@article{AndreevRaschkeBiskabornetal.2021, author = {Andreev, Andrei and Raschke, Elena and Biskaborn, Boris and Vyse, Stuart Andrew and Courtin, J{\´e}r{\´e}my and B{\"o}hmer, Thomas and Stoof-Leichsenring, Kathleen R. and Kruse, Stefan and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Late Pleistocene to Holocene vegetation and climate changes in northwestern Chukotka (Far East Russia) deduced from lakes Ilirney and Rauchuagytgyn pollen records}, series = {Boreas : an international journal of quaternary research}, volume = {50}, journal = {Boreas : an international journal of quaternary research}, number = {3}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {0300-9483}, doi = {10.1111/bor.12521}, pages = {652 -- 670}, year = {2021}, abstract = {This paper presents two new pollen records and quantitative climate reconstructions from northern Chukotka documenting environmental changes over the last 27.9 ka. Open tundra- and steppe-like habitats dominated between 27.9 and 18.7 cal. ka BP. Betula and Alnus shrubs might have grown in sheltered microhabitats but disappeared after 18.7 cal. ka BP. Although the climate was rather harsh, local herb-dominated communities supported herbivores as is evident by the presence of coprophilous spores in the sediments. The increase in Salix and Cyperaceae similar to 16.1 cal. ka BP suggests climate amelioration. Shrub Betula appeared similar to 15.9 cal. ka BP, and became dominant after similar to 15.52 cal. ka BP, whilst typical steppe communities drastically reduced. Very high presence of Botryococcus in the Lateglacial sediments reflects widespread shallow habitats, probably due to lake level increase. Shrub Alnus became common after similar to 13 cal. ka BP reflecting further climate amelioration. Simultaneously, herb communities gradually decreased in the vegetation reaching a minimum similar to 11.8 cal. ka BP. A gradual decrease of algae remains suggests a reduction of shallow-water habitats. Shrubby and graminoid tundra was dominant similar to 11.8-11.1 cal. ka BP, later Salix stands significantly decreased. The forest-tundra ecotone established in the Early Holocene, shortly after 11.1 cal. ka BP. Low contents of green algae in the Early Holocene sediments likely reflect deeper aquatic conditions. The most favourable climate conditions were between similar to 10.6 and 7 cal. ka BP. Vegetation became similar to the modern after similar to 7 cal. ka BP but Pinus pumila came to the Ilirney area at about 1.2 cal. ka BP. It is important to emphasize that the study area provided refugia for Betula and Alnus during MIS 2. It is also notable that our records do not reflect evidence of Younger Dryas cooling, which is inconsistent with some regional environmental records but in good accordance with some others.}, language = {en} } @article{AngeleskaOmranianNikoloski2021, author = {Angeleska, Angela and Omranian, Sara and Nikoloski, Zoran}, title = {Coherent network partitions}, series = {Theoretical computer science : the journal of the EATCS}, volume = {894}, journal = {Theoretical computer science : the journal of the EATCS}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0304-3975}, doi = {10.1016/j.tcs.2021.10.002}, pages = {3 -- 11}, year = {2021}, abstract = {We continue to study coherent partitions of graphs whereby the vertex set is partitioned into subsets that induce biclique spanned subgraphs. The problem of identifying the minimum number of edges to obtain biclique spanned connected components (CNP), called the coherence number, is NP-hard even on bipartite graphs. Here, we propose a graph transformation geared towards obtaining an O (log n)-approximation algorithm for the CNP on a bipartite graph with n vertices. The transformation is inspired by a new characterization of biclique spanned subgraphs. In addition, we study coherent partitions on prime graphs, and show that finding coherent partitions reduces to the problem of finding coherent partitions in a prime graph. Therefore, these results provide future directions for approximation algorithms for the coherence number of a given graph.}, language = {en} } @article{ApriyantoTambunan2021, author = {Apriyanto, Ardha and Tambunan, Van Basten}, title = {Draft genome sequence, annotation, and SSR mining data of Elaeidobius kamerunicus Faust., an essential oil palm pollinating weevil}, series = {Data in Brief}, volume = {34}, journal = {Data in Brief}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-3409}, doi = {10.1016/j.dib.2021.106745}, pages = {7}, year = {2021}, abstract = {Elaeidobius kamerunicus Faust. (Coleoptera: Curculionidae) is an essential insect pollinator in oil palm plantations. Recently, researches have been undertaken to improve pollination efficiency using this species. A fundamental understanding of the genes related to this pollinator behavior is necessary to achieve this goal. Here, we present the draft genome sequence, annotation, and simple sequence repeat (SSR) marker data for this pollinator. In total, 34.97 Gb of sequence data from one male individual (monoisolate) were obtained using Illumina short-read platform NextSeq 500. The draft genome assembly was found to be 269.79 Mb and about 59.9\% of completeness based on Benchmarking Universal Single-Copy Orthologs (BUSCO) assessment. Functional gene annotation predicted about 26.566 genes. Also, a total of 281.668 putative SSR markers were identified. This draft genome sequence is a valuable resource for understanding the population genetics, phylogenetics, dispersal patterns, and behavior of this species.}, language = {en} } @phdthesis{Barchewitz2021, author = {Barchewitz, Tino}, title = {Impact of microcystin on the non-canonical localization of RubisCO in the toxic bloom-forming cyanobacterium Microcystis aeruginosa PCC7806}, doi = {10.25932/publishup-50829}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-508299}, school = {Universit{\"a}t Potsdam}, pages = {vii, 106}, year = {2021}, abstract = {Cyanobacteria are an abundant bacterial group and are found in a variety of ecological niches all around the globe. They can serve as a real threat for fish or mammals and can restrict the use of lakes or rivers for recreational purposes or as a source of drinking water, when they form blooms. One of the most abundant bloom-forming cyanobacteria is Microcystis aeruginosa. In the first part of the study, the role and possible dynamics of RubisCO in M. aeruginosa during high-light irradiation were examined. Its response was analyzed on the protein and peptide level via immunoblotting, immunofluorescence microscopy and with high performance liquid chromatography (HPLC). It was revealed that large amounts of RubisCO were located outside of carboxysomes under the applied high light stress. RubisCO aggregated mainly underneath the cytoplasmic membrane. There it forms a putative Calvin-Benson-Bassham (CBB) super complex together with other enzymes of photosynthesis. This complex could be part of an alternative carbon-concentrating mechanism (CCM) in M. aeruginosa, which enables a faster, and energy saving adaptation to high light stress of the whole bloom. Furthermore, the re-localization of RubisCO was delayed in the microcystin-deficient mutant ΔmcyB and RubisCO was more evenly distributed over the cell in comparison to the wild type. Since ΔmcyB is not harmed in its growth, possibly other produced cyanopeptides as aeruginosin or cyanopeptolin also play a role in the stabilization of RubisCO and the putative CBB complex, especially in the microcystin-free mutant. In the second part of this work, the possible role of microcystin as an extracellular signaling peptide during the diurnal cycle was studied. HPLC analysis showed a strong increase of extracellular microcystin in the wild type when the population entered nighttime and it resumed into the next day as well. Together with the increase of extracellular microcystin, a strong decrease of protein-bound intracellular microcystin was observed via immunoblot analysis. Interestingly, the signal of the large subunit of RubisCO (RbcL) also diminished when high amounts of microcystin were present in the surrounding medium. Microcystin addition experiments to M. aeruginosa WT and ΔmcyB cultures support this observation, since the immunoblot signal of both subunits of RubisCO and CcmK, a shell protein of carboxysomes, diminished after the addition of microcystin. In addition, the fluctuation of cyanopeptolin during the diurnal cycle indicates a more prominent role of other cyanopeptides besides microcystin as a signaling peptide, intracellularly as well as extracellularly.}, language = {en} } @phdthesis{Bartholomaeus2021, author = {Bartholom{\"a}us, Lisa}, title = {Impact of growth-related genes on petal size in Arabidopsis thaliana and the formation of two distinct floral morphs in Amsinckia spectabilis}, doi = {10.25932/publishup-51986}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-519861}, school = {Universit{\"a}t Potsdam}, pages = {158}, year = {2021}, abstract = {Der Lebenszyklus von Pflanzen ist gepr{\"a}gt von sich wiederholenden Wachstums- und Entwicklungsphasen, die auf wiederkehrenden Abl{\"a}ufen, bestehend aus Zellteilung, Zellvergr{\"o}ßerung und Zelldifferenzierung, basieren. Diese Dissertation ist aus zwei Projekten aufgebaut, die sich beide mit unterschiedlichen Blickwinkeln des Zellwachstums besch{\"a}ftigen. Im ersten steht die Charakterisierung einer Arabidopsis thaliana Mutante, die eine generelle Zellvergr{\"o}ßerung aufweist, im Vordergrund. Das zweite fokussiert sich auf zwei nat{\"u}rlich vorkommende Bl{\"u}tenmorphologien in Amsinckia spectabilis (Boraginaceae), die sich, aufgrund von Zelll{\"a}ngenunterschieden, in Griffell{\"a}nge und H{\"o}he der Staubblattposition unterscheiden. Es wurde gezeigt, dass die EMS-Mutante eop1 durch gr{\"o}ßere Zellen 26\% gr{\"o}ßere Bl{\"u}tenbl{\"a}tter aufweist. Außerdem wurden weitere Ph{\"a}notypen beschrieben, wie zum Beispiel, vergr{\"o}ßerte Kotyledonen, (ebenfalls aufgrund von Zellvergr{\"o}ßerung), Fruchtbl{\"a}tter, Kelchbl{\"a}tter, Rosettenbl{\"a}tter und Pollen. Die Gesamtwuchsh{\"o}he der Mutante zeigte sich ebenfalls erh{\"o}ht und zus{\"a}tzliche Trichom{\"a}ste erkl{\"a}rten den haarigen Ph{\"a}notyp. Feinkartierung enth{\"u}llte eine C zu T Transition des letzten Nukleotids des Introns 7 des INCURVATA 11 (ICU11) Gens, einer 2-oxoglutarat/Fe(II)-abh{\"a}ngigen Dioxygenase, als urs{\"a}chlichen SNP, welcher missgespleißte mRNA verursacht. Zwei T-DNA Insertionslinien (icu11-2 \& icu11-4), ebenfalls mit vergr{\"o}ßerten Bl{\"u}tenbl{\"a}ttern, best{\"a}tigten ICU11 als kausales Gen, und erlaubten somit die Analyse von drei verschiedenen icu11 Allelen. Ein Vergleich der verursachten molekularen Ver{\"a}nderung durch die jeweiligen Mutationen ermittelte Unterschiede in den drei Mutanten, wie zum Beispiel {\"U}berexpression von ICU11, als auch die Modifikation von ICU11 mRNA. Zusammen bildete das die Grundlage f{\"u}r die Untersuchung des molekularen Mechanismus, der f{\"u}r den beobachteten Ph{\"a}notyp verantwortlich ist. Verschiedene Ans{\"a}tze ermittelten widerspr{\"u}chliche Ergebnisse hinsichtlich der Proteinfunktion von ICU11 in den drei Mutanten. So zeigte eine Komplementierungsanalyse, dass alle drei Mutationen austauschbar sind, was, zusammen mit der Beobachtung, dass eine ICU11 {\"U}berexpression im Wildtyp zu einem icu11-{\"a}hnlichen Ph{\"a}notyp zeigte, dazu f{\"u}hrte, dass die icu11 Mutanten als gain-of-function Mutationen eingeordnet wurden. Im Widerspruch dazu stand die Entdeckung, dass sich icu11-4 durch ein genomisches ICU11 Transgen retten ließ. So wurde ein Model, basierend auf der Annahme, dass eine ICU11 {\"U}berexpression die Proteinfunktion ebenso hemmt wie ein nichtfunktionales Protein, vorgeschlagen. Außerdem wurde eine erh{\"o}hte Resistenz der icu11-3 (eop1) gegen{\"u}ber Paclobutrazol, einem Gibberellin (GA)-Inhibitor, und die Aktivierung der Expression von AtGA20ox2, einem Haupt-GA-Biosynthese-Gen, festgestellt. Zus{\"a}tzlich wurde eine zytoplasmatische Lokalisation von ICU11 detektiert, sodass ein Einfluss von ICU11 auf die GA- Biosynthese und somit auf das Gesamt-GA-Level angenommen wird, der den beobachteten (GA-{\"u}berdosierten) Ph{\"a}notyp erkl{\"a}ren k{\"o}nnte. Das zweite Projekt strebte die Identifizierung der genetischen Grundlage des S-Locus in Amsinckia spectabilis an, da die Gattung Amsinckia einige untypische Charakteristiken f{\"u}r eine heterostyle Art, wie zum Beispiel das Fehlen einer offensichtlichen Selbstinkompatibilit{\"a}t (SI), sowie die mehrmalige Entwicklung zu Homostyly und 100\% autonomem Selbsten, aufweist. Die Analyse basierte auf drei Amsinckia spectabilis Varianten: einer heterostylen Form, bestehend aus zwei Bl{\"u}tenmorphologien mit gegens{\"a}tzlich positionierten Sexualorganen (S-Morph: hohe Staubblattposition und kurzer Griffel und L-Morph: niedrige Staubblattans{\"a}tze und langer Griffel), und zwei homostylen Formen, einer großbl{\"u}tigen teilweise selbstenden und einer kleinbl{\"u}tigen voll selbstenden. Nat{\"u}rliche Populationen weisen ungef{\"a}hr ein 1:1 S:L Morph-Verh{\"a}ltnis auf, welches sich durch vorherrschend disassortative Paarung beider Morphs erkl{\"a}ren lasst. Dadurch kann das dominante S-Allel ausschließlich heterozygot auftreten (heterozygot (Ss) im S-morph und homozygot rezessiv (ss) im L-morph). Die Suche nach Morph-spezifischen Ph{\"a}notypen offenbarte 56\% l{\"a}ngere L-Morph Griffel und 58\% h{\"o}here S-Morph Staubblattans{\"a}tze. Zus{\"a}tzlich wurden 21\% gr{\"o}ßere S-Morph Pollen, sowie das Fehlen einer offensichtlichen SI gefunden. Dies war die Grundlage f{\"u}r die Annahme, dass der Amsinckia spec. S-Locus mindestens aus G- (Griffel), A- (Staubblatt) und P- (Pollen) Locus besteht. Vergleichende Transkriptom-Analyse beider Morphs offenbarte 22 unterschiedlich exprimierte Marker, die in 2 Contigs der PacBio Genom-Assemblierung eines SS-Individuums lokalisiert werden konnten. Dies erlaubte die genetische Einengung des S-Locus auf einen Bereich von circa 23 Mb. Gegens{\"a}tzlich zu bisher aufgekl{\"a}rten S-Loci in anderen Pflanzenarten konnte kein Hinweis auf eine hemizygote Region gefunden werden, die die supprimierte Rekombination am S-Locus erkl{\"a}ren k{\"o}nnte, sodass eine Inversion als Ursache dieser vermutet wurde.}, language = {en} } @article{BaunachChowdhuryStallforthetal.2021, author = {Baunach, Martin and Chowdhury, Somak and Stallforth, Pierre and Dittmann-Th{\"u}nemann, Elke}, title = {The landscape of recombination events that create nonribosomal peptide diversity}, series = {Molecular biology and evolution : MBE}, volume = {38}, journal = {Molecular biology and evolution : MBE}, number = {5}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0737-4038}, doi = {10.1093/molbev/msab015}, pages = {2116 -- 2130}, year = {2021}, abstract = {Nonribosomal peptides (NRP) are crucial molecular mediators in microbial ecology and provide indispensable drugs. Nevertheless, the evolution of the flexible biosynthetic machineries that correlates with the stunning structural diversity of NRPs is poorly understood. Here, we show that recombination is a key driver in the evolution of bacterial NRP synthetase (NRPS) genes across distant bacterial phyla, which has guided structural diversification in a plethora of NRP families by extensive mixing andmatching of biosynthesis genes. The systematic dissection of a large number of individual recombination events did not only unveil a striking plurality in the nature and origin of the exchange units but allowed the deduction of overarching principles that enable the efficient exchange of adenylation (A) domain substrates while keeping the functionality of the dynamic multienzyme complexes. In the majority of cases, recombination events have targeted variable portions of the A(core) domains, yet domain interfaces and the flexible A(sub) domain remained untapped. Our results strongly contradict the widespread assumption that adenylation and condensation (C) domains coevolve and significantly challenge the attributed role of C domains as stringent selectivity filter during NRP synthesis. Moreover, they teach valuable lessons on the choice of natural exchange units in the evolution of NRPS diversity, which may guide future engineering approaches.}, language = {en} } @misc{BergholzKoberJeltschetal.2021, author = {Bergholz, Kolja and Kober, Klarissa and Jeltsch, Florian and Schmidt, Kristina and Weiß, Lina}, title = {Trait means or variance}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51990}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-519905}, pages = {3357 -- 3365}, year = {2021}, abstract = {One of the few laws in ecology is that communities consist of few common and many rare taxa. Functional traits may help to identify the underlying mechanisms of this community pattern, since they correlate with different niche dimensions. However, comprehensive studies are missing that investigate the effects of species mean traits (niche position) and intraspecific trait variability (ITV, niche width) on species abundance. In this study, we investigated fragmented dry grasslands to reveal trait-occurrence relationships in plants at local and regional scales. We predicted that (a) at the local scale, species occurrence is highest for species with intermediate traits, (b) at the regional scale, habitat specialists have a lower species occurrence than generalists, and thus, traits associated with stress-tolerance have a negative effect on species occurrence, and (c) ITV increases species occurrence irrespective of the scale. We measured three plant functional traits (SLA = specific leaf area, LDMC = leaf dry matter content, plant height) at 21 local dry grassland communities (10 m × 10 m) and analyzed the effect of these traits and their variation on species occurrence. At the local scale, mean LDMC had a positive effect on species occurrence, indicating that stress-tolerant species are the most abundant rather than species with intermediate traits (hypothesis 1). We found limited support for lower specialist occurrence at the regional scale (hypothesis 2). Further, ITV of LDMC and plant height had a positive effect on local occurrence supporting hypothesis 3. In contrast, at the regional scale, plants with a higher ITV of plant height were less frequent. We found no evidence that the consideration of phylogenetic relationships in our analyses influenced our findings. In conclusion, both species mean traits (in particular LDMC) and ITV were differently related to species occurrence with respect to spatial scale. Therefore, our study underlines the strong scale-dependency of trait-abundance relationships.}, language = {en} } @article{BergholzKoberJeltschetal.2021, author = {Bergholz, Kolja and Kober, Klarissa and Jeltsch, Florian and Schmidt, Kristina and Weiß, Lina}, title = {Trait means or variance}, series = {Ecology and evolution}, volume = {11}, journal = {Ecology and evolution}, number = {7}, publisher = {John Wiley \& Sons, Inc.}, issn = {2045-7758}, doi = {10.1002/ece3.7287}, pages = {3357 -- 3365}, year = {2021}, abstract = {One of the few laws in ecology is that communities consist of few common and many rare taxa. Functional traits may help to identify the underlying mechanisms of this community pattern, since they correlate with different niche dimensions. However, comprehensive studies are missing that investigate the effects of species mean traits (niche position) and intraspecific trait variability (ITV, niche width) on species abundance. In this study, we investigated fragmented dry grasslands to reveal trait-occurrence relationships in plants at local and regional scales. We predicted that (a) at the local scale, species occurrence is highest for species with intermediate traits, (b) at the regional scale, habitat specialists have a lower species occurrence than generalists, and thus, traits associated with stress-tolerance have a negative effect on species occurrence, and (c) ITV increases species occurrence irrespective of the scale. We measured three plant functional traits (SLA = specific leaf area, LDMC = leaf dry matter content, plant height) at 21 local dry grassland communities (10 m × 10 m) and analyzed the effect of these traits and their variation on species occurrence. At the local scale, mean LDMC had a positive effect on species occurrence, indicating that stress-tolerant species are the most abundant rather than species with intermediate traits (hypothesis 1). We found limited support for lower specialist occurrence at the regional scale (hypothesis 2). Further, ITV of LDMC and plant height had a positive effect on local occurrence supporting hypothesis 3. In contrast, at the regional scale, plants with a higher ITV of plant height were less frequent. We found no evidence that the consideration of phylogenetic relationships in our analyses influenced our findings. In conclusion, both species mean traits (in particular LDMC) and ITV were differently related to species occurrence with respect to spatial scale. Therefore, our study underlines the strong scale-dependency of trait-abundance relationships.}, language = {en} } @misc{BoekerHermanussenScheffler2021, author = {Boeker, Sonja and Hermanussen, Michael and Scheffler, Christiane}, title = {Westernization of self-perception in modern affluent Indonesian school children}, series = {Human Biology and Public Health}, volume = {2021}, journal = {Human Biology and Public Health}, number = {1}, editor = {Scheffler, Christiane and Koziel, Slawomir and Hermanussen, Michael and Bogin, Barry}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph.v1.4}, pages = {1 -- 13}, year = {2021}, abstract = {Background Subjective Social Status is used as an important predictor for psychological and physiological findings, most commonly measured with the MacArthur Scale (Ladder Test). Previous studies have shown that this test fits better in Western cultures. The idea of a social ladder itself and ranking oneself "higher" or "lower" is a concept that accords to the Western thinking. Objectives We hypothesize that in a culture where only the elites have adapted to a Western lifestyle, the test results reflect a higher level of accuracy for this stratum. We also expect that self-perception differs per sex. Sample and Methods We implemented the Ladder Test in a study of Indonesian schoolchildren aged between 5 and 13 years (boys N = 369, girls N= 364) from non-private and private schools in Kupang in 2020. Results Our analysis showed that the Ladder Test results were according to the Western expectations only for the private school, as the Ladder Scores significantly decreased with age (LM: p = 0.04). The Ladder Test results are best explained by "Education Father" for the non-private school pupils (p = 0.01) and all boys (p = 0.04), by "School Grades" for the private school cohort (p = 0.06) and by "Household Score" for girls (p =0.09). Conclusion This finding indicates that the concept of ranking oneself "high" or "low" on a social ladder is strongly implicated with Western ideas. A ladder implies social movement by "climbing" up or down. According to that, reflection of self-perception is influenced by culture.}, language = {en} } @misc{Bogin2021, author = {Bogin, Barry}, title = {Social-Economic-Political-Emotional (SEPE) factors regulate human growth}, series = {Human Biology and Public Health}, volume = {2021}, journal = {Human Biology and Public Health}, number = {1}, editor = {Scheffler, Christiane and Koziel, Slawomir and Hermanussen, Michael and Bogin, Barry}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph.v1.10}, pages = {1 -- 20}, year = {2021}, abstract = {Background There is a recurring and seamless interaction between the biology of human development and the social-economic-political-emotional (SEPE) environment. The SEPE environment influences the quality of the material conditions for human biology and, simultaneously, human growth in height and other dimensions provide social and moral signals that provide information to community networks. Objectives This article reviews the role of SEPE factors in human growth, especially skeletal growth. Sample and Methods The meaning of SEPE is defined and shown to be related to individual and group prestige, to social identity, and to ego and task motivation. These influence dominance or subordination of communities and the material and moral conditions of societies. Historical and contemporary examples of SEPE effects on skeletal size are presented. Results Membership in a SEPE community impacts skeletal size in height and breadth. Higher SEPE classes are taller, lower SEPE classes are broader. In elite level sport the winners have more growth stimulation via the hormone IGF-1 even before the contest. These findings are explained in terms of dominance versus subordination and the Community Effect in Height hypothesis. Conclusions SEPE factor regulation of human growth is shown to be a more comprehensive explanation for plasticity in height than traditional concepts such as socioeconomic status and simple-minded genetic determinism. People belonging to upper SEPE class communities, the elites, know that they are superior and are treated as such by the non-elites. The material and moral condition for life operating through these community social networks provide positive stimulation for the elites and negative stimulation for the lower SEPE classes. These differences maintain the gradients in height between SEPE communities in human societies.}, language = {en} } @inproceedings{BoginHermanussenScheffler2021, author = {Bogin, Barry and Hermanussen, Michael and Scheffler, Christiane}, title = {Fear, violence, inequality and stunting in Guatemala}, series = {American journal of human biology : the official journal of the Human Biology Association}, volume = {33}, booktitle = {American journal of human biology : the official journal of the Human Biology Association}, publisher = {Wiley Interscience}, address = {New York, NY [u.a.]}, issn = {1520-6300}, doi = {10.1002/ajhb.23593}, pages = {1}, year = {2021}, language = {en} } @phdthesis{Borghi2021, author = {Borghi, Gian Luca}, title = {Evolution and diversity of photosynthetic metabolism in C3, C3-C4 intermediate and C4 plants}, doi = {10.25932/publishup-52220}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-522200}, school = {Universit{\"a}t Potsdam}, pages = {163}, year = {2021}, abstract = {In C3 plants, CO2 diffuses into the leaf and is assimilated by the Calvin-Benson cycle in the mesophyll cells. It leaves Rubisco open to its side reaction with O2, resulting in a wasteful cycle known as photorespiration. A sharp fall in atmospheric CO2 levels about 30 million years ago have further increased the side reaction with O2. The pressure to reduce photorespiration led, in over 60 plant genera, to the evolution of a CO2-concentrating mechanism called C4 photosynthesis; in this mode, CO2 is initially incorporated into 4-carbon organic acids, which diffuse to the bundle sheath and are decarboxylated to provide CO2 to Rubisco. Some genera, like Flaveria, contain several species that represent different steps in this complex evolutionary process. However, the majority of terrestrial plant species did not evolve a CO2-concentrating mechanism and perform C3 photosynthesis. This thesis compares photosynthetic metabolism in several species with C3, C4 and intermediate modes of photosynthesis. Metabolite profiling and stable isotope labelling were performed to detect inter-specific differences changes in metabolite profile and, hence, how a pathway operates. The results obtained were subjected to integrative data analyses like hierarchical clustering and principal component analysis, and were deepened by correlation analyses to uncover specific metabolic features and reaction steps that were conserved or differed between species. The main findings are that Calvin-Benson cycle metabolite profiles differ between C3 and C4 species and between different C3 species, including a very different response to rising irradiance in Arabidopsis and rice. These findings confirm Calvin-Benson cycle operation diverged between C3 and C4 species and, most unexpectedly, even between different C3 species. Moreover, primary metabolic profiles supported the current C4 evolutionary model in the genus Flaveria and also provided new insights and opened up new questions. Metabolite profiles also point toward a progressive adjustment of the Calvin-Benson cycle during the evolution of C4 photosynthesis. Overall, this thesis point out the importance of a metabolite-centric approach to uncover underlying differences in species apparently sharing the same photosynthetic routes and as a valid method to investigate evolutionary transition between C3 and C4 photosynthesis.}, language = {en} } @misc{BornhorstAbdelilahSeyfried2021, author = {Bornhorst, Dorothee and Abdelilah-Seyfried, Salim}, title = {Strong as a Hippo's Heart: Biomechanical Hippo Signaling During Zebrafish Cardiac Development}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-54873}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548731}, pages = {1 -- 10}, year = {2021}, abstract = {The heart is comprised of multiple tissues that contribute to its physiological functions. During development, the growth of myocardium and endocardium is coupled and morphogenetic processes within these separate tissue layers are integrated. Here, we discuss the roles of mechanosensitive Hippo signaling in growth and morphogenesis of the zebrafish heart. Hippo signaling is involved in defining numbers of cardiac progenitor cells derived from the secondary heart field, in restricting the growth of the epicardium, and in guiding trabeculation and outflow tract formation. Recent work also shows that myocardial chamber dimensions serve as a blueprint for Hippo signaling-dependent growth of the endocardium. Evidently, Hippo pathway components act at the crossroads of various signaling pathways involved in embryonic zebrafish heart development. Elucidating how biomechanical Hippo signaling guides heart morphogenesis has direct implications for our understanding of cardiac physiology and pathophysiology.}, language = {en} } @article{BornhorstAbdelilahSeyfried2021, author = {Bornhorst, Dorothee and Abdelilah-Seyfried, Salim}, title = {Strong as a Hippo's Heart: Biomechanical Hippo Signaling During Zebrafish Cardiac Development}, series = {Frontiers in Cell and Developmental Biology}, volume = {9}, journal = {Frontiers in Cell and Developmental Biology}, publisher = {Frontiers Media}, address = {Lausanne, Schweiz}, issn = {2296-634X}, doi = {10.3389/fcell.2021.731101}, pages = {1 -- 10}, year = {2021}, abstract = {The heart is comprised of multiple tissues that contribute to its physiological functions. During development, the growth of myocardium and endocardium is coupled and morphogenetic processes within these separate tissue layers are integrated. Here, we discuss the roles of mechanosensitive Hippo signaling in growth and morphogenesis of the zebrafish heart. Hippo signaling is involved in defining numbers of cardiac progenitor cells derived from the secondary heart field, in restricting the growth of the epicardium, and in guiding trabeculation and outflow tract formation. Recent work also shows that myocardial chamber dimensions serve as a blueprint for Hippo signaling-dependent growth of the endocardium. Evidently, Hippo pathway components act at the crossroads of various signaling pathways involved in embryonic zebrafish heart development. Elucidating how biomechanical Hippo signaling guides heart morphogenesis has direct implications for our understanding of cardiac physiology and pathophysiology.}, language = {en} } @article{BrandesSicksBerger2021, author = {Brandes, Stefanie and Sicks, Florian and Berger, Anne}, title = {Behaviour classification on giraffes (Giraffa camelopardalis) using machine learning algorithms on triaxial acceleration data of two commonly used GPS devices and its possible application for their management and conservation}, series = {Sensors}, volume = {21}, journal = {Sensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s21062229}, pages = {22}, year = {2021}, abstract = {Averting today's loss of biodiversity and ecosystem services can be achieved through conservation efforts, especially of keystone species. Giraffes (Giraffa camelopardalis) play an important role in sustaining Africa's ecosystems, but are 'vulnerable' according to the IUCN Red List since 2016. Monitoring an animal's behavior in the wild helps to develop and assess their conservation management. One mechanism for remote tracking of wildlife behavior is to attach accelerometers to animals to record their body movement. We tested two different commercially available high-resolution accelerometers, e-obs and Africa Wildlife Tracking (AWT), attached to the top of the heads of three captive giraffes and analyzed the accuracy of automatic behavior classifications, focused on the Random Forests algorithm. For both accelerometers, behaviors of lower variety in head and neck movements could be better predicted (i.e., feeding above eye level, mean prediction accuracy e-obs/AWT: 97.6\%/99.7\%; drinking: 96.7\%/97.0\%) than those with a higher variety of body postures (such as standing: 90.7-91.0\%/75.2-76.7\%; rumination: 89.6-91.6\%/53.5-86.5\%). Nonetheless both devices come with limitations and especially the AWT needs technological adaptations before applying it on animals in the wild. Nevertheless, looking at the prediction results, both are promising accelerometers for behavioral classification of giraffes. Therefore, these devices when applied to free-ranging animals, in combination with GPS tracking, can contribute greatly to the conservation of giraffes.}, language = {en} } @phdthesis{Brunacci2021, author = {Brunacci, Nadia}, title = {Oligodepsipeptides as matrix for drug delivery systems and submicron particulate carriers}, school = {Universit{\"a}t Potsdam}, year = {2021}, language = {en} } @phdthesis{Cadek2021, author = {Cadek, Chris}, title = {Charakterisierung der Funktion von TusA-homologen Proteinen im Schwefelmetabolismus von Escherichia coli}, school = {Universit{\"a}t Potsdam}, pages = {X, 114, XVI}, year = {2021}, language = {de} } @misc{CahsanKiemelWestburyetal.2021, author = {Cahsan, Binia De and Kiemel, Katrin and Westbury, Michael V. and Lauritsen, Maike and Autenrieth, Marijke and Gollmann, G{\"u}nter and Schweiger, Silke and Stenberg, Marika and Nystr{\"o}m, Per and Drews, Hauke and Tiedemann, Ralph}, title = {Southern introgression increases adaptive immune gene variability in northern range margin populations of Fire-bellied toad}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {14}, issn = {1866-8372}, doi = {10.25932/publishup-52388}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-523883}, pages = {17}, year = {2021}, abstract = {Northern range margin populations of the European fire-bellied toad (Bombina bombina) have rapidly declined during recent decades. Extensive agricultural land use has fragmented the landscape, leading to habitat disruption and loss, as well as eutrophication of ponds. In Northern Germany (Schleswig-Holstein) and Southern Sweden (Sk{\aa}ne), this population decline resulted in decreased gene flow from surrounding populations, low genetic diversity, and a putative reduction in adaptive potential, leaving populations vulnerable to future environmental and climatic changes. Previous studies using mitochondrial control region and nuclear transcriptome-wide SNP data detected introgressive hybridization in multiple northern B. bombina populations after unreported release of toads from Austria. Here, we determine the impact of this introgression by comparing the body conditions (proxy for fitness) of introgressed and nonintrogressed populations and the genetic consequences in two candidate genes for putative local adaptation (the MHC II gene as part of the adaptive immune system and the stress response gene HSP70 kDa). We detected regional differences in body condition and observed significantly elevated levels of within individual MHC allele counts in introgressed Swedish populations, associated with a tendency toward higher body weight, relative to regional nonintrogressed populations. These differences were not observed among introgressed and nonintrogressed German populations. Genetic diversity in both MHC and HSP was generally lower in northern than Austrian populations. Our study sheds light on the potential benefits of translocations of more distantly related conspecifics as a means to increase adaptive genetic variability and fitness of genetically depauperate range margin populations without distortion of local adaptation.}, language = {en} } @article{CahsanKiemelWestburyetal.2021, author = {Cahsan, Binia De and Kiemel, Katrin and Westbury, Michael V. and Lauritsen, Maike and Autenrieth, Marijke and Gollmann, G{\"u}nter and Schweiger, Silke and Stenberg, Marika and Nystr{\"o}m, Per and Drews, Hauke and Tiedemann, Ralph}, title = {Southern introgression increases adaptive immune gene variability in northern range margin populations of Fire-bellied toad}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {14}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, issn = {2045-7758}, pages = {15}, year = {2021}, abstract = {Northern range margin populations of the European fire-bellied toad (Bombina bombina) have rapidly declined during recent decades. Extensive agricultural land use has fragmented the landscape, leading to habitat disruption and loss, as well as eutrophication of ponds. In Northern Germany (Schleswig-Holstein) and Southern Sweden (Sk{\aa}ne), this population decline resulted in decreased gene flow from surrounding populations, low genetic diversity, and a putative reduction in adaptive potential, leaving populations vulnerable to future environmental and climatic changes. Previous studies using mitochondrial control region and nuclear transcriptome-wide SNP data detected introgressive hybridization in multiple northern B. bombina populations after unreported release of toads from Austria. Here, we determine the impact of this introgression by comparing the body conditions (proxy for fitness) of introgressed and nonintrogressed populations and the genetic consequences in two candidate genes for putative local adaptation (the MHC II gene as part of the adaptive immune system and the stress response gene HSP70 kDa). We detected regional differences in body condition and observed significantly elevated levels of within individual MHC allele counts in introgressed Swedish populations, associated with a tendency toward higher body weight, relative to regional nonintrogressed populations. These differences were not observed among introgressed and nonintrogressed German populations. Genetic diversity in both MHC and HSP was generally lower in northern than Austrian populations. Our study sheds light on the potential benefits of translocations of more distantly related conspecifics as a means to increase adaptive genetic variability and fitness of genetically depauperate range margin populations without distortion of local adaptation.}, language = {en} } @article{CahsanWestburyParaskevopoulouetal.2021, author = {Cahsan, Binia De and Westbury, Michael V. and Paraskevopoulou, Sofia and Drews, Hauke and Ott, Moritz and Gollmann, G{\"u}nter and Tiedemann, Ralph}, title = {Genomic consequences of human-mediated translocations in margin populations of an endangered amphibian}, series = {Evolutionary Applications}, volume = {14}, journal = {Evolutionary Applications}, number = {6}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, issn = {1752-4563}, pages = {12}, year = {2021}, abstract = {Due to their isolated and often fragmented nature, range margin populations are especially vulnerable to rapid environmental change. To maintain genetic diversity and adaptive potential, gene flow from disjunct populations might therefore be crucial to their survival. Translocations are often proposed as a mitigation strategy to increase genetic diversity in threatened populations. However, this also includes the risk of losing locally adapted alleles through genetic swamping. Human-mediated translocations of southern lineage specimens into northern German populations of the endangered European fire-bellied toad (Bombina bombina) provide an unexpected experimental set-up to test the genetic consequences of an intraspecific introgression from central population individuals into populations at the species range margin. Here, we utilize complete mitochondrial genomes and transcriptome nuclear data to reveal the full genetic extent of this translocation and the consequences it may have for these populations. We uncover signs of introgression in four out of the five northern populations investigated, including a number of introgressed alleles ubiquitous in all recipient populations, suggesting a possible adaptive advantage. Introgressed alleles dominate at the MTCH2 locus, associated with obesity/fat tissue in humans, and the DSP locus, essential for the proper development of epidermal skin in amphibians. Furthermore, we found loci where local alleles were retained in the introgressed populations, suggesting their relevance for local adaptation. Finally, comparisons of genetic diversity between introgressed and nonintrogressed northern German populations revealed an increase in genetic diversity in all German individuals belonging to introgressed populations, supporting the idea of a beneficial transfer of genetic variation from Austria into North Germany.}, language = {en} } @misc{CahsanWestburyParaskevopoulouetal.2021, author = {Cahsan, Binia De and Westbury, Michael V. and Paraskevopoulou, Sofia and Drews, Hauke and Ott, Moritz and Gollmann, G{\"u}nter and Tiedemann, Ralph}, title = {Genomic consequences of human-mediated translocations in margin populations of an endangered amphibian}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {6}, issn = {1866-8372}, doi = {10.25932/publishup-52314}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-523140}, pages = {14}, year = {2021}, abstract = {Due to their isolated and often fragmented nature, range margin populations are especially vulnerable to rapid environmental change. To maintain genetic diversity and adaptive potential, gene flow from disjunct populations might therefore be crucial to their survival. Translocations are often proposed as a mitigation strategy to increase genetic diversity in threatened populations. However, this also includes the risk of losing locally adapted alleles through genetic swamping. Human-mediated translocations of southern lineage specimens into northern German populations of the endangered European fire-bellied toad (Bombina bombina) provide an unexpected experimental set-up to test the genetic consequences of an intraspecific introgression from central population individuals into populations at the species range margin. Here, we utilize complete mitochondrial genomes and transcriptome nuclear data to reveal the full genetic extent of this translocation and the consequences it may have for these populations. We uncover signs of introgression in four out of the five northern populations investigated, including a number of introgressed alleles ubiquitous in all recipient populations, suggesting a possible adaptive advantage. Introgressed alleles dominate at the MTCH2 locus, associated with obesity/fat tissue in humans, and the DSP locus, essential for the proper development of epidermal skin in amphibians. Furthermore, we found loci where local alleles were retained in the introgressed populations, suggesting their relevance for local adaptation. Finally, comparisons of genetic diversity between introgressed and nonintrogressed northern German populations revealed an increase in genetic diversity in all German individuals belonging to introgressed populations, supporting the idea of a beneficial transfer of genetic variation from Austria into North Germany.}, language = {en} } @article{CalderanRodriguesLuzarowskiMonteBelloetal.2021, author = {Calderan-Rodrigues, Maria Juliana and Luzarowski, Marcin and Monte-Bello, Carolina Cassano and Minen, Romina Ines and Z{\"u}hlke, Boris M. and Nikoloski, Zoran and Skirycz, Aleksandra and Caldana, Camila}, title = {Proteogenic dipeptides are characterized by diel fluctuations and target of rapamycin complex-signaling dependency in the model plant Arabidopsis thaliana}, series = {Frontiers in plant science : FPLS}, volume = {12}, journal = {Frontiers in plant science : FPLS}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2021.758933}, pages = {15}, year = {2021}, abstract = {As autotrophic organisms, plants capture light energy to convert carbon dioxide into ATP, nicotinamide adenine dinucleotide phosphate (NADPH), and sugars, which are essential for the biosynthesis of building blocks, storage, and growth. At night, metabolism and growth can be sustained by mobilizing carbon (C) reserves. In response to changing environmental conditions, such as light-dark cycles, the small-molecule regulation of enzymatic activities is critical for reprogramming cellular metabolism. We have recently demonstrated that proteogenic dipeptides, protein degradation products, act as metabolic switches at the interface of proteostasis and central metabolism in both plants and yeast. Dipeptides accumulate in response to the environmental changes and act via direct binding and regulation of critical enzymatic activities, enabling C flux distribution. Here, we provide evidence pointing to the involvement of dipeptides in the metabolic rewiring characteristics for the day-night cycle in plants. Specifically, we measured the abundance of 13 amino acids and 179 dipeptides over short- (SD) and long-day (LD) diel cycles, each with different light intensities. Of the measured dipeptides, 38 and eight were characterized by day-night oscillation in SD and LD, respectively, reaching maximum accumulation at the end of the day and then gradually falling in the night. Not only the number of dipeptides, but also the amplitude of the oscillation was higher in SD compared with LD conditions. Notably, rhythmic dipeptides were enriched in the glucogenic amino acids that can be converted into glucose. Considering the known role of Target of Rapamycin (TOR) signaling in regulating both autophagy and metabolism, we subsequently investigated whether diurnal fluctuations of dipeptides levels are dependent on the TOR Complex (TORC). The Raptor1b mutant (raptor1b), known for the substantial reduction of TOR kinase activity, was characterized by the augmented accumulation of dipeptides, which is especially pronounced under LD conditions. We were particularly intrigued by the group of 16 dipeptides, which, based on their oscillation under SD conditions and accumulation in raptor1b, can be associated with limited C availability or photoperiod. By mining existing protein-metabolite interaction data, we delineated putative protein interactors for a representative dipeptide Pro-Gln. The obtained list included enzymes of C and amino acid metabolism, which are also linked to the TORC-mediated metabolic network. Based on the obtained results, we speculate that the diurnal accumulation of dipeptides contributes to its metabolic adaptation in response to changes in C availability. We hypothesize that dipeptides would act as alternative respiratory substrates and by directly modulating the activity of the focal enzymes.}, language = {en} } @article{CarpioAriasAriasMogrovejoNicolaldeCifuentesetal.2021, author = {Carpio Arias, Tannia Valeria and Arias Mogrovejo, Diana Carolina and Nicolalde Cifuentes, Tom{\´a}s Marcelo and Tapia Veloz, Estephany Carolina and Zeeuw, Chris I. de and Vinueza Veloz, Maria Fernanda}, title = {Sleep quality does not mediate the negative effects of chronodisruption on body composition and metabolic syndrome in healthcare workers in Ecuador}, series = {Diabetes \& metabolic syndrome : clinical research \& reviews ; the official journal of DiabetesIndia}, volume = {15}, journal = {Diabetes \& metabolic syndrome : clinical research \& reviews ; the official journal of DiabetesIndia}, number = {1}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {1871-4021}, doi = {10.1016/j.dsx.2021.01.017}, pages = {397 -- 402}, year = {2021}, abstract = {Background and aims: The objective of the present work was to determine to what extent sleep quality may mediate the association between chronodisruption (CD) and metabolic syndrome (MS), and between CD and body composition (BC). Methodology: Cross-sectional study which included 300 adult health workers, 150 of whom were night shift workers and thereby exposed to CD. Diagnosis of MS was made based on Adult Treatment Panel III criteria. Sleep quality was measured using the Pittsburgh Sleep Quality Index. Body mass index (BMI), fat mass percentage, and visceral fat percentage were measured as indicators of body composition (BC). Data were analyzed using logistic, linear regression and structural equation models. Results: The odds of health workers exposed to CD to suffer MS was 22.13 (IC95 8.68-66.07) when the model was adjusted for age, gender, physical activity and energy consumption. CD was also significantly associated with an increase in fat mass and visceral fat percentages, but not to BMI. Surprisingly, there was not enough evidence supporting the hypothesis that sleep quality contributes to the association between CD and MS or between CD and BC. Conclusions: Sleep quality does not mediate the negative effects of CD on MS nor on BC.}, language = {en} } @article{CasertaZhangYarmanetal.2021, author = {Caserta, Giorgio and Zhang, Xiaorong and Yarman, Aysu and Supala, Eszter and Wollenberger, Ulla and Gyurcs{\´a}nyi, R{\´o}bert E. and Zebger, Ingo and Scheller, Frieder W.}, title = {Insights in electrosynthesis, target binding, and stability of peptide-imprinted polymer nanofilms}, series = {Electrochimica acta : the journal of the International Society of Electrochemistry (ISE)}, volume = {381}, journal = {Electrochimica acta : the journal of the International Society of Electrochemistry (ISE)}, publisher = {Elsevier}, address = {New York, NY [u.a.]}, issn = {0013-4686}, doi = {10.1016/j.electacta.2021.138236}, pages = {8}, year = {2021}, abstract = {Molecularly imprinted polymer (MIP) nanofilms have been successfully implemented for the recognition of different target molecules: however, the underlying mechanistic details remained vague. This paper provides new insights in the preparation and binding mechanism of electrosynthesized peptide-imprinted polymer nanofilms for selective recognition of the terminal pentapeptides of the beta-chains of human adult hemoglobin, HbA, and its glycated form HbA1c. To differentiate between peptides differing solely in a glucose adduct MIP nanofilms were prepared by a two-step hierarchical electrosynthesis that involves first the chemisorption of a cysteinyl derivative of the pentapeptide followed by electropolymerization of scopoletin. This approach was compared with a random single-step electrosynthesis using scopo-letin/pentapeptide mixtures. Electrochemical monitoring of the peptide binding to the MIP nanofilms by means of redox probe gating revealed a superior affinity of the hierarchical approach with a Kd value of 64.6 nM towards the related target. Changes in the electrosynthesized non-imprinted polymer and MIP nanofilms during chemical, electrochemical template removal and rebinding were substantiated in situ by monitoring the characteristic bands of both target peptides and polymer with surface enhanced infrared absorption spectroscopy. This rational approach led to MIPs with excellent selectivity and provided key mechanistic insights with respect to electrosynthesis, rebinding and stability of the formed MIPs.}, language = {en} } @phdthesis{Ceulemans2021, author = {Ceulemans, Ruben}, title = {Diversity effects on ecosystem functions of tritrophic food webs}, doi = {10.25932/publishup-50325}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-503259}, school = {Universit{\"a}t Potsdam}, pages = {vii, 166}, year = {2021}, abstract = {There is a general consensus that diverse ecological communities are better equipped to adapt to changes in their environment, but our understanding of the mechanisms by which they do so remains incomplete. Accurately predicting how the global biodiversity crisis affects the functioning of ecosystems, and the services they provide, requires extensive knowledge about these mechanisms. Mathematical models of food webs have been successful in uncovering many aspects of the link between diversity and ecosystem functioning in small food web modules, containing at most two adaptive trophic levels. Meaningful extrapolation of this understanding to the functioning of natural food webs remains difficult, due to the presence of complex interactions that are not always accurately captured by bitrophic descriptions of food webs. In this dissertation, we expand this approach to tritrophic food web models by including the third trophic level. Using a functional trait approach, coexistence of all species is ensured using fitness-balancing trade-offs. For example, the defense-growth trade-off implies that species may be defended against predation, but this defense comes at the cost of a lower maximal growth rate. In these food webs, the functional diversity on a given trophic level can be varied by modifying the trait differences between the species on that level. In the first project, we find that functional diversity promotes high biomass on the top level, which, in turn, leads to a reduction in the temporal variability due to compensatory dynamical patterns governed by the top level. Next, these results are generalized by investigating the average behavior of tritrophic food webs, for wide intervals of all parameters describing species interactions in the food web. We find that the diversity on the top level is most important for determining the biomass and temporal variability of all other trophic levels, and show how biomass is only transferred efficiently to the top level when diversity is high everywhere in the food web. In the third project, we compare the response of a simple food chain against a nutrient pulse perturbation, to that of a food web with diversity on every trophic level. By joint consideration of the resistance, resilience, and elasticity, we uncover that the response is efficiently buffered when biomass on the top level is high, which is facilitated by functional diversity on every trophic level in the food web. Finally, in the fourth project, we show that even in a simple consumer-resource model without any diversity, top-down control on the intermediate level frequently causes the phase difference between the intermediate and basal level to deviate from the quarter-cycle lag rule. By adding a top predator, we show that these deviations become even more likely, and anti-phase cycles are often observed. The combined results of these projects show how the properties of the top trophic level, including its functional diversity, have a decisive influence on the functioning of tritrophic food webs from a mechanistic perspective. Because top species are often among the most vulnerable to extinction, our results emphasize the importance of their conservation in ecosystem management and restoration strategies.}, language = {en} } @article{CeulemansGuillGaedke2021, author = {Ceulemans, Ruben and Guill, Christian and Gaedke, Ursula}, title = {Top predators govern multitrophic diversity effects in tritrophic food webs}, series = {Ecology : a publication of the Ecological Society of America}, volume = {102}, journal = {Ecology : a publication of the Ecological Society of America}, number = {7}, publisher = {Wiley}, address = {Hoboken}, issn = {0012-9658}, doi = {10.1002/ecy.3379}, pages = {16}, year = {2021}, abstract = {It is well known that functional diversity strongly affects ecosystem functioning. However, even in rather simple model communities consisting of only two or, at best, three trophic levels, the relationship between multitrophic functional diversity and ecosystem functioning appears difficult to generalize, because of its high contextuality. In this study, we considered several differently structured tritrophic food webs, in which the amount of functional diversity was varied independently on each trophic level. To achieve generalizable results, largely independent of parametrization, we examined the outcomes of 128,000 parameter combinations sampled from ecologically plausible intervals, with each tested for 200 randomly sampled initial conditions. Analysis of our data was done by training a random forest model. This method enables the identification of complex patterns in the data through partial dependence graphs, and the comparison of the relative influence of model parameters, including the degree of diversity, on food-web properties. We found that bottom-up and top-down effects cascade simultaneously throughout the food web, intimately linking the effects of functional diversity of any trophic level to the amount of diversity of other trophic levels, which may explain the difficulty in unifying results from previous studies. Strikingly, only with high diversity throughout the whole food web, different interactions synergize to ensure efficient exploitation of the available nutrients and efficient biomass transfer to higher trophic levels, ultimately leading to a high biomass and production on the top level. The temporal variation of biomass showed a more complex pattern with increasing multitrophic diversity: while the system initially became less variable, eventually the temporal variation rose again because of the increasingly complex dynamical patterns. Importantly, top predator diversity and food-web parameters affecting the top trophic level were of highest importance to determine the biomass and temporal variability of any trophic level. Overall, our study reveals that the mechanisms by which diversity influences ecosystem functioning are affected by every part of the food web, hampering the extrapolation of insights from simple monotrophic or bitrophic systems to complex natural food webs.}, language = {en} } @misc{CleggWackerSpijkerman2021, author = {Clegg, Mark R. and Wacker, Alexander and Spijkerman, Elly}, title = {Phenotypic Diversity and Plasticity of Photoresponse Across an Environmentally Contrasting Family of Phytoflagellates}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1219}, issn = {1866-8372}, doi = {10.25932/publishup-53617}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-536174}, year = {2021}, abstract = {Organisms often employ ecophysiological strategies to exploit environmental conditions and ensure bio-energetic success. However, the many complexities involved in the differential expression and flexibility of these strategies are rarely fully understood. Therefore, for the first time, using a three-part cross-disciplinary laboratory experimental analysis, we investigated the diversity and plasticity of photoresponsive traits employed by one family of environmentally contrasting, ecologically important phytoflagellates. The results demonstrated an extensive inter-species phenotypic diversity of behavioural, physiological, and compositional photoresponse across the Chlamydomonadaceae, and a multifaceted intra-species phenotypic plasticity, involving a broad range of beneficial photoacclimation strategies, often attributable to environmental predisposition and phylogenetic differentiation. Deceptively diverse and sophisticated strong (population and individual cell) behavioural photoresponses were observed, with divergence from a general preference for low light (and flexibility) dictated by intra-familial differences in typical habitat (salinity and trophy) and phylogeny. Notably, contrasting lower, narrow, and flexible compared with higher, broad, and stable preferences were observed in freshwater vs. brackish and marine species. Complex diversity and plasticity in physiological and compositional photoresponses were also discovered. Metabolic characteristics (such as growth rates, respiratory costs and photosynthetic capacity, efficiency, compensation and saturation points) varied elaborately with species, typical habitat (often varying more in eutrophic species, such as Chlamydomonas reinhardtii), and culture irradiance (adjusting to optimise energy acquisition and suggesting some propensity for low light). Considerable variations in intracellular pigment and biochemical composition were also recorded. Photosynthetic and accessory pigments (such as chlorophyll a, xanthophyll-cycle components, chlorophyll a:b and chlorophyll a:carotenoid ratios, fatty acid content and saturation ratios) varied with phylogeny and typical habitat (to attune photosystem ratios in different trophic conditions and to optimise shade adaptation, photoprotection, and thylakoid architecture, particularly in freshwater environments), and changed with irradiance (as reaction and harvesting centres adjusted to modulate absorption and quantum yield). The complex, concomitant nature of the results also advocated an integrative approach in future investigations. Overall, these nuanced, diverse, and flexible photoresponsive traits will greatly contribute to the functional ecology of these organisms, addressing environmental heterogeneity and potentially shaping individual fitness, spatial and temporal distribution, prevalence, and ecosystem dynamics.}, language = {en} } @article{CleggWackerSpijkerman2021, author = {Clegg, Mark R. and Wacker, Alexander and Spijkerman, Elly}, title = {Phenotypic Diversity and Plasticity of Photoresponse Across an Environmentally Contrasting Family of Phytoflagellates}, series = {Frontiers in plant science : FPLS}, journal = {Frontiers in plant science : FPLS}, number = {12}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2021.707541}, year = {2021}, abstract = {Organisms often employ ecophysiological strategies to exploit environmental conditions and ensure bio-energetic success. However, the many complexities involved in the differential expression and flexibility of these strategies are rarely fully understood. Therefore, for the first time, using a three-part cross-disciplinary laboratory experimental analysis, we investigated the diversity and plasticity of photoresponsive traits employed by one family of environmentally contrasting, ecologically important phytoflagellates. The results demonstrated an extensive inter-species phenotypic diversity of behavioural, physiological, and compositional photoresponse across the Chlamydomonadaceae, and a multifaceted intra-species phenotypic plasticity, involving a broad range of beneficial photoacclimation strategies, often attributable to environmental predisposition and phylogenetic differentiation. Deceptively diverse and sophisticated strong (population and individual cell) behavioural photoresponses were observed, with divergence from a general preference for low light (and flexibility) dictated by intra-familial differences in typical habitat (salinity and trophy) and phylogeny. Notably, contrasting lower, narrow, and flexible compared with higher, broad, and stable preferences were observed in freshwater vs. brackish and marine species. Complex diversity and plasticity in physiological and compositional photoresponses were also discovered. Metabolic characteristics (such as growth rates, respiratory costs and photosynthetic capacity, efficiency, compensation and saturation points) varied elaborately with species, typical habitat (often varying more in eutrophic species, such as Chlamydomonas reinhardtii), and culture irradiance (adjusting to optimise energy acquisition and suggesting some propensity for low light). Considerable variations in intracellular pigment and biochemical composition were also recorded. Photosynthetic and accessory pigments (such as chlorophyll a, xanthophyll-cycle components, chlorophyll a:b and chlorophyll a:carotenoid ratios, fatty acid content and saturation ratios) varied with phylogeny and typical habitat (to attune photosystem ratios in different trophic conditions and to optimise shade adaptation, photoprotection, and thylakoid architecture, particularly in freshwater environments), and changed with irradiance (as reaction and harvesting centres adjusted to modulate absorption and quantum yield). The complex, concomitant nature of the results also advocated an integrative approach in future investigations. Overall, these nuanced, diverse, and flexible photoresponsive traits will greatly contribute to the functional ecology of these organisms, addressing environmental heterogeneity and potentially shaping individual fitness, spatial and temporal distribution, prevalence, and ecosystem dynamics.}, language = {en} } @article{CompartLiFettke2021, author = {Compart, Julia and Li, Xiaoping and Fettke, J{\"o}rg}, title = {Starch-A complex and undeciphered biopolymer}, series = {Journal of plant physiology : biochemistry, physiology, molecular biology and biotechnology of plants}, volume = {258}, journal = {Journal of plant physiology : biochemistry, physiology, molecular biology and biotechnology of plants}, publisher = {Elsevier}, address = {M{\"u}nchen}, issn = {0176-1617}, doi = {10.1016/j.jplph.2021.153389}, pages = {258 -- 259}, year = {2021}, abstract = {Starch is a natural storage carbohydrate in plants and algae. It consists of two relatively simple homo-biopolymers, amylopectin and amylose, with only alpha-1,4 and alpha-1,6 linked glucosyl units. Starch is an essential source of nutrition and animal food, as well as an important raw material for industry. However, despite increasing knowledge, detailed information about its structure and turnover are largely lacking. In the last decades, most data were generated using bulk experiments, a method which obviously presents limitations regarding a deeper understanding of the starch metabolism. Here, we discuss some unavoidable questions arising from the existing data. We focus on a few examples related to starch biosynthesis, degradation, and structure where these limitations strongly emerge. Closing these knowledge gaps will also be extremely important for taking the necessary steps in order to set up starch-providing crops for the challenges of the ongoing climate changes, as well as for increasing the usability of starches for industrial applications by biotechnology.}, language = {en} } @article{CourtinAndreevRaschkeetal.2021, author = {Courtin, J{\´e}r{\´e}my and Andreev, Andrei and Raschke, Elena and Bala, Sarah and Biskaborn, Boris and Liu, Sisi and Zimmermann, Heike and Diekmann, Bernhard and Stoof-Leichsenring, Kathleen R. and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Vegetation changes in Southeastern Siberia during the late pleistocene and the holocene}, series = {Frontiers in Ecology and Evolution}, volume = {9}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2021.625096}, pages = {18}, year = {2021}, abstract = {Relationships between climate, species composition, and species richness are of particular importance for understanding how boreal ecosystems will respond to ongoing climate change. This study aims to reconstruct changes in terrestrial vegetation composition and taxa richness during the glacial Late Pleistocene and the interglacial Holocene in the sparsely studied southeastern Yakutia (Siberia) by using pollen and sedimentary ancient DNA (sedaDNA) records. Pollen and sedaDNA metabarcoding data using the trnL g and h markers were obtained from a sediment core from Lake Bolshoe Toko. Both proxies were used to reconstruct the vegetation composition, while metabarcoding data were also used to investigate changes in plant taxa richness. The combination of pollen and sedaDNA approaches allows a robust estimation of regional and local past terrestrial vegetation composition around Bolshoe Toko during the last similar to 35,000 years. Both proxies suggest that during the Late Pleistocene, southeastern Siberia was covered by open steppe-tundra dominated by graminoids and forbs with patches of shrubs, confirming that steppe-tundra extended far south in Siberia. Both proxies show disturbance at the transition between the Late Pleistocene and the Holocene suggesting a period with scarce vegetation, changes in the hydrochemical conditions in the lake, and in sedimentation rates. Both proxies document drastic changes in vegetation composition in the early Holocene with an increased number of trees and shrubs and the appearance of new tree taxa in the lake's vicinity. The sedaDNA method suggests that the Late Pleistocene steppe-tundra vegetation supported a higher number of terrestrial plant taxa than the forested Holocene. This could be explained, for example, by the "keystone herbivore" hypothesis, which suggests that Late Pleistocene megaherbivores were able to maintain a high plant diversity. This is discussed in the light of the data with the broadly accepted species-area hypothesis as steppe-tundra covered such an extensive area during the Late Pleistocene.}, language = {en} } @phdthesis{Dahmani2021, author = {Dahmani, Ismail}, title = {Influenza A virus matrix protein M1}, doi = {10.25932/publishup-52740}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-527409}, school = {Universit{\"a}t Potsdam}, pages = {XI, 147}, year = {2021}, abstract = {Influenza A virus (IAV) is a pathogen responsible for severe seasonal epidemics threatening human and animal populations every year. During the viral assembly process in the infected cells, the plasma membrane (PM) has to bend in localized regions into a vesicle towards the extracellular side. Studies in cellular models have proposed that different viral proteins might be responsible for inducing membrane curvature in this context (including M1), but a clear consensus has not been reached. M1 is the most abundant protein in IAV particles. It plays an important role in virus assembly and budding at the PM. M1 is recruited to the host cell membrane where it associates with lipids and other viral proteins. However, the details of M1 interactions with the cellular PM, as well as M1-mediated membrane bending at the budozone, have not been clarified. In this work, we used several experimental approaches to analyze M1-lipids and M1-M1 interactions. By performing SPR analysis, we quantified membrane association for full-length M1 and different genetically engineered M1 constructs (i.e., N- and C-terminally truncated constructs and a mutant of the polybasic region). This allowed us to obtain novel information on the protein regions mediating M1 binding to membranes. By using fluorescence microscopy, cryogenic transmission electron microscopy (cryo-TEM), and three-dimensional (3D) tomography (cryo-ET), we showed that M1 is indeed able to cause membrane deformation on vesicles containing negatively-charged lipids, in the absence of other viral components. Further, sFCS analysis proved that simple protein binding is not sufficient to induce membrane restructuring. Rather, it appears that stable M1-M1 interactions and multimer formation are required to alter the bilayer three-dimensional structure through the formation of a protein scaffold. Finally, to mimic the budding mechanism in cells that arise by the lateral organization of the virus membrane components on lipid raft domains, we created vesicles with lipid domains. Our results showed that local binding of M1 to spatial confined acidic lipids within membrane domains of vesicles led to local M1 inward curvature.}, language = {en} } @article{deOliveiraSilvaPiratelliZurelletal.2021, author = {de Oliveira-Silva, Anna Elizabeth and Piratelli, Augusto Jo{\~a}o and Zurell, Damaris and da Silva, Fernando Rodrigues}, title = {Vegetation cover restricts habitat suitability predictions of endemic Brazilian Atlantic Forest birds}, series = {Perspectives in Ecology and Conservation}, volume = {20}, journal = {Perspectives in Ecology and Conservation}, number = {1}, publisher = {Elsevier}, address = {Oxford}, issn = {2530-0644}, doi = {10.1016/j.pecon.2021.09.002}, pages = {1 -- 8}, year = {2021}, abstract = {Ecological niche models (ENMs) are often used to investigate how climatic variables from known occurrence records can estimate potential species range distribution. Although climate-based ENMs provide critical baseline information, the inclusion of non-climatic predictors related to vegetation cover might generate more realistic scenarios. This assumption is particularly relevant for species with life-history traits related to forest habitats and sensitive to habitat loss and fragmentation. Here, we developed ENMs for 36 Atlantic Forest endemic birds considering two sets of predictor variables: (i) climatic variables only and (ii) climatic variables combined with the percentage of remaining native vegetation. We hypothesized that the inclusion of native vegetation data would decrease the potential range distribution of forest-dependent species by limiting their occurrence in regions harboring small areas of native vegetation habitats, despite otherwise favorable climatic conditions. We also expected that habitat restriction in the climate-vegetation models would be more pronounced for highly forest-dependent birds. The inclusion of vegetation data in the modeling procedures restricted the final distribution ranges of 22 out of 36 modeled species, while the 14 remaining presented an expansion of their ranges. We observed that species with high and medium forest dependency showed higher restriction in range size predictions between predictor sets than species with low forest dependency, which showed no alteration or range expansion. Overall, our results suggest that ENMs based on climatic and landscape variables may be a useful tool for conservationists to better understand the dynamic of bird species distributions in threatened and highly fragmented regions such as the Atlantic Forest hotspot.(c) 2021 Associacao Brasileira de Cie circumflex accent ncia Ecol ogica e Conservacao. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ ).}, language = {en} } @article{DeSousaMotaDinizCoelhoetal.2021, author = {De Sousa Mota, Cristiano and Diniz, Ana and Coelho, Catarina and Santos-Silva, Teresa and Esmaeeli Moghaddam Tabalvandani, Mariam and Leimk{\"u}hler, Silke and Cabrita, Eurico J. and Marcelo, Filipa and Rom{\~a}o, Maria Jo{\~a}o}, title = {Interrogating the inhibition mechanisms of human aldehyde oxidase by X-ray crystallography and NMR spectroscopy}, series = {Journal of medicinal chemistry / American Chemical Society}, volume = {64}, journal = {Journal of medicinal chemistry / American Chemical Society}, number = {17}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-2623}, doi = {10.1021/acs.jmedchem.1c01125}, pages = {13025 -- 13037}, year = {2021}, abstract = {Human aldehyde oxidase (hAOX1) is mainly present in the liver and has an emerging role in drug metabolism, since it accepts a wide range of molecules as substrates and inhibitors. Herein, we employed an integrative approach by combining NMR, X-ray crystallography, and enzyme inhibition kinetics to understand the inhibition modes of three hAOX1 inhibitors-thioridazine, benzamidine, and raloxifene. These integrative data indicate that thioridazine is a noncompetitive inhibitor, while benzamidine presents a mixed type of inhibition. Additionally, we describe the first crystal structure of hAOX1 in complex with raloxifene. Raloxifene binds tightly at the entrance of the substrate tunnel, stabilizing the flexible entrance gates and elucidating an unusual substrate-dependent mechanism of inhibition with potential impact on drug-drug interactions. This study can be considered as a proof-of-concept for an efficient experimental screening of prospective substrates and inhibitors of hAOX1 relevant in drug discovery.}, language = {en} } @inproceedings{DennisInaebnit2021, author = {Dennis, Alice B. and In{\"a}bnit, Thomas}, title = {Physiological and genomic variation among cryptic species of a marsh snail (Melampus bidentatus)}, series = {Integrative and comparative biology / Society of Integrative and Comparative Biology}, volume = {61}, booktitle = {Integrative and comparative biology / Society of Integrative and Comparative Biology}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1540-7063}, doi = {10.1093/icb/icab001}, pages = {E195 -- E196}, year = {2021}, language = {en} } @misc{DragoWeithoff2021, author = {Drago, Claudia and Weithoff, Guntram}, title = {Variable Fitness Response of Two Rotifer Species Exposed to Microplastics Particles}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1248}, issn = {1866-8372}, doi = {10.25932/publishup-55261}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-552615}, pages = {13}, year = {2021}, abstract = {Plastic pollution is an increasing environmental problem, but a comprehensive understanding of its effect in the environment is still missing. The wide variety of size, shape, and polymer composition of plastics impedes an adequate risk assessment. We investigated the effect of differently sized polystyrene beads (1-, 3-, 6-µm; PS) and polyamide fragments (5-25 µm, PA) and non-plastics items such as silica beads (3-µm, SiO2) on the population growth, reproduction (egg ratio), and survival of two common aquatic micro invertebrates: the rotifer species Brachionus calyciflorus and Brachionus fernandoi. The MPs were combined with food quantity, limiting and saturating food concentration, and with food of different quality. We found variable fitness responses with a significant effect of 3-µm PS on the population growth rate in both rotifer species with respect to food quantity. An interaction between the food quality and the MPs treatments was found in the reproduction of B. calyciflorus. PA and SiO2 beads had no effect on fitness response. This study provides further evidence of the indirect effect of MPs in planktonic rotifers and the importance of testing different environmental conditions that could influence the effect of MPs.}, language = {en} } @article{DragoWeithoff2021, author = {Drago, Claudia and Weithoff, Guntram}, title = {Variable Fitness Response of Two Rotifer Species Exposed to Microplastics Particles}, series = {Toxics}, volume = {9}, journal = {Toxics}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2305-6304}, doi = {10.3390/toxics9110305}, pages = {13}, year = {2021}, abstract = {Plastic pollution is an increasing environmental problem, but a comprehensive understanding of its effect in the environment is still missing. The wide variety of size, shape, and polymer composition of plastics impedes an adequate risk assessment. We investigated the effect of differently sized polystyrene beads (1-, 3-, 6-µm; PS) and polyamide fragments (5-25 µm, PA) and non-plastics items such as silica beads (3-µm, SiO2) on the population growth, reproduction (egg ratio), and survival of two common aquatic micro invertebrates: the rotifer species Brachionus calyciflorus and Brachionus fernandoi. The MPs were combined with food quantity, limiting and saturating food concentration, and with food of different quality. We found variable fitness responses with a significant effect of 3-µm PS on the population growth rate in both rotifer species with respect to food quantity. An interaction between the food quality and the MPs treatments was found in the reproduction of B. calyciflorus. PA and SiO2 beads had no effect on fitness response. This study provides further evidence of the indirect effect of MPs in planktonic rotifers and the importance of testing different environmental conditions that could influence the effect of MPs.}, language = {en} } @article{DunsingPetrichChiantia2021, author = {Dunsing, Valentin and Petrich, Annett and Chiantia, Salvatore}, title = {Multicolor fluorescence fluctuation spectroscopy in living cells via spectral detection}, series = {eLife}, volume = {10}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.69687}, pages = {33}, year = {2021}, abstract = {Signaling pathways in biological systems rely on specific interactions between multiple biomolecules. Fluorescence fluctuation spectroscopy provides a powerful toolbox to quantify such interactions directly in living cells. Cross-correlation analysis of spectrally separated fluctuations provides information about intermolecular interactions but is usually limited to two fluorophore species. Here, we present scanning fluorescence spectral correlation spectroscopy (SFSCS), a versatile approach that can be implemented on commercial confocal microscopes, allowing the investigation of interactions between multiple protein species at the plasma membrane. We demonstrate that SFSCS enables cross-talk-free cross-correlation, diffusion, and oligomerization analysis of up to four protein species labeled with strongly overlapping fluorophores. As an example, we investigate the interactions of influenza A virus (IAV) matrix protein 2 with two cellular host factors simultaneously. We furthermore apply raster spectral image correlation spectroscopy for the simultaneous analysis of up to four species and determine the stoichiometry of ternary IAV polymerase complexes in the cell nucleus.}, language = {en} } @inproceedings{DunsingPetrichChiantia2021, author = {Dunsing, Valentin and Petrich, Annett and Chiantia, Salvatore}, title = {Spectral detection enables multi-color fluorescence fluctuation spectroscopy studies in living cells}, series = {Biophysical journal : BJ / ed. by the Biophysical Society}, volume = {120}, booktitle = {Biophysical journal : BJ / ed. by the Biophysical Society}, number = {3, Suppl. 1}, publisher = {Cell Press}, address = {Cambridge}, issn = {0006-3495}, doi = {10.1016/j.bpj.2020.11.2206}, pages = {356A -- 356A}, year = {2021}, language = {en} } @phdthesis{Egli2021, author = {Egli, Lukas}, title = {Stabilizing agricultural systems through diversity}, doi = {10.25932/publishup-49684}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-496848}, school = {Universit{\"a}t Potsdam}, pages = {VII, 125}, year = {2021}, abstract = {In the light of climate change, rising demands for agricultural products and the intensification and specialization of agricultural systems, ensuring an adequate and reliable supply of food is fundamental for food security. Maintaining diversity and redundancy has been postulated as one generic principle to increase the resilience of agricultural production and other ecosystem services. For example, if one crop fails due to climate instability and extreme events, others can compensate the losses. Crop diversity might be particularly important if different crops show asynchronous production trends. Furthermore, spatial heterogeneity has been suggested to increase stability at larger scales as production losses in some areas can be buffered by surpluses in undisturbed ones. Besides systematically investigating the mechanisms underlying stability, identifying transformative pathways that foster them is important. In my thesis, I aim at answering the following questions: (i) How does yield stability differ between nations, regions and farms, and what is the effect of crop diversity on yield stability in relation to agricultural inputs, climate heterogeneity, climate instability and time at the national, regional or farm level? (ii) Is asynchrony between crops a better predictor of production stability than crop diversity? (iii) What is the effect of asynchrony between and within crops on stability and how is it related to crop diversity and space, respectively? (iv) What is the state of the art and what are knowledge gaps in exploring resilience and its multidimensionality in ecological and social-ecological systems with agent-based models and what are potential ways forward? In the first chapter, I provide the theoretical background for the subsequent analyses. I stress the need to better understand the resilience of social-ecological systems and particularly the stability of agricultural production. Moreover, I introduce diversity and spatial heterogeneity as two prominently discussed resilience mechanisms and describe approaches to assess resilience. In the second chapter, I combined agriculture and climate data at three levels of organization and spatial extents to investigate yield stability patterns and their relation to crop diversity, fertilizer, irrigation, climate heterogeneity and instability and time of nations globally, regions in Europe and farms in Germany using statistical analyses. Yield stability decreased from the national to the farm level. Several nations and regions substantially contributed to larger-scale stability. Crop diversity was positively associated with yield stability across all three levels of organization. This effect was typically more profound at smaller scales and in variable climates. In addition to crop diversity, climate heterogeneity was an important stabilizing mechanism especially at larger scales. These results confirm the stabilizing effect of crop diversity and spatial heterogeneity, yet their importance depends on the scale and agricultural management. Building on the findings of the second chapter, I deepened in the third chapter my research on the effect of crop diversity at the national level. In particular, I tested if asynchrony between crops, i.e. between the temporal production patterns of different crops, better predicts agricultural production stability than crop diversity. The stabilizing effect of asynchrony was multiple times higher than the effect of crop diversity, i.e. asynchrony is one important property that can explain why a higher diversity supports the stability of national food production. Therefore, strategies to stabilize agricultural production through crop diversification also need to account for the asynchrony of the crops considered. The previous chapters suggest that both asynchrony between crops and spatial heterogeneity are important stabilizing mechanisms. In the fourth chapter, I therefore aimed at better understanding the relative importance of asynchrony between and within crops, i.e. between the temporal production patterns of different crops and between the temporal production patterns of different cultivation areas of the same crop. Better understanding their relative importance is important to inform agricultural management decisions, but so far this has been hardly assessed. To address this, I used crop production data to study the effect of asynchrony between and within crops on the stability of agricultural production in regions in Germany and nations in Europe. Both asynchrony between and within crops consistently stabilized agricultural production. Adding crops increased asynchrony between crops, yet this effect levelled off after eight crops in regions in Germany and after four crops in nations in Europe. Combining already ten farms within a region led to high asynchrony within crops, indicating distinct production patters, while this effect was weaker when combining multiple regions within a nation. The results suggest, that both mechanisms need to be considered in agricultural management strategies that strive for more resilient farming systems. The analyses in the foregoing chapters focused at different levels of organization, scales and factors potentially influencing agricultural stability. However, these statistical analyses are restricted by data availability and investigate correlative relationships, thus they cannot provide a mechanistic understanding of the actual processes underlying resilience. In this regard, agent-based models (ABM) are a promising tool. Besides their ability to measure different properties and to integrate multiple situations through extensive manipulation in a fully controlled system, they can capture the emergence of system resilience from individual interactions and feedbacks across different levels of organization. In the fifth chapter, I therefore reviewed the state of the art and potential knowledge gaps in exploring resilience and its multidimensionality in ecological and social-ecological systems with ABMs. Next, I derived recommendations for a more effective use of ABMs in resilience research. The review suggests that the potential of ABMs is not utilized in most models as they typically focus on a single dimension of resilience and are mostly limited to one reference state, disturbance type and scale. Moreover, only few studies explicitly test the ability of different mechanisms to support resilience. To solve real-world problems related to the resilience of complex systems, ABMs need to assess multiple stability properties for different situations and under consideration of the mechanisms that are hypothesized to render a system resilient. In the sixth chapter, I discuss the major conclusions that can be drawn from the previous chapters. Moreover, I showcase the use of simulation models to identify management strategies to enhance asynchrony and thus stability, and the potential of ABMs to identify pathways to implement such strategies. The results of my thesis confirm the stabilizing effect of crop diversity, yet its importance depends on the scale, agricultural management and climate. Moreover, strategies to stabilize agricultural production through crop diversification also need to account for the asynchrony of the crops considered. As spatial heterogeneity and particularly asynchrony within crops strongly enhances stability, integrated management approaches are needed that simultaneously address multiple resilience mechanisms at different levels of organization, scales and time horizons. For example, the simulation suggests that only increasing the number of crops at both the pixel and landscape level avoids trade-offs between asynchrony between and within crops. If their potential is better exploited, agent-based models have the capacity to systematically assess resilience and to identify comprehensive pathways towards resilient farming systems.}, language = {en} } @article{EilersKleineEckertetal.2021, author = {Eilers, Elisabeth Johanna and Kleine, Sandra and Eckert, Silvia and Waldherr, Simon and M{\"u}ller, Caroline}, title = {Flower production, headspace volatiles, pollen nutrients, and florivory in tanacetum vulgare chemotypes}, series = {Frontiers in plant science : FPLS}, volume = {11}, journal = {Frontiers in plant science : FPLS}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2020.611877}, pages = {17}, year = {2021}, abstract = {Floral volatiles and reward traits are major drivers for the behavior of mutualistic as well as antagonistic flower visitors, i.e., pollinators and florivores. These floral traits differ tremendously between species, but intraspecific differences and their consequences on organism interactions remain largely unknown. Floral volatile compounds, such as terpenoids, function as cues to advertise rewards to pollinators, but should at the same time also repel florivores. The reward composition, e.g., protein and lipid contents in pollen, differs between individuals of distinct plant families. Whether the nutritional value of rewards within the same plant species is linked to their chemotypes, which differ in their pattern of specialized metabolites, has yet not been investigated. In the present study, we compared Tanacetum vulgare plants of five terpenoid chemotypes with regard to flower production, floral headspace volatiles, pollen macronutrient and terpenoid content, and floral attractiveness to florivorous beetles. Our analyses revealed remarkable differences between the chemotypes in the amount and diameter of flower heads, duration of bloom period, and pollen nutritional quality. The floral headspace composition of pollen-producing mature flowers, but not of premature flowers, was correlated to that of pollen and leaves in the same plant individual. For two chemotypes, florivorous beetles discriminated between the scent of mature and premature flower heads and preferred the latter. In semi-field experiments, the abundance of florivorous beetles and flower tissue miners differed between T. vulgare chemotypes. Moreover, the scent environment affected the choice and beetles were more abundant in homogenous plots composed of one single chemotype than in plots with different neighboring chemotypes. In conclusion, flower production, floral metabolic composition and pollen quality varied to a remarkable extend within the species T. vulgare, and the attractiveness of floral scent differed also intra-individually with floral ontogeny. We found evidence for a trade-off between pollen lipid content and pollen amount on a per-plant-level. Our study highlights that chemotypes which are more susceptible to florivory are less attacked when they grow in the neighborhood of other chemotypes and thus gain a benefit from high overall chemodiversity.}, language = {en} } @article{EnzingmuellerPrechtl2021, author = {Enzingm{\"u}ller, Carolin and Prechtl, Helmut}, title = {Constructing graphs in biology class}, series = {International journal of science and mathematics education}, volume = {19}, journal = {International journal of science and mathematics education}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {1571-0068}, doi = {10.1007/s10763-019-09975-2}, pages = {1 -- 19}, year = {2021}, abstract = {There has been a growing awareness that graphing is an essential part of the science curriculum. While much research has focused on student conceptions and abilities regarding graphical representations, only few studies have investigated what teachers think about them and how they use graphs in science class. The purpose of this study is to explore educational beliefs, motivation, and teaching practices of German secondary biology teachers regarding graph construction. Via questionnaire surveys, 71 teachers from different regions in Germany rated their beliefs and motivation as well as the frequency of different graph construction activities in biology class. The teachers surveyed in this study were quite motivated in their teaching of graph construction. Furthermore, they tended to believe that graph construction should be practiced explicitly in biology class and that students should learn clear strategies for constructing graphs. We found that teaching subjects and own research experience make a difference in teachers' beliefs and motivation regarding graph construction in biology class. The self-report on classroom practices revealed that participants may provide limited opportunities for students to experience graphing as a social and iterative practice. Implications are drawn for teacher education and professional development as well as for further research in teacher education contexts.}, language = {en} } @article{FeddersMuenznerWeberetal.2021, author = {Fedders, Ronja and Muenzner, Matthias and Weber, Pamela and Sommerfeld, Manuela and Knauer, Miriam and Kedziora, Sarah and Kast, Naomi and Heidenreich, Steffi and Raila, Jens and Weger, Stefan and Henze, Andrea and Schupp, Michael}, title = {Liver-secreted RBP4 does not impair glucose homeostasis in mice}, series = {The journal of biological chemistry}, volume = {293}, journal = {The journal of biological chemistry}, number = {39}, publisher = {American Society for Biochemistry and Molecular Biology}, address = {Bethesda}, issn = {1083-351X}, doi = {10.1074/jbc.RA118.004294}, pages = {15269 -- 15276}, year = {2021}, abstract = {Retinol-binding protein 4 (RBP4) is the major transport protein for retinol in blood. Recent evidence from genetic mouse models shows that circulating RBP4 derives exclusively from hepatocytes. Because RBP4 is elevated in obesity and associates with the development of glucose intolerance and insulin resistance, we tested whether a liver-specific overexpression of RBP4 in mice impairs glucose homeostasis. We used adeno-associated viruses (AAV) that contain a highly liver-specific promoter to drive expression of murine RBP4 in livers of adult mice. The resulting increase in serum RBP4 levels in these mice was comparable with elevated levels that were reported in obesity. Surprisingly, we found that increasing circulating RBP4 had no effect on glucose homeostasis. Also during a high-fat diet challenge, elevated levels of RBP4 in the circulation failed to aggravate the worsening of systemic parameters of glucose and energy homeostasis. These findings show that liver-secreted RBP4 does not impair glucose homeostasis. We conclude that a modest increase of its circulating levels in mice, as observed in the obese, insulin-resistant state, is unlikely to be a causative factor for impaired glucose homeostasis.}, language = {en} } @article{FloederYongKlauschiesetal.2021, author = {Fl{\"o}der, Sabine and Yong, Joanne and Klauschies, Toni and Gaedke, Ursula and Poprick, Tobias and Brinkhoff, Thorsten and Moorthi, Stefanie}, title = {Intraspecific trait variation alters the outcome of competition in freshwater ciliates}, series = {Ecology and evolution}, volume = {11}, journal = {Ecology and evolution}, number = {15}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.7828}, pages = {10225 -- 10243}, year = {2021}, abstract = {Trait variation among heterospecific and conspecific organisms may substantially affect community and food web dynamics. While the relevance of competition and feeding traits have been widely studied for different consumer species, studies on intraspecific differences are more scarce, partly owing to difficulties in distinguishing different clones of the same species. Here, we investigate how intraspecific trait variation affects the competition between the freshwater ciliates Euplotes octocarinatus and Coleps hirtus in a nitrogen-limited chemostat system. The ciliates competed for the microalgae Cryptomonas sp. (Cry) and Navicula pelliculosa (Nav), and the bacteria present in the cultures over a period of 33 days. We used monoclonal Euplotes and three different Coleps clones (Col 1, Col 2, and Col 3) in the experiment that could be distinguished by a newly developed rDNA-based molecular assay based on the internal transcribed spacer (ITS) regions. While Euplotes feeds on Cry and on bacteria, the Coleps clones cannot survive on bacteria alone but feed on both Cry and Nav with clone-specific rates. Experimental treatments comprised two-species mixtures of Euplotes and one or all of the three different Coleps clones, respectively. We found intraspecific variation in the traits "selectivity" and "maximum ingestion rate" for the different algae to significantly affect the competitive outcome between the two ciliate species. As Nav quickly escaped top-down control and likely reached a state of low food quality, ciliate competition was strongly determined by the preference of different Coleps clones for Cry as opposed to feeding on Nav. In addition, the ability of Euplotes to use bacteria as an alternative food source strengthened its persistence once Cry was depleted. Hence, trait variation at both trophic levels codetermined the population dynamics and the outcome of species competition.}, language = {en} } @article{FriedrichOberkoflerTrindadeetal.2021, author = {Friedrich, Thomas and Oberkofler, Vicky and Trindade, In{\^e}s and Altmann, Simone and Brzezinka, Krzysztof and L{\"a}mke, J{\"o}rn S. and Gorka, Michal and Kappel, Christian and Sokolowska, Ewelina and Skirycz, Aleksandra and Graf, Alexander and B{\"a}urle, Isabel}, title = {Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group UK}, address = {[London]}, issn = {2041-1723}, doi = {10.1038/s41467-021-23786-6}, pages = {15}, year = {2021}, abstract = {Adaptive plasticity in stress responses is a key element of plant survival strategies. For instance, moderate heat stress (HS) primes a plant to acquire thermotolerance, which allows subsequent survival of more severe HS conditions. Acquired thermotolerance is actively maintained over several days (HS memory) and involves the sustained induction of memory-related genes. Here we show that FORGETTER3/ HEAT SHOCK TRANSCRIPTION FACTOR A3 (FGT3/HSFA3) is specifically required for physiological HS memory and maintaining high memory-gene expression during the days following a HS exposure. HSFA3 mediates HS memory by direct transcriptional activation of memory-related genes after return to normal growth temperatures. HSFA3 binds HSFA2, and in vivo both proteins form heteromeric complexes with additional HSFs. Our results indicate that only complexes containing both HSFA2 and HSFA3 efficiently promote transcriptional memory by positively influencing histone H3 lysine 4 (H3K4) hyper-methylation. In summary, our work defines the major HSF complex controlling transcriptional memory and elucidates the in vivo dynamics of HSF complexes during somatic stress memory. Moderate heat stress primes plants to acquire tolerance to subsequent, more severe heat stress. Here the authors show that the HSFA3 transcription factor forms a heteromeric complex with HSFA2 to sustain activated transcription of genes required for acquired thermotolerance by promoting H3K4 hyper-methylation.}, language = {en} } @article{FudickarRoderListeketal.2021, author = {Fudickar, Werner and Roder, Phillip and Listek, Martin and Hanack, Katja and Linker, Torsten}, title = {Pyridinium alkynylanthracenes as sensitizers for photodynamic therapy}, series = {Photochemistry and photobiology}, volume = {98}, journal = {Photochemistry and photobiology}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0031-8655}, doi = {10.1111/php.13554}, pages = {193 -- 201}, year = {2021}, abstract = {Photodynamic therapy (PDT) is a mild but effective method to treat certain types of cancer upon irradiation with visible light. Here, three isomeric methylpyridinium alkynylanthracenes 1op were evaluated as sensitizers for PDT. Upon irradiation with blue or green light, all three compounds show the ability to initiate strand breaks of plasmid DNA. The mayor species responsible for cleavage is singlet oxygen (O-1(2)) as confirmed by scavenging reagents. Only isomers 1m and 1p can be incorporated into HeLa cells, whereas isomer 1o cannot permeate through the membrane. While isomer 1m targets the cell nucleus, isomer 1p assembles in the cellular cytoplasm and impacts the cellular integrity. This is in accordance with a moderate toxicity of 1p in the dark, whereas 1m exhibits no dark toxicity. Both isomers are suitable as PDT reagents, with a CC50 of 3 mu m and 75 nm, for 1p and 1m, respectively. Thus, derivative 1m, which can be easily synthesized, becomes an interesting candidate for cancer therapy.}, language = {en} } @article{GarridoLeimkuehler2021, author = {Garrido, Claudia and Leimk{\"u}hler, Silke}, title = {The inactivation of human aldehyde oxidase 1 by hydrogen peroxide and superoxide}, series = {Drug metabolism and disposition / American Society for Pharmacology and Experimental Therapeutics}, volume = {49}, journal = {Drug metabolism and disposition / American Society for Pharmacology and Experimental Therapeutics}, number = {9}, publisher = {American Society for Pharmacology and Experimental Therapeutics}, address = {Bethesda}, issn = {1521-009X}, doi = {10.1124/dmd.121.000549}, pages = {729 -- 735}, year = {2021}, abstract = {Mammalian aldehyde oxidases (AOX) are molybdo-flavoenzymes of pharmacological and pathophysiologic relevance that are involved in phase I drug metabolism and, as a product of their enzymatic activity, are also involved in the generation of reactive oxygen species. So far, the physiologic role of aldehyde oxidase 1 in the human body remains unknown. The human enzyme hAOX1 is characterized by a broad substrate specificity, oxidizing aromatic/aliphatic aldehydes into their corresponding carboxylic acids, and hydroxylating various heteroaromatic rings. The enzyme uses oxygen as terminal electron acceptor to produce hydrogen peroxide and superoxide during turnover. Since hAOX1 and, in particular, some natural variants produce not only H2O2 but also high amounts of superoxide, we investigated the effect of both ROS molecules on the enzymatic activity of hAOX1 in more detail. We compared hAOX1 to the high-O-2(.-)-producing natural variant L438V for their time-dependent inactivation with H2O2/O-2(.-) during substrate turnover. We show that the inactivation of the hAOX1 wild-type enzyme is mainly based on the production of hydrogen peroxide, whereas for the variant L438V, both hydrogen peroxide and superoxide contribute to the time-dependent inactivation of the enzyme during turnover. Further, the level of inactivation was revealed to be substrate-dependent: using substrates with higher turnover numbers resulted in a faster inactivation of the enzymes. Analysis of the inactivation site of the enzyme identified a loss of the terminal sulfido ligand at the molybdenum active site by the produced ROS during turnover.}, language = {en} } @phdthesis{Gibert2021, author = {Gibert, Arthur}, title = {Influence of Amyloid Aggregates on the Trafficking and Signaling of GPCRs}, doi = {10.25932/publishup-50665}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-506659}, school = {Universit{\"a}t Potsdam}, pages = {100}, year = {2021}, abstract = {The prevalence of diseases associated with misfolded proteins increases with age. When cellular defense mechanisms become limited, misfolded proteins form aggregates and may also develop more stable cross-β structures ultimately forming amyloid aggregates. Amyloid aggregates are associated with neurodegenerative diseases such as Alzheimer's disease and Huntington's disease. The formation of amyloid deposits, their toxicity and cellular defense mechanisms have been intensively studied. However, surprisingly little is known about the effects of protein aggregates on cellular signal transduction. It is also not understood whether the presence of aggregation-prone, but still soluble proteins affect signal transduction. In this study, the still soluble aggregation-prone HttExon1Q74 and its amyloid aggregates were used to analyze the effect of amyloid aggregates on internalization and receptor activation of G protein-coupled receptors (GPCRs), the largest protein family of mammalian cell surface receptors involved in signal transduction. The aggregated HttExon1Q74, but not its soluble form, could inhibit ligand-induced clathrin-mediated endocytosis (CME) of various GPCRs. Most likely this inhibitory effect is based on a terminal sequestration of the HSC70 chaperone to the aggregates which is necessary for CME. Using the vasopressinV1a receptor (V1aR) and the corticotropin-releasing factor receptor 1 (CRF1R) as a model, it could be shown that the presence of HttExon1Q74 aggregates and the inhibition of ligand-induced CME leads to an accumulation of desensitized receptors at the plasma membrane. In turn, this disrupts Gq-mediated Ca2+ signaling and Gs-mediated cAMP signaling of the V1aR and the CRF1R respectively. In contrast to HttExon1Q74 amyloid aggregates, soluble HttExon1Q74 as well as amorphous aggregates did not inhibit GPCR internalization and signaling demonstrating that cellular signal transduction mechanisms are specifically impaired in response to the formation of amyloid aggregates. In addition, preliminary experiments could show that HttExon1Q74 aggregates provoke an increase in membrane expression of a protein from a structurally and functionally unrelated membrane protein family, namely the serotonin transporter SERT. As SERT is the main pharmacological target to treat depression this could shed light on this commonly occurring comorbidity in neurodegenerative diseases, in particular in early disease states.}, language = {en} } @article{GluecklerHerzschuhKruseetal.2021, author = {Gl{\"u}ckler, Ramesh and Herzschuh, Ulrike and Kruse, Stefan and Andreev, Andrei and Vyse, Stuart Andrew and Winkler, Bettina and Biskaborn, Boris and Pestryakova, Luidmila Agafyevna and Dietze, Elisabeth}, title = {Wildfire history of the boreal forest of south-western Yakutia (Siberia) over the last two millennia documented by a lake-sediment charcoal record}, series = {Biogeosciences : BG / European Geosciences Union}, volume = {18}, journal = {Biogeosciences : BG / European Geosciences Union}, number = {13}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-18-4185-2021}, pages = {4185 -- 4209}, year = {2021}, abstract = {Wildfires, as a key disturbance in forest ecosystems, are shaping the world's boreal landscapes. Changes in fire regimes are closely linked to a wide array of environmental factors, such as vegetation composition, climate change, and human activity. Arctic and boreal regions and, in particular, Siberian boreal forests are experiencing rising air and ground temperatures with the subsequent degradation of permafrost soils leading to shifts in tree cover and species composition. Compared to the boreal zones of North America or Europe, little is known about how such environmental changes might influence long-term fire regimes in Russia. The larch-dominated eastern Siberian deciduous boreal forests differ markedly from the composition of other boreal forests, yet data about past fire regimes remain sparse. Here, we present a high-resolution macroscopic charcoal record from lacustrine sediments of Lake Khamra (southwest Yakutia, Siberia) spanning the last ca. 2200 years, including information about charcoal particle sizes and morphotypes. Our results reveal a phase of increased charcoal accumulation between 600 and 900 CE, indicative of relatively high amounts of burnt biomass and high fire frequencies. This is followed by an almost 900-year-long period of low charcoal accumulation without significant peaks likely corresponding to cooler climate conditions. After 1750 CE fire frequencies and the relative amount of biomass burnt start to increase again, coinciding with a warming climate and increased anthropogenic land development after Russian colonization. In the 20th century, total charcoal accumulation decreases again to very low levels despite higher fire frequency, potentially reflecting a change in fire management strategies and/or a shift of the fire regime towards more frequent but smaller fires. A similar pattern for different charcoal morphotypes and comparison to a pollen and non-pollen palynomorph (NPP) record from the same sediment core indicate that broad-scale changes in vegetation composition were probably not a major driver of recorded fire regime changes. Instead, the fire regime of the last two millennia at Lake Khamra seems to be controlled mainly by a combination of short-term climate variability and anthropogenic fire ignition and suppression.}, language = {en} } @article{GorinScherzKorostetal.2021, author = {Gorin, Vladislav A. and Scherz, Mark D. and Korost, Dmitry V. and Poyarkov, Nikolay A.}, title = {Consequences of parallel miniaturisation in Microhylinae (Anura, Microhylidae), with the description of a new genus of diminutive South East Asian frogs}, series = {Zoosystematics and evolution : Mitteilungen aus dem Museum f{\"u}r Naturkunde in Berlin}, volume = {97}, journal = {Zoosystematics and evolution : Mitteilungen aus dem Museum f{\"u}r Naturkunde in Berlin}, number = {1}, publisher = {Pensoft Publishers}, address = {Sofia}, issn = {1860-0743}, doi = {10.3897/zse.97.57968}, pages = {21 -- 54}, year = {2021}, abstract = {The genus Microhyla Tschudi, 1838 includes 52 species and is one of the most diverse genera of the family Microhylidae, being the most species-rich taxon of the Asian subfamily Microhylinae. The recent, rapid description of numerous new species of Microhyla with complex phylogenetic relationships has made the taxonomy of the group especially challenging. Several recent phylogenetic studies suggested paraphyly of Microhyla with respect to Glyphoglossus Gunther, 1869, and revealed three major phylogenetic lineages of mid-Eocene origin within this assemblage. However, comprehensive works assessing morphological variation among and within these lineages are absent. In the present study we investigate the generic taxonomy of Microhyla-Glyphoglossus assemblage based on a new phylogeny including 57 species, comparative morphological analysis of skeletons from cleared-and-stained specimens for 23 species, and detailed descriptions of generalized osteology based on volume-rendered micro-CT scans for five speciesal-together representing all major lineages within the group. The results confirm three highly divergent and well-supported clades that correspond with external and osteological morphological characteristics, as well as respective geographic distribution. Accordingly, acknowledging ancient divergence between these lineages and their significant morphological differentiation, we propose to consider these three lineages as distinct genera: Microhyla sensu stricto, Glyphoglossus, and a newly described genus, Nanohyla gen. nov.}, language = {en} } @article{GraefGrafeMeyeretal.2021, author = {Gr{\"a}f, Ralph and Grafe, Marianne and Meyer, Irene and Mitic, Kristina and Pitzen, Valentin}, title = {The dictyostelium centrosome}, series = {Cells : open access journal}, volume = {10}, journal = {Cells : open access journal}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2073-4409}, doi = {10.3390/cells10102657}, pages = {26}, year = {2021}, abstract = {The centrosome of Dictyostelium amoebae contains no centrioles and consists of a cylindrical layered core structure surrounded by a corona harboring microtubule-nucleating gamma-tubulin complexes. It is the major centrosomal model beyond animals and yeasts. Proteomics, protein interaction studies by BioID and superresolution microscopy methods led to considerable progress in our understanding of the composition, structure and function of this centrosome type. We discuss all currently known components of the Dictyostelium centrosome in comparison to other centrosomes of animals and yeasts.}, language = {en} }