@article{SrivastavaKehrigKanthariaetal.2015, author = {Srivastava, S. and Kehrig, C. and Kantharia, N. G. and P{\´e}rez-Montero, E. and V{\´i}lchez, J. M. and Iglesias-P{\´a}ramo, J. and Janardhan, P.}, title = {A 2D view of Wolf-Rayet Galaxies}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87650}, pages = {59 -- 62}, year = {2015}, abstract = {The main objective of this work is to investigate the evolution of massive stars, and the interplay between them and the ionized gas for a sample of local metal-poor Wolf-Rayet galaxies. Optical integral field spectrocopy was used in combination with multi-wavelength radio data. Combining optical and radio data, we locate Wolf-Rayet stars and supernova remnants across the Wolf-Rayet galaxies to study the spatial correlation between them. This study will shed light on the massive star formation and its feedback, and will help us to better understand distant star-forming galaxies.}, language = {en} } @article{SteinkeOskinovaHamannetal.2015, author = {Steinke, M. and Oskinova, Lidia M. and Hamann, Wolf-Rainer and Sander, A.}, title = {The Wolf-Rayet stars WR102c and 102ka and their isolation}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88503}, pages = {365}, year = {2015}, abstract = {While the majority of very massive stars is clearly found in clusters, there are also very massive objects not associated with any cluster, suggesting they may have been born in isolation. In order to gain more insights, we studied the regions around two WR stars in the Galactic Center region. To understand the nature of the potential cluster around massive stars, photometry alone is not sufficient. We therefore used the ESO VLT/SINFONI integral field spectrograph to obtain photometry and spectra for the whole region around our two candidate stars. In total, more than 60 stars have been found and assigned a spectral type.}, language = {en} } @article{SugawaraTsuboiMaedaetal.2015, author = {Sugawara, Y. and Tsuboi, Y. and Maeda, Y. and Pollock, A. M. T. and Williams, P. M.}, title = {The Swift monitoring of the colliding wind binary WR 21a}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88517}, pages = {366}, year = {2015}, abstract = {The X-ray observations of the colliding wind binary WR 21a is reported. The first monitoring performed by Swift/XRT in order to reveal the phase-locked variation. Our observations cover 201 different epochs from 2013 October 1 to 2015 January 30 for a total exposure of about 306 ks. It is found for the first time that the luminosity varies roughly in inverse proportion to the separation of the two stars before the X-ray maximum but later drops rapidly toward periastron.}, language = {en} } @article{SzecsiLangerSanyaletal.2015, author = {Sz{\´e}csi, D. and Langer, N. and Sanyal, D. and Evans, C. J. and Bestenlehner, J. M. and Raucq, F.}, title = {Do rapidly-rotating massive stars at low metallicity form Wolf-Rayet stars?}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87997}, pages = {189 -- 192}, year = {2015}, abstract = {The evolution of massive stars is strongly influenced by their initial chemical composition. We have computed rapidly-rotating massive star models with low metallicity (∼1/50 Z⊙) that evolve chemically homogeneously and have optically-thin winds during the main sequence evolution. These luminous and hot stars are predicted to emit intense mid- and far-UV radiation, but without the broad emission lines that characterize WR stars with optically-thick winds. We show that such Transparent Wind UV-Intense (TWUIN) stars may be responsible for the high number of He ii ionizing photons observed in metal-poor dwarf galaxies, such as IZw 18. We find that these TWUIN stars are possible long-duration gamma-ray burst progenitors.}, language = {en} } @article{ToalaGuerreroChuetal.2015, author = {Toal{\´a}, Jes{\´u}s Alberto and Guerrero, Mart{\´i}n A. and Chu, Y.-H. and Arthur, S. J. and Gruendl, R. A.}, title = {Diffuse X-ray Emission within Wolf-Rayet Nebulae}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88316}, pages = {333 -- 336}, year = {2015}, abstract = {We discuss our most recent findings on the diffuse X-ray emission within Wolf-Rayet (WR) nebulae. The best-quality X-ray observations of these objects are those performed by XMM- Newton and Chandra towards S 308, NGC 2359, and NGC 6888. Even though these three WR nebulae might have different formation scenarios, they all share similar characteristics: i) the main plasma temperatures of the X-ray-emitting gas is found to be T =[1-2]×^K, ii) the diffuse X-ray emission is confined inside the [O iii] shell, and iii) their X-ray luminosities and electron densities in the 0.3-2.0 keV energy range are LX ≈10^33-10^34 erg s-1 and ne ≈0.1-1 cm^-3 . These properties and the nebular-like abundances of the hot gas suggest mixing and/or thermal conduction is taking an important r{\^o}le reducing the temperature of the hot bubble.}, language = {en} } @article{TodtHamann2015, author = {Todt, Helge Tobias and Hamann, Wolf-Rainer}, title = {Wolf-Rayet central stars of planetary nebulae}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88147}, pages = {253 -- 258}, year = {2015}, abstract = {A significant number of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient, showing a chemical composition of helium, carbon, and oxygen. Most of them exhibit Wolf-Rayet-like emission line spectra, similar to those of the massive WC Pop I stars, and are therefore classified as of spectral type [WC]. In the last years, CSPNe of other Wolf-Rayet spectral subtypes have been identified, namely PB 8, which is of spectral type [WN/C], and IC 4663 and Abell 48, which are of spectral type [WN]. We review spectral analyses of Wolf-Rayet type central stars of different evolutionary stages and discuss the results in the context of stellar evolution. Especially we consider the question of a common evolutionary channel for [WC] stars. The constraints on the formation of [WN] or [WC/N] subtype stars will also be addressed.}, language = {en} } @article{TramperStraalSanyaletal.2015, author = {Tramper, F. and Straal, S. M. and Sanyal, D. and Sana, Hugues and de Koter, A. and Gr{\"a}fener, G. and Langer, N. and Vink, J. S. and de Mink, S. E. and Kaper, L.}, title = {Massive Wolf-Rayet stars on the verge to explode}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87786}, pages = {109 -- 112}, year = {2015}, abstract = {The enigmatic oxygen-sequence Wolf-Rayet stars represent a rare stage in the evolution of massive stars. Their properties can provide unique constraints on the pre-supernova evolution of massive stars. This work presents the results of a quantitative spectroscopic analysis of the known single WO stars, with the aim to obtain the key stellar parameters and deduce their evolutionary state.X-Shooter spectra of the WO stars are modeled using the line-blanketed non-local thermal equilibrium atmosphere code cmfgen. The obtained stellar parameters show that the WO stars are very hot, with temperatures ranging from 150 kK to 210 kK. Their chemical composition is dominated by carbon (>50\%), while the helium mass fraction is very low (down to 14\%). Oxygen mass fractions reach as high as 25\%. These properties can be reproduced with dedicated evolutionary models for helium stars, which show that the stars are post core-helium burning and very close to their eventual supernova explosion. The helium-star masses indicate initial masses or approximately 40 - 60M⊙.Thus, WO stars represent the final evolutionary stage of stars with estimated initial masses of 40 - 60M⊙. They are post core-helium burning and may explode as type Ic supernovae within a few thousand years.}, language = {en} } @article{VanbeverenMennekens2015, author = {Vanbeveren, D. and Mennekens, N.}, title = {Massive star population synthesis with binaries}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88071}, pages = {217 -- 224}, year = {2015}, abstract = {We first give a short historical overview with some key facts of massive star population synthesis with binaries. We then discuss binary population codes and focus on two ingredients which are important for massive star population synthesis and which may be different in different codes. Population simulations with binaries is the third part where we consider the initial massive binary frequency, the RSG/WR and WC/WN and SNII/SNIbc number ratio's, the probable initial rotational velocity distribution of massive stars.}, language = {en} } @article{Vink2015, author = {Vink, J. S.}, title = {The True origin of Wolf-Rayet stars}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87848}, pages = {133 -- 138}, year = {2015}, abstract = {The Wolf-Rayet (WR) phenomenon is widespread in astronomy. It involves classical WRs, very massive stars (VMS), WR central stars of planetary nebula CSPN [WRs], and supernovae (SNe). But what is the root cause for a certain type of object to turn into an emission-line star? In this contribution, I discuss the basic aspects of radiation-driven winds that might reveal the ultimate difference between WR stars and canonical O-type stars. I discuss the aspects of (i) self-enrichment via CNO elements, (ii) high effective temperatures (Tₑff), (iii) an increase in the helium abundance (Y ), and finally (iv) the Eddington factor Γₑ. Over the last couple of years, we have made a breakthrough in our understanding of Γₑ -dependent mass loss, which will have far-reaching consequences for the evolution and fate of the most massive stars in the Universe. Finally, I discuss the prospects for studies of the WR phenomenon in the highest redshift Lyα and He ii emitting galaxies.}, language = {en} } @article{WalshMonrealIberoVilchezetal.2015, author = {Walsh, J. R. and Monreal-Ibero, A. and V{\´i}lchez, J. M. and P{\´e}rez-Montero, E. and Iglesias-P{\´a}ramo, J. and Sandin, C. and Relano, M. and Amor{\´i}n, R.}, title = {The Wolf-Rayet Population and ISM Interaction in Nearby Starbursts}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88339}, pages = {341 -- 344}, year = {2015}, abstract = {The interaction between massive star formation and gas is a key ingredient in galaxy evolution. Given the level of observational detail currently achievable in nearby starbursts, they constitute ideal laboratories to study interaction process that contribute to global evolution in all types of galaxies. Wolf-Rayet (WR) stars, as an observational marker of high mass star formation, play a pivotal role and their winds can strongly influence the surrounding gas. Imaging spectroscopy of two nearby (<4 Mpc) starbursts, both of which show multiple regions with WR stars, are discussed. The relation between the WR content and the physical and chemical properties of the surrounding ionized gas is explored.}, language = {en} } @article{Weis2015, author = {Weis, K.}, title = {Family ties of WR to LBV nebulae yielding clues for stellar evolution}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87949}, pages = {167 -- 170}, year = {2015}, abstract = {Luminous Blue Variables (LBVs) are stars is a transitional phase massive stars may enter while evolving from main-sequence to Wolf-Rayet stars. The to LBVs intrinsic photometric variability is based on the modulation of the stellar spectrum. Within a few years the spectrum shifts from OB to AF type and back. During their cool phase LBVs are close to the Humphreys-Davidson (equivalent to Eddington/Omega-Gamma) limit. LBVs have a rather high mass loss rate, with stellar winds that are fast in the hot and slower in the cool phase of an LBV. These alternating wind velocities lead to the formation of LBV nebulae by wind-wind interactions. A nebula can also be formed in a spontaneous giant eruption in which larger amounts of mass are ejected. LBV nebulae are generally small (< 5 pc) mainly gaseous circumstellar nebulae, with a rather large fraction of LBV nebulae being bipolar. After the LBV phase the star will turn into a Wolf-Rayet star, but note that not all WR stars need to have passed the LBV phase. Some follow from the RSG and the most massive directly from the MS phase. In general WRs have a large mass loss and really fast stellar winds. The WR wind may interact with winds of earlier phases (MS, RSG) to form WR nebulae. As for WR with LBV progenitors the scenario might be different, here no older wind is present but an LBV nebula! The nature of WR nebulae are therefore manifold and in particular the connection (or family ties) of WR to LBV nebulae is important to understand the transition between these two phases, the evolution of massive stars, their winds, wind-wind and wind-nebula interactions. Looking at the similarities and differences of LBV and WR nebula, figuring what is a genuine LBV and WR nebula are the basic question addressed in the analysis presented here.}, language = {en} } @article{WilliamsvanderHucht2015, author = {Williams, P. M. and van der Hucht, K. A.}, title = {The colliding-wind WC9+OB system WR 65 and dust formation by WR stars}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88188}, pages = {275 -- 278}, year = {2015}, abstract = {Observations of the WC9+OB system WR65 in the infrared show variations of its dust emission consistent with a period near 4.8 yr, suggesting formation in a colliding-wind binary (CWB) having an elliptical orbit. If we adopt the IR maximum as zero phase, the times of X-ray maximum count and minimum extinction to the hard component measured by Oskinova \& Hamann fall at phases 0.4-0.5, when the separation of the WC9 and OB stars is greatest. We consider WR65 in the context of other WC8-9+OB stars showing dust emission.}, language = {en} } @article{WoffordCharlotEldridge2015, author = {Wofford, A. and Charlot, S. and Eldridge, J. J.}, title = {Properties of LEGUS Clusters Obtained with Different Massive-Star Evolutionary Tracks}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88109}, pages = {233 -- 236}, year = {2015}, abstract = {We compute spectral libraries for populations of coeval stars using state-of-the-art massive-star evolutionary tracks that account for different astrophysics including rotation and close-binarity. Our synthetic spectra account for stellar and nebular contributions. We use our models to obtain E(B - V ), age, and mass for six clusters in spiral galaxy NGC 1566, which have ages of < 50 Myr and masses of > 5 x 104M⊙ according to standard models. NGC 1566 was observed from the NUV to the I-band as part of the imaging Treasury HST program LEGUS: Legacy Extragalactic UV Survey. We aim to establish i) if the models provide reasonable fits to the data, ii) how well the models and photometry are able to constrain the cluster properties, and iii) how different the properties obtained with different models are.}, language = {en} }