url = {http://nbn-resolving.de/https://aip.scitation.org/doi/10.1063/5.0018784}, pages = {104303}, year = {2020}, abstract = {The reduction of 4-nitrothiophenol (NTP) to 4-4′-dimercaptoazobenzene (DMAB) on laser illuminated noble metal nanoparticles is one of the most widely studied plasmon mediated reactions. The reaction is most likely triggered by a transfer of low energy electrons from the nanoparticle to the adsorbed molecules. Besides the formation of DMAB, dissociative side reactions of NTP have also been observed. Here, we present a crossed electron-molecular beam study of free electron attachment to isolated NTP in the gas-phase. Negative ion yields are recorded as a function of the electron energy, which helps to assess the accessibility of single electron reduction pathways after photon induced electron transfer from nanoparticles. The dominant process observed with isolated NTP is associative electron attachment leading to the formation of the parent anion of NTP. Dissociative electron attachment pathways could be revealed with much lower intensities, leading mainly to the loss of functional groups. The energy gained by one electron reduction of NTP may also enhance the desorption of NTP from nanoparticles. Our supporting experiments with small clusters, then, show that further reaction steps are necessary after electron attachment to produce DMAB on the surfaces.}, language = {en} } @article{EhlertKlamroth2020, author = {Ehlert, Christopher and Klamroth, Tillmann}, title = {PSIXAS: A Psi4 plugin for efficient simulations of X-ray absorption spectra based on the transition-potential and Delta-Kohn-Sham method}, series = {Journal of computational chemistry : organic, inorganic, physical, biological}, volume = {41}, journal = {Journal of computational chemistry : organic, inorganic, physical, biological}, number = {19}, publisher = {Wiley}, address = {Hoboken}, issn = {0192-8651}, doi = {10.1002/jcc.26219}, pages = {1781 -- 1789}, year = {2020}, abstract = {Near edge X-ray absorption fine structure (NEXAFS) spectra and their pump-probe extension (PP-NEXAFS) offer insights into valence- and core-excited states. We present PSIXAS, a recent implementation for simulating NEXAFS and PP-NEXAFS spectra by means of the transition-potential and the Delta-Kohn-Sham method. The approach is implemented in form of a software plugin for the Psi4 code, which provides access to a wide selection of basis sets as well as density functionals. We briefly outline the theoretical foundation and the key aspects of the plugin. Then, we use the plugin to simulate PP-NEXAFS spectra of thymine, a system already investigated by others and us. It is found that larger, extended basis sets are needed to obtain more accurate absolute resonance positions. We further demonstrate that, in contrast to ordinary NEXAFS simulations, where the choice of the density functional plays a minor role for the shape of the spectrum, for PP-NEXAFS simulations the choice of the density functional is important. Especially hybrid functionals (which could not be used straightforwardly before to simulate PP-NEXAFS spectra) and their amount of "Hartree-Fock like" exact exchange affects relative resonance positions in the spectrum.}, language = {en} } @article{PerovicZeiningerOschatz2020, author = {Perovic, Milena and Zeininger, Lukas and Oschatz, Martin}, title = {Immobilization of gold-on-carbon catalysts onto perfluorocarbon emulsion droplets to promote oxygen delivery in aqueous phase (D)-glucose oxidation}, series = {ChemCatChem}, volume = {13}, journal = {ChemCatChem}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1867-3880}, doi = {10.1002/cctc.202001590}, pages = {196 -- 201}, year = {2020}, abstract = {The catalytic activity of metal nanoparticles (NPs) supported on porous supports can be controlled by various factors, such as NPs size, shape, or dispersivity, as well as their interaction with the support or the properties of the support material itself. However, these intrinsic properties are not solely responsible for the catalytic behavior of the overall reaction system, as the local environment and surface coverage of the catalyst with reactants, products, intermediates and other invloved species often play a crucial role in catalytic processes as well. Their contribution can be particularly critical in liquid-phase reactions with gaseous reactants that often suffer from low solubiltiy. One example is (D)-glucose oxidation with molecular oxygen over gold nanoparticles supported on porous carbons. The possibility to promote oxygen delivery in such aqueous phase oxidation reactions via the immobilization of heterogenous catalysts onto the interface of perfluorocarbon emulsion droplets is reported here. Gold-on-carbon catalyst particles can stabilize perfluorocarbon droplets in the aqueous phase and the local concentration of the oxidant in the surroundings of the gold nanoparticles accelerates the rate-limiting step of the reaction. Consequently, the reaction rate of a system with the optimal volume fraction of fluorocarbon is higher than a reference emulsion system without fluorocarbon, and the effect is observed even without additional oxygen supply.}, language = {en} } @article{HechenbichlerLaschewskyGradzielski2020, author = {Hechenbichler, Michelle and Laschewsky, Andre and Gradzielski, Michael}, title = {Poly(N,N-bis(2-methoxyethyl)acrylamide), a thermoresponsive non-ionic polymer combining the amide and the ethyleneglycolether motifs}, series = {Colloid and polymer science}, volume = {299}, journal = {Colloid and polymer science}, number = {2}, publisher = {Springer}, address = {Berlin; Heidelberg}, issn = {0303-402X}, doi = {10.1007/s00396-020-04701-9}, pages = {205 -- 219}, year = {2020}, abstract = {Poly(N,N-bis(2-methoxyethyl)acrylamide) (PbMOEAm) featuring two classical chemical motifs from non-ionic water-soluble polymers, namely, the amide and ethyleneglycolether moieties, was synthesized by reversible addition fragmentation transfer (RAFT) polymerization. This tertiary polyacrylamide is thermoresponsive exhibiting a lower critical solution temperature (LCST)-type phase transition. A series of homo- and block copolymers with varying molar masses but low dispersities and different end groups were prepared. Their thermoresponsive behavior in aqueous solution was analyzed via turbidimetry and dynamic light scattering (DLS). The cloud points (CP) increased with increasing molar masses, converging to 46 degrees C for 1 wt\% solutions. This rise is attributed to the polymers' hydrophobic end groups incorporated via the RAFT agents. When a surfactant-like strongly hydrophobic end group was attached using a functional RAFT agent, CP was lowered to 42 degrees C, i.e., closer to human body temperature. Also, the effect of added salts, in particular, the role of the Hofmeister series, on the phase transition of PbMOEAm was investigated, exemplified for the kosmotropic fluoride, intermediate chloride, and chaotropic thiocyanate anions. A pronounced shift of the cloud point of about 10 degrees C to lower or higher temperatures was observed for 0.2 M fluoride and thiocyanate, respectively. When PbMOEAm was attached to a long hydrophilic block of poly(N,N-dimethylacrylamide) (PDMAm), the cloud points of these block copolymers were strongly shifted towards higher temperatures. While no phase transition was observed for PDMAm-b-pbMOEAm with short thermoresponsive blocks, block copolymers with about equally sized PbMOEAm and PDMAm blocks underwent the coil-to-globule transition around 60 degrees C.}, language = {en} } @article{DengWangXuetal.2020, author = {Deng, Zijun and Wang, Weiwei and Xu, Xun and Ma, Nan and Lendlein, Andreas}, title = {Modulation of mesenchymal stem cell migration using programmable polymer sheet actuators}, series = {MRS advances}, volume = {5}, journal = {MRS advances}, number = {46-47}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {2059-8521}, doi = {10.1557/adv.2020.235}, pages = {2381 -- 2390}, year = {2020}, abstract = {Recruitment of mesenchymal stem cells (MSCs) to damaged tissue is a crucial step to modulate tissue regeneration. Here, the migration of human adipose-derived stem cells (hADSCs) responding to thermal and mechanical stimuli was investigated using programmable shape-memory polymer actuator (SMPA) sheets. Changing the temperature repetitively between 10 and 37 degrees C, the SMPA sheets are capable of reversibly changing between two different pre-defined shapes like an artificial muscle. Compared to non-actuating sheets, the cells cultured on the programmed actuating sheets presented a higher migration velocity (0.32 +/- 0.1 vs. 0.57 +/- 0.2 mu m/min). These results could motivate the next scientific steps, for example, to investigate the MSCs pre-loaded in organoids towards their migration potential.}, language = {en} } @article{EbelBald2020, author = {Ebel, Kenny and Bald, Ilko}, title = {Length and Energy Dependence of Low-Energy Electron-Induced Strand Breaks in Poly(A) DNA}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {1}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms21010111}, pages = {11}, year = {2020}, abstract = {The DNA in living cells can be effectively damaged by high-energy radiation, which can lead to cell death. Through the ionization of water molecules, highly reactive secondary species such as low-energy electrons (LEEs) with the most probable energy around 10 eV are generated, which are able to induce DNA strand breaks via dissociative electron attachment. Absolute DNA strand break cross sections of specific DNA sequences can be efficiently determined using DNA origami nanostructures as platforms exposing the target sequences towards LEEs. In this paper, we systematically study the effect of the oligonucleotide length on the strand break cross section at various irradiation energies. The present work focuses on poly-adenine sequences (d(A₄), d(A₈), d(A₁₂), d(A₁₆), and d(A₂₀)) irradiated with 5.0, 7.0, 8.4, and 10 eV electrons. Independent of the DNA length, the strand break cross section shows a maximum around 7.0 eV electron energy for all investigated oligonucleotides confirming that strand breakage occurs through the initial formation of negative ion resonances. When going from d(A₄) to d(A₁₆), the strand break cross section increases with oligonucleotide length, but only at 7.0 and 8.4 eV, i.e., close to the maximum of the negative ion resonance, the increase in the strand break cross section with the length is similar to the increase of an estimated geometrical cross section. For d(A₂₀), a markedly lower DNA strand break cross section is observed for all electron energies, which is tentatively ascribed to a conformational change of the dA₂₀ sequence. The results indicate that, although there is a general length dependence of strand break cross sections, individual nucleotides do not contribute independently of the absolute strand break cross section of the whole DNA strand. The absolute quantification of sequence specific strand breaks will help develop a more accurate molecular level understanding of radiation induced DNA damage, which can then be used for optimized risk estimates in cancer radiation therapy.}, language = {en} } @article{TapioBald2020, author = {Tapio, Kosti and Bald, Ilko}, title = {The potential of DNA origami to build multifunctional materials}, series = {Multifunctional Materials}, volume = {3}, journal = {Multifunctional Materials}, number = {3}, publisher = {IOP Publishing}, address = {Bristol}, issn = {2399-7532}, doi = {10.1088/2399-7532/ab80d5}, year = {2020}, abstract = {The development of the DNA origami technique has revolutionized the field of DNA nanotechnology as it allows to create virtually any arbitrarily shaped nanostructure out of DNA on a 10-100 nm length scale by a rather robust self-assembly process. Additionally, DNA origami nanostructures can be modified with chemical entities with nanometer precision, which allows to tune precisely their properties, their mutual interactions and interactions with their environment. The flexibility and modularity of DNA origami allows also for the creation of dynamic nanostructures, which opens up a plethora of possible functions and applications. Here we review the fundamental properties of DNA origami nanostructures, the wide range of functions that arise from these properties and finally present possible applications of DNA origami based multifunctional materials.}, language = {en} } @article{BechmannBald2020, author = {Bechmann, Wolfgang and Bald, Ilko}, title = {Wechselwirkung zwischen elektromagnetischer Strahlung und Stoff - Grundlagen der Spektroskopie}, edition = {7. Auflage}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-62033-5}, doi = {10.1007/978-3-662-62034-2_4}, pages = {303 -- 457}, year = {2020}, abstract = {Unter elektromagnetischer Strahlung versteht man eine Welle aus gekoppelten elektrischen und magnetischen Feldern. Stoffe, die dieser Welle ausgesetzt sind, k{\"o}nnen von ihr Energie aufnehmen. Dabei wechseln die Stoffe zwischen ihrem, der jeweiligen Temperatur entsprechenden energetischen Grundzustand G und einem energetisch angeregten Zustand A* (Abbildung 4.1).}, language = {de} } @article{BechmannBald2020, author = {Bechmann, Wolfgang and Bald, Ilko}, title = {Reaktionskinetik}, series = {Einstieg in die Physikalische Chemie f{\"u}r Naturwissenschaftler}, journal = {Einstieg in die Physikalische Chemie f{\"u}r Naturwissenschaftler}, edition = {7. Auflage}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-62033-5}, doi = {10.1007/978-3-662-62034-2_2}, pages = {141 -- 220}, year = {2020}, abstract = {Bei der Untersuchung chemischer Reaktionen interessiert zun{\"a}chst, welche Reaktionsprodukte aus gegebenen Ausgangsstoffen gebildet werden k{\"o}nnen. Wichtig sind weiterhin Angaben zum m{\"o}glichen Grad der Umsetzung der Ausgangsstoffe und zur Energiebilanz einer Reaktion. Damit sind aber noch keine Aussagen {\"u}ber den zeitlichen Ablauf der Stoffumwandlung getroffen.}, language = {de} } @article{BechmannBald2020, author = {Bechmann, Wolfgang and Bald, Ilko}, title = {Elektrochemie}, series = {Einstieg in die Physikalische Chemie f{\"u}r Naturwissenschaftler}, journal = {Einstieg in die Physikalische Chemie f{\"u}r Naturwissenschaftler}, edition = {7. Auflage}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-62033-5}, doi = {10.1007/978-3-662-62034-2_3}, pages = {221 -- 301}, year = {2020}, abstract = {Es war eine Reihe experimenteller Befunde, die zur Entwicklung dieses Teilgebietes der Physikalischen Chemie und auch zu seiner Unterteilung f{\"u}hrte. Die Liste der Namen, die mit den Experimenten verkn{\"u}pft sind, liest sich nicht nur wie eine Zeittafel der Geschichte der Elektrizit{\"a}tslehre, sondern auch der Physikalischen Chemie selbst.}, language = {de} } @article{BechmannBald2020, author = {Bechmann, Wolfgang and Bald, Ilko}, title = {Chemische Thermodynamik}, series = {Einstieg in die Physikalische Chemie f{\"u}r Naturwissenschaftler}, journal = {Einstieg in die Physikalische Chemie f{\"u}r Naturwissenschaftler}, edition = {7. Auflage}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-62034-2}, doi = {10.1007/978-3-662-62034-2_1}, pages = {13 -- 140}, year = {2020}, abstract = {Der Begriff Thermodynamik ist von den griechischen W{\"o}rtern ϑερμος (warm) und δυναμις (Kraft) abgeleitet. Er steht f{\"u}r das Teilgebiet der Physik (W{\"a}rmelehre), das sich vor allem mit der Umwandlung von W{\"a}rmeenergie in andere Energieformen bei physikalischen Vorg{\"a}ngen befasst.}, language = {de} } @article{BechmannBald2020, author = {Bechmann, Wolfgang and Bald, Ilko}, title = {L{\"o}sungen}, series = {Einstieg in die Physikalische Chemie f{\"u}r Naturwissenschaftler}, journal = {Einstieg in die Physikalische Chemie f{\"u}r Naturwissenschaftler}, edition = {7. Auflage}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-62033-5}, doi = {10.1007/978-3-662-62034-2_5}, pages = {459 -- 492}, year = {2020}, abstract = {In diesem Kapitel finden Sie die L{\"o}sungen zu den {\"U}bungsaufgaben.}, language = {de} } @article{YoukHofmannBadamdorjetal.2020, author = {Youk, Sol and Hofmann, Jan P. and Badamdorj, Bolortuya and Volkel, Antje and Antonietti, Markus and Oschatz, Martin}, title = {Controlling pore size and pore functionality in sp(2)-conjugated microporous materials by precursor chemistry and salt templating}, series = {Journal of materials chemistry : A, Materials for energy and sustainability}, volume = {8}, journal = {Journal of materials chemistry : A, Materials for energy and sustainability}, number = {41}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7488}, doi = {10.1039/d0ta05856d}, pages = {21680 -- 21689}, year = {2020}, abstract = {The synthesis of sp(2)-conjugated, heteroatom-rich, "carbonaceous" materials from economically feasible raw materials and salt templates is reported. Low cost citrazinic acid (2,6-dihydroxy-4-pyridinecarboxylic acid) and melamine are used as components to form a microporous, amorphous framework, where edges of the covalent frameworks are tightly terminated with nitrogen and oxygen moieties. ZnCl2 as the porogen stabilizes structural microporosity as well as nitrogen and oxygen heteroatoms up to comparably high condensation temperatures of 750 and 950 degrees C. The specific surface area up to 1265 m(2) g(-1) is mainly caused by micropores and typical of heteroatom-rich carbon materials with such structural porosity. The unusually high heteroatom content reveals that the edges and pores of the covalent structures are tightly lined with heteroatoms, while C-C or C-H bonds are expected to have a minor contribution as compared to typical carbon materials without or with minor content of heteroatoms. Adsorption of water vapor and carbon dioxide are exemplarily chosen to illustrate the impact of this heteroatom functionalization under salt-templating conditions on the adsorption properties of the materials. 27.10 mmol g(-1) of H2O uptake (at p/p(0) = 0.9) can be achieved, which also proves the very hydrophilic character of the pore walls, while the maximum CO2 uptake (at 273 K) is 5.3 mmol g(-1). At the same time the CO2/N-2 adsorption selectivity at 273 K can reach values of up to 60. All these values are beyond those of ordinary high surface area carbons, also differ from those of N-doped carbons, and are much closer to those of organized framework species, such as C2N.}, language = {en} } @article{MarquesSmialekSchuermannetal.2020, author = {Marques, Telma S. and Smialek, Malgorzata A. and Sch{\"u}rmann, Robin and Bald, Ilko and Raposo, Maria and Eden, Sam and Mason, Nigel J.}, title = {Decomposition of halogenated nucleobases by surface plasmon resonance excitation of gold nanoparticles}, series = {The European physical journal : D, Atomic, molecular, optical and plasma physics}, volume = {74}, journal = {The European physical journal : D, Atomic, molecular, optical and plasma physics}, number = {11}, publisher = {Springer}, address = {New York}, issn = {1434-6060}, doi = {10.1140/epjd/e2020-10208-3}, pages = {9}, year = {2020}, abstract = {Halogenated uracil derivatives are of great interest in modern cancer therapy, either as chemotherapeutics or radiosensitisers depending on their halogen atom. This work applies UV-Vis spectroscopy to study the radiation damage of uracil, 5-bromouracil and 5-fluorouracil dissolved in water in the presence of gold nanoparticles upon irradiation with an Nd:YAG ns-pulsed laser operating at 532 nm at different fluences. Gold nanoparticles absorb light efficiently by their surface plasmon resonance and can significantly damage DNA in their vicinity by an increase of temperature and the generation of reactive secondary species, notably radical fragments and low energy electrons. A recent study using the same experimental approach characterized the efficient laser-induced decomposition of the pyrimidine ring structure of 5-bromouracil mediated by the surface plasmon resonance of gold nanoparticles. The present results show that the presence of irradiated gold nanoparticles decomposes the ring structure of uracil and its halogenated derivatives with similar efficiency. In addition to the fragmentation of the pyrimidine ring, for 5-bromouracil the cleavage of the carbon-halogen bond could be observed, whereas for 5-fluorouracil this reaction channel was inhibited. Locally-released halogen atoms can react with molecular groups within DNA, hence this result indicates a specific mechanism by which doping with 5-bromouracil can enhance DNA damage in the proximity of laser irradiated gold nanoparticles.}, language = {en} } @article{DasNoackSchlaadetal.2020, author = {Das, Abhijna and Noack, Sebastian and Schlaad, Helmut and Reiter, G{\"u}nter and Reiter, Renate}, title = {Exploring pathways to equilibrate Langmuir polymer films}, series = {Langmuir}, volume = {36}, journal = {Langmuir}, number = {28}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.0c01268}, pages = {8184 -- 8192}, year = {2020}, abstract = {Focusing on the phase-coexistence region in Langmuir films of poly(L-lactide), we investigated changes in nonequilibrated morphologies and the corresponding features of the isotherms induced by different experimental pathways of lateral compression and expansion. In this coexistence region, the surface pressure II was larger than the expected equilibrium value and was found to increase upon compression, i.e., exhibited a nonhorizontal plateau. As shown earlier by using microscopic techniques [Langmuir 2019, 35, 6129-6136], in this plateau region, well-ordered mesoscopic clusters coexisted with a surrounding matrix phase. We succeeded in reducing Pi either by slowing down the rate of compression or through increasing the waiting time after stopping the movement of the barriers, which allowed for relaxations in the coexistence region. Intriguingly, the most significant pressure reduction was observed when recompressing a film that had already been compressed and expanded, if the recompression was started from an area value smaller than the one anticipated for the onset of the coexistence region. This observation suggests a "self-seeding" behavior, i.e., pre-existing nuclei allowed to circumvent the nucleation step. The decrease in Pi was accompanied by a transformation of the initially formed metastable mesoscopic clusters into a thermodynamically favored filamentary morphology. Our results demonstrate that it is practically impossible to obtain fully equilibrated coexisting phases in a Langmuir polymer film, neither under conditions of extremely slow continuous compression nor for long waiting times at a constant area in the coexistence region which allow for reorganization.}, language = {en} } @article{HessSchmidtSchlaad2020, author = {Hess, Andreas and Schmidt, Bernhard Volkmar Konrad Jakob and Schlaad, Helmut}, title = {Aminolysis induced functionalization of (RAFT) polymer-dithioester with thiols and disulfides}, series = {Polymer Chemistry}, volume = {11}, journal = {Polymer Chemistry}, number = {48}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/d0py01365j}, pages = {7677 -- 7684}, year = {2020}, abstract = {A series of polystyrene- and poly(methyl methacrylate)-dithioesters was subjected to aminolysis under ambient atmospheric conditions, i.e., in the presence of oxygen. Polymer disulfide coupling by oxidation occurred within tens of minutes and the yield of disulfide-coupled polymer increased with decreasing polymer molar mass. Oxidation of thiolates is usually an unwanted side reaction, here it is employed to obtain exclusively polymeric mixed disulfides through in situ aminolysis/functionalization in the presence of a thiol. The in situ aminolysis/functionalization in the presence of a disulfide, Ellman's reagent or polymer disulfide, resulted in the exclusive formation of polymer-dithionitrobenzoic acid, which can be further reacted with a thiol to exchange the terminal functionality, or block copolymer with dynamic disulfide linker, respectively.}, language = {en} } @article{CarlMuellerSchweinsetal.2020, author = {Carl, Nico and M{\"u}ller, Wenke and Schweins, Ralf and Huber, Klaus}, title = {Controlling self-assembly with light and temperature}, series = {Langmuir}, volume = {36}, journal = {Langmuir}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.9b03040}, pages = {223 -- 231}, year = {2020}, abstract = {Complexes between the anionic polyelectrolyte sodium polyacrylate (PA) and an oppositely charged divalent azobenzene dye are prepared in aqueous solution. Depending on the ratio between dye and polyelectrolyte stable aggregates with a well-defined spherical shape are observed. Upon exposure of these complexes to UV light, the trans -> cis transition of the azobenzene is excited resulting in a better solubility of the dye and a dissolution of the complexes. The PA chains reassemble into well-defined aggregates when the dye is allowed to relax back into the trans isomer. Varying the temperature during this reformation step has a direct influence on the final size of the aggregates rendering temperature in an efficient way to easily change the size of the self-assemblies. Application of time-resolved small-angle neutron scattering (SANS) to study the structure formation reveals that the cis -> trans isomerization is the rate-limiting step followed by a nucleation and growth process.}, language = {en} } @article{AlNajiSchlaadAntonietti2020, author = {Al-Naji, Majd and Schlaad, Helmut and Antonietti, Markus}, title = {New (and old) monomers from biorefineries to make polymer chemistry more sustainable}, series = {Macromolecular rapid communications}, volume = {42}, journal = {Macromolecular rapid communications}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.202000485}, pages = {11}, year = {2020}, abstract = {This opinion article describes recent approaches to use the "biorefinery" concept to lower the carbon footprint of typical mass polymers, by replacing parts of the fossil monomers with similar or even the same monomer made from regrowing dendritic biomass. Herein, the new and green catalytic synthetic routes are for lactic acid (LA), isosorbide (IS), 2,5-furandicarboxylic acid (FDCA), and p-xylene (pXL). Furthermore, the synthesis of two unconventional lignocellulosic biomass derivable monomers, i.e., alpha-methylene-gamma-valerolactone (MeGVL) and levoglucosenol (LG), are presented. All those have the potential to enter in a cost-effective way, also the mass market and thereby recover lost areas for polymer materials. The differences of catalytic unit operations of the biorefinery are also discussed and the challenges that must be addressed along the synthesis path of each monomers.}, language = {en} } @article{LuetzowWeigelLendlein2020, author = {L{\"u}tzow, Karola and Weigel, Thomas and Lendlein, Andreas}, title = {Solvent-based fabrication method for magnetic, shape-memory nanocomposite foams}, series = {MRS advances}, volume = {5}, journal = {MRS advances}, number = {14-15}, publisher = {Cambridge Univ. Press}, address = {Cambridge}, issn = {2059-8521}, doi = {10.1557/adv.2019.422}, pages = {785 -- 795}, year = {2020}, abstract = {This paper presents shape-memory foams that can be temporarily fixed in their compressed state and be expanded on demand. Highly porous, nanocomposite foams were prepared from a solution of polyetherurethane with suspended nanoparticles (mean aggregate size 90 nm) which have an iron(III) oxide core with a silica shell. The polymer solution with suspended nanoparticles was cooled down to -20 degrees C in a two-stage process, which was followed by freeze-drying. The average pore size increases with decreasing concentration of nanoparticles from 158 mu m to 230 mu m while the foam porosity remained constant. After fixation of a temporary form of the nanocomposite foams, shape recovery can be triggered either by heat or by exposure to an alternating magnetic field. Compressed foams showed a recovery rate of up to 76 +/- 4\% in a thermochamber at 80 degrees C, and a slightly lower recovery rate of up to 65 +/- 4\% in a magnetic field.}, language = {en} } @article{FarhanChaudharyNoecheletal.2020, author = {Farhan, Muhammad and Chaudhary, Deeptangshu and N{\"o}chel, Ulrich and Behl, Marc and Kratz, Karl and Lendlein, Andreas}, title = {Electrical actuation of coated and composite fibers based on poly[ethylene-co-(vinyl acetate)]}, series = {Macromolecular materials and engineering}, volume = {306}, journal = {Macromolecular materials and engineering}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1438-7492}, doi = {10.1002/mame.202000579}, pages = {8}, year = {2020}, abstract = {Robots are typically controlled by electrical signals. Resistive heating is an option to electrically trigger actuation in thermosensitive polymer systems. In this study electrically triggerable poly[ethylene-co-(vinyl acetate)] (PEVA)-based fiber actuators are realized as composite fibers as well as polymer fibers with conductive coatings. In the coated fibers, the core consists of crosslinked PEVA (cPEVA), while the conductive coating shell is achieved via a dip coating procedure with a coating thickness between 10 and 140 mu m. The conductivity of coated fibers sigma = 300-550 S m(-1) is much higher than that of the composite fibers sigma = 5.5 S m(-1). A voltage (U) of 110 V is required to heat 30 cm of coated fiber to a targeted temperature of approximate to 65 degrees C for switching in less than a minute. Cyclic electrical actuation investigations reveal epsilon '(rev) = 5 +/- 1\% reversible change in length for coated fibers. The fabrication of such electro-conductive polymeric actuators is suitable for upscaling so that their application potential as artificial muscles can be explored in future studies.}, language = {en} } @article{BehlRazzaqMazurekBudzynskaetal.2020, author = {Behl, Marc and Razzaq, Muhammad Yasar and Mazurek-Budzynska, Magdalena and Lendlein, Andreas}, title = {Polyetheresterurethane based porous scaffolds with tailorable architectures by supercritical CO2 foaming}, series = {MRS advances}, volume = {5}, journal = {MRS advances}, number = {45}, publisher = {Cambridge University Press}, address = {New York, NY}, issn = {2059-8521}, doi = {10.1557/adv.2020.345}, pages = {2317 -- 2330}, year = {2020}, abstract = {Porous three-dimensional (3D) scaffolds are promising treatment options in regenerative medicine. Supercritical and dense-phase fluid technologies provide an attractive alternative to solvent-based scaffold fabrication methods. In this work, we report on the fabrication of poly-etheresterurethane (PPDO-PCL) based porous scaffolds with tailorable pore size, porosity, and pore interconnectivity by using supercritical CO2(scCO(2)) fluid-foaming. The influence of the processing parameters such as soaking time, soaking temperature and depressurization on porosity, pore size, and interconnectivity of the foams were investigated. The average pore diameter could be varied between 100-800 mu m along with a porosity in the range from (19 +/- 3 to 61 +/- 6)\% and interconnectivity of up to 82\%. To demonstrate their applicability as scaffold materials, selected foams were sterilized via ethylene oxide sterilization. They showed negligible cytotoxicity in tests according to DIN EN ISO 10993-5 and 10993-12 using L929 cells. The study demonstrated that the pore size, porosity and the interconnectivity of this multi-phase semicrystalline polymer could be tailored by careful control of the processing parameters during the scCO(2)foaming process. In this way, PPDO-PCL scaffolds with high porosity and interconnectivity are potential candidate materials for regenerative treatment options.}, language = {en} } @article{BehlZhaoLendlein2020, author = {Behl, Marc and Zhao, Qian and Lendlein, Andreas}, title = {Glucose-responsive shape-memory cryogels}, series = {Journal of materials research : JMR}, volume = {35}, journal = {Journal of materials research : JMR}, number = {18}, publisher = {Springer}, address = {Berlin}, issn = {0884-2914}, doi = {10.1557/jmr.2020.204}, pages = {2396 -- 2404}, year = {2020}, abstract = {Boronic ester bonds can be reversibly formed between phenylboronic acid (PBA) and triol moieties. Here, we aim at a glucose-induced shape-memory effect by implementing such bonds as temporary netpoints, which are cleavable by glucose and by minimizing the volume change upon stimulation by a porous cryogel structure. The polymer system consisted of a semi-interpenetrating network (semi-IPN) architecture, in which the triol moieties were part of the permanent network and the PBA moieties were located in the linear polymer diffused into the semi-IPN. In an alkaline medium (pH = 10), the swelling ratio was approximately 35, independent of C-glu varied between 0 and 300 mg/dL. In bending experiments, shape fixity R-f approximate to 80\% and shape recovery R-r approximate to 100\% from five programming/recovery cycles could be determined. R-r was a function of C-glu in the range from 0 to 300 mg/dL, which accords with the fluctuation range of C-glu in human blood. In this way, the shape-memory hydrogels could play a role in future diabetes treatment options.}, language = {en} } @article{BalkBehlLendlein2020, author = {Balk, Maria and Behl, Marc and Lendlein, Andreas}, title = {Actuators based on oligo[(epsilon-caprolactone)-co-glycolide] with accelerated hydrolytic degradation}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {5}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, number = {12-13}, publisher = {Cambridge University Press}, address = {New York, NY}, issn = {2059-8521}, doi = {10.1557/adv.2019.447}, pages = {655 -- 666}, year = {2020}, abstract = {Polyester-based shape-memory polymer actuators are multifunctional materials providing reversible macroscopic shape shifts as well as hydrolytic degradability. Here, the function-function interdependencies (between shape shifts and degradation behaviour) will determine actuation performance and its life time. In this work, glycolide units were incorporated in poly(epsilon-caprolactone) based actuator materials in order to achieve an accelerated hydrolytic degradation and to explore the function-function relationship. Three different oligo[(epsilon-caprolactone)-co-glycolide] copolymers (OCGs) with similar molecular weights (10.5 +/- 0.5 kg center dot mol(-1)) including a glycolide content of 8, 16, and 26 mol\% (ratio 1:1:1 wt\%) terminated with methacrylated moieties were crosslinked. The obtained actuators provided a broad melting transition in the range from 27 to 44 degrees C. The hydrolytic degradation of programmed OCG actuators (200\% of elongation) resulted in a reduction of sample mass to 51 wt\% within 21 days at pH = 7.4 and 40 degrees C. Degradation results in a decrease of T-m associated to the actuating units and increasing T-m associated to the skeleton forming units. The actuation capability decreased almost linear as function of time. After 11 days of hydrolytic degradation the shape-memory functionality was lost. Accordingly, a fast degradation behaviour as required, e.g., for actuator materials intended as implant material can be realized.}, language = {en} } @article{IzraylitGouldKratzetal.2020, author = {Izraylit, Victor and Gould, Oliver E. C. and Kratz, Karl and Lendlein, Andreas}, title = {Investigating the phase-morphology of PLLA-PCL multiblock copolymer/PDLA blends cross-linked using stereocomplexation}, series = {MRS advances}, volume = {5}, journal = {MRS advances}, number = {14-15}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {2059-8521}, doi = {10.1557/adv.2019.465}, pages = {699 -- 707}, year = {2020}, abstract = {The macroscale function of multicomponent polymeric materials is dependent on their phase-morphology. Here, we investigate the morphological structure of a multiblock copolymer consisting of poly(L-lactide) and poly(epsilon-caprolactone) segments (PLLA-PCL), physically cross-linked by stereocomplexation with a low molecular weight poly(D-lactide) oligomer (PDLA). The effects of blend composition and PLLA-PCL molecular structure on the morphology are elucidated by AFM, TEM and SAXS. We identify the formation of a lattice pattern, composed of PLA domains within a PCL matrix, with an average domain spacing d0 = 12 - 19 nm. The size of the PLA domains were found to be proportional to the block length of the PCL segment of the copolymer and inversely proportional to the PDLA content of the blend. Changing the PLLA-PCL / PDLA ratio caused a shift in the melt transition Tm attributed to the PLA stereocomplex crystallites, indicating partial amorphous phase dilution of the PLA and PCL components within the semicrystalline material. By elucidating the phase structure and thermal character of multifunctional PLLA-PCL / PDLA blends, we illustrate how composition affects the internal structure and thermal properties of multicomponent polymeric materials. This study should facilitate the more effective incorporation of a variety of polymeric structural units capable of stimuli responsive phase transitions, where an understanding the phase-morphology of each component will enable the production of multifunctional soft-actuators with enhanced performance.}, language = {en} } @article{GaebertRosenstinglLinsleretal.2020, author = {G{\"a}bert, Chris and Rosenstingl, Tobias and Linsler, Dominic and Dienwiebel, Martin and Reinicke, Stefan}, title = {Programming viscosity in silicone oils}, series = {ACS applied polymer materials}, volume = {2}, journal = {ACS applied polymer materials}, number = {12}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {2637-6105}, doi = {10.1021/acsapm.0c00794}, pages = {5460 -- 5468}, year = {2020}, abstract = {Programmable oils feature tunable viscosity and therefore possess potential for technical improvements and innovative solutions in many lubricated applications. Herein, we describe the first assessment of the variability of rheological properties of light-programmable 9-anthracene ester-terminated polydimethylsiloxanes (PDMS-As), including implications that arise with UV-light as an external trigger. We applied a modified rheometer setup that enables the monitoring of dynamic moduli during exposure to UV-light. The reversible dimerization of anthracene esters is used to either link PDMS chains by UV-A radiation (365 nm) or cleave chains by UV-C radiation (254 nm) or at elevated temperatures (>130 degrees C). Thermal cleavage fully restores the initial material properties, while the photochemical cleavage of dimers occurs only to a limited extent. Prolonged UV radiation causes material damage and in turn reduces the range of programmable rheological properties. The incomplete cleavage contributes to a gradual buildup of viscosity over a course of several switching cycles, which we suggest to result from chain length-dependent reaction kinetics. Material property gradients induced during radiation due to attenuation of the light beam upon its passing through the oil layer have to be considered, emphasizing the need for proper mixing protocols during the programming step. The material in focus shows integrated photorheology and is suggested to improve the performance of silicone oils in friction systems.}, language = {en} } @article{IzraylitHommesSchattmannNeffeetal.2020, author = {Izraylit, Victor and Hommes-Schattmann, Paul Jacob and Neffe, Axel T. and Gould, Oliver E. C. and Lendlein, Andreas}, title = {Alkynyl-functionalized chain-extended PCL for coupling to biological molecules}, series = {European polymer journal}, volume = {136}, journal = {European polymer journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2020.109908}, pages = {11}, year = {2020}, abstract = {Chemical functionalization of poly(epsilon-caprolactone) (PCL) enables a molecular integration of additional function. Here, we report an approach to incorporate reactive alkynyl side-groups by synthesizing a chain-extended PCL, where the reactive site is introduced through the covalently functionalizable chain extender 3 (prop-2-yn-1-yloxy)propane-1,2-diol (YPD). Chain-extended PCL with M-w of 101 to 385 kg.mol(-1) were successfully synthesized in a one-pot reaction from PCL-diols with various molar masses, L-lysine ethyl ester diisocyanate (LDI) or trimethyl(hexamethylene)diisocyanate (TMDI), and YPD, in which the density of functionalizable groups and spacing between them can be controlled by the composition of the polymer. The employed diisocyanate compounds and YPD possess an asymmetric structure and form a non-crystallizable segment leaving the PCL crystallites to dominate the material's mechanical properties. The mixed glass transition temperature T-g = - 60 to - 46 degrees C of the PCL/polyurethane amorphous phase maintains the synthesized materials in a highly elastic state at ambient and physiological conditions. Reaction conditions for covalent attachment in copper(I)-catalyzed azide-alkyne-cycloaddition reactions (CuAAC) in solution were optimized in a series of model reactions between the alkyne moieties of the chain-extended PCL and benzyl azide, reaching conversions over 95\% of the alkyne moieties and with yields of up to 94\% for the purified functionalized PCL. This methodology was applied for reaction with the azide-functionalized cell adhesion peptide GRGDS. The required modification of the peptide provides selectivity in the coupling reactions. The obtained results suggest that YPD could potentially be employed as versatile molecular unit for the creation of a variety of functionalizable polyesters as well as polyurethanes and polycarbonates offering efficient and selective click-reactions.}, language = {en} } @article{IzraylitHommesSchattmannNeffeetal.2020, author = {Izraylit, Victor and Hommes-Schattmann, Paul J. and Neffe, Axel T. and Gould, Oliver E. C. and Lendlein, Andreas}, title = {Polyester urethane functionalizable through maleimide side-chains and cross-linkable by polylactide stereocomplexes}, series = {European polymer journal}, volume = {137}, journal = {European polymer journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2020.109916}, pages = {8}, year = {2020}, abstract = {Sustainable multifunctional alternatives to fossil-derived materials, which can be functionalized and are degradable, can be envisioned by combining naturally derived starting materials with an established polymer design concept. Modularity and chemical flexibility of polyester urethanes (PEU) enable the combination of segments bearing functionalizable moieties and the tailoring of the mechanical and thermal properties. In this work, a PEU multiblock structure was synthesized from naturally derived L-lysine diisocyanate ethyl ester (LDI), poly(L-lactide) diol (PLLA) and N-(2,3-dihydroxypropyl)-maleimide (MID) in a one-step reaction. A maleimide side-chain (MID) provided a reactive site for the catalyst-free coupling of thiols shown for L-cysteine with a yield of 94\%. Physical cross-links were generated by blending the PEU with poly(D-lactide) (PDLA), upon which the PLLA segments of the PEU and the PDLA formed stereocomplexes. Stereocomplexation occurred spontaneously during solution casting and was investigated with WAXS and DSC. Stereocomplex crystallites were observed in the blends, while isotactic PLA crystallization was not observed. The presented material platform with tailorable mechanical properties by blending is of specific interest for engineering biointerfaces of implants or carrier systems for bioactive molecules.}, language = {en} } @article{TarazonaMachatschekLendlein2020, author = {Tarazona, Natalia A. and Machatschek, Rainhard Gabriel and Lendlein, Andreas}, title = {Influence of depolymerases and lipases on the degradation of polyhydroxyalkanoates determined in Langmuir degradation studies}, series = {Advanced materials interfaces}, volume = {7}, journal = {Advanced materials interfaces}, number = {17}, publisher = {Wiley}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.202000872}, pages = {9}, year = {2020}, abstract = {Microbially produced polyhydroxyalkanoates (PHAs) are polyesters that are degradable by naturally occurring enzymes. Albeit PHAs degrade slowly when implanted in animal models, their disintegration is faster compared to abiotic hydrolysis under simulated physiological environments. Ultrathin Langmuir-Blodgett (LB) films are used as models for fast in vitro degradation testing, to predict enzymatically catalyzed hydrolysis of PHAs in vivo. The activity of mammalian enzymes secreted by pancreas and liver, potentially involved in biomaterials degradation, along with microbial hydrolases is tested toward LB-films of two model PHAs, poly(3-R-hydroxybutyrate) (PHB) and poly[(3-R-hydroxyoctanoate)-co-(3-R-hydroxyhexanoate)] (PHOHHx). A specific PHA depolymerase fromStreptomyces exfoliatus, used as a positive control, is shown to hydrolyze LB-films of both polymers regardless of their side-chain-length and phase morphology. From amorphous PHB and PHOHHx, approximate to 80\% is eroded in few hours, while mass loss for semicrystalline PHB is 25\%. Surface potential and interfacial rheology measurements show that material dissolution is consistent with a random-chain-scission mechanism. Degradation-induced crystallization of semicrystalline PHB LB-films is also observed. Meanwhile, the surface and the mechanical properties of both LB-films remain intact throughout the experiments with lipases and other microbial hydrolases, suggesting that non-enzymatic hydrolysis could be the predominant factor for acceleration of PHAs degradation in vivo.}, language = {en} } @article{BaldSolov'yovMasonetal.2020, author = {Bald, Ilko and Solov'yov, Ilia A. and Mason, Nigel J. and Solov'yov, Andrey V.}, title = {Special issue}, series = {The European physical journal. D, Atomic, molecular, optical and plasma physics}, volume = {74}, journal = {The European physical journal. D, Atomic, molecular, optical and plasma physics}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1434-6060}, doi = {10.1140/epjd/e2020-10134-4}, pages = {75 -- 82}, year = {2020}, abstract = {The structure, formation and dynamics of both animate and inanimate matter on the nanoscale are a highly interdisciplinary field of rapidly emerging research engaging a broad community encompassing experimentalists, theorists, and technologists. It is relevant for a large variety of molecular and nanosystems of different origin and composition and concerns numerous phenomena originating from physics, chemistry, biology, or materials science. This Topical Issue presents a collection of original research papers devoted to different aspects of structure and dynamics on the nanoscale. Some of the contributions discuss specific applications of the research results in several modern technologies and in next generation medicine. Most of the works of this topical issue were reported at the Fifth International Conference on Dynamics of Systems on the Nanoscale (DySoN) - the premier forum for the presentation of cutting-edge research in this field that was held in Potsdam, Germany in October of 2018.}, language = {en} } @article{YestePrimusAlcantaraetal.2020, author = {Yeste, Maria Pilar and Primus, Philipp-Alexander and Alcantara, Rodrigo and Cauqui, Miguel Angel and Calvino, Juan Jose and Pintado, Jos{\´e} Mar{\´i}a and Blanco, Ginesa}, title = {Surface characterization of two Ce0.62Zr0.38O2 mixed oxides with different reducibility}, series = {Applied surface science : a journal devoted to applied physics and chemistry of surfaces and interfaces}, volume = {503}, journal = {Applied surface science : a journal devoted to applied physics and chemistry of surfaces and interfaces}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-4332}, doi = {10.1016/j.apsusc.2019.144255}, pages = {9}, year = {2020}, abstract = {This paper presents a study of the surface properties of two Ce/Zr mixed oxides with different reducibility, obtained by applying distinct thermal ageing treatments to an oxide with the composition Ce0.62Zr0.38O2. The surface composition was investigated by XPS. Chemical reactivity of the surface was studied by adsorption of the probe molecules CO2, D-2 and methanol. Nanostructural characterization was carried out by XRD, Raman and high-resolution Eu3+ spectroscopy (FLNS). The characterization showed only slight variations in surface composition and bulk Ce-Zr distribution, but hardy differences concerning the type and strength of acidic surface centres, as well as strong differences in the ability to dissociate hydrogen. Structural variations between both samples were identified by comparing the optical spectra of Eu3+ in surface doped samples.}, language = {en} }