@article{AldorettaStLouisRichardsonetal.2015, author = {Aldoretta, E. J. and St-Louis, N. and Richardson, N. D. and Moffat, Anthony F. J. and Eversberg, T. and Hill, G. M.}, title = {The Results of the 2013 Pro-Am Wolf-Rayet Campaign}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87713}, pages = {75 -- 78}, year = {2015}, abstract = {Professional and amateur astronomers around the world contributed to a 4-month long campaign in 2013, mainly in spectroscopy but also in photometry, interferometry and polarimetry, to observe the first 3 Wolf-Rayet stars discovered: WR 134 (WN6b), WR 135 (WC8) and WR 137 (WC7pd+O9). Each of these stars are interesting in their own way, showing a variety of stellar wind structures. The spectroscopic data from this campaign were reduced and analyzed for WR 134 in order to better understand its behavior and long-term periodicity in the context of CIRs in the wind. We will be presenting the results of these spectroscopic data, which include the confirmation of the CIR variability and a time-coherency of ∼ 40 days (half-life of ∼ 20 days).}, language = {en} } @article{Arthur2015, author = {Arthur, S. J.}, title = {Wolf-Rayet nebulae and the wind-interstellar medium interaction}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88267}, pages = {315 -- 320}, year = {2015}, abstract = {I review our current understanding of the interaction between a Wolf-Rayet star's fast wind and the surrounding medium, and discuss to what extent the predictions of numerical simulations coincide with multiwavelength observations of Wolf-Rayet nebulae. Through a series of examples, I illustrate how changing the input physics affects the results of the numerical simulations. Finally, I discuss how numerical simulations together with multiwavelength observations of these objects allow us to unpick the previous mass-loss history of massive stars.}, language = {en} } @article{BeckerBomansWeis2015, author = {Becker, Andrew C. and Bomans, Dominik J. and Weis, K.}, title = {Finding new Wolf-Rayet stars in the Magellanic Clouds}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87618}, pages = {47 -- 50}, year = {2015}, abstract = {Obtaining a complete census of massive, evolved stars in a galaxy would be a key ingredient for testing stellar evolution models. However, as the evolution of stars is also strongly dependent on their metallicity, it is inevitable to have this kind of data for a variety of galaxies with different metallicities. Between 2009 and 2011, we conducted the Magellanic Clouds Massive Stars and Feedback Survey (MSCF); a spatially complete, multi-epoch, broad- and narrow-band optical imaging survey of the Large and Small Magellanic Clouds. With the inclusion of shallow images, we are able to give a complete photometric catalog of stars between B ≈ 18 and B ≈ 19 mag. These observations were augmented with additional photometric data of similar spatial res- olution from UV to IR (e.g. from GALEX, 2MASS and Spitzer) in order to sample a large portion of the spectral energy distribution of the brightest stars (B < 16 mag) in the Magel- lanic Clouds. Using these data, were are able to train a machine learning algorithm that gives us a good estimate of the spectral type of tens of thousands of stars. This method can be applied to the search for Wolf-Rayet-Stars to obtain a sample of candi- dates for follow-up observations. As this approach can, in principle, be adopted for any resolved galaxy as long as sufficient photometric data is available, it can form an effective alternative method to the classical strategies (e.g. He II filter imaging).}, language = {en} } @article{BeradzeKochiashviliNatsvlishvilietal.2015, author = {Beradze, S. and Kochiashvili, N. and Natsvlishvili, R. and Kochiashvili, I. and Janiashvili, E. and Urushadze, T. and Vardosanidze, M.}, title = {P Cygni and its Observations at the Abastumani Observatory}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88389}, pages = {353}, year = {2015}, abstract = {We found original observations of PCygni by E. Kharadze and N. Magalashvili in the archives of the Abastumani Observatory. These observations were carried out in the period 1951-1983. Initially they used 29 Cygni as a comparison star, and all observations of PCygni were processed using this star. On the basis of their calculations, the authors decided that PCygni may be a WUMa type binary with an orbital period of 0.500565 d, but this hypothesis was not confirmed. The only observations that have been published in the Bulletin of the Abastumani Astrophysical Observatory were those of of 1951-1955. There are whole sets of observational data not only for PCygni and 29 Cygni, but in the majority of cases also for 36 Cygni in the archives. We recalculated all data (where it was possible) using 36 Cygni as a comparison star. We are presenting UBV light curves of the variable, and also observations made by V. Nikonov in Abastumani in the period 1935-1937}, language = {en} } @article{Bestenlehner2015, author = {Bestenlehner, J. M.}, title = {Stellar parameters from photometric data for fainter and more distant Wolf-Rayet stars}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88390}, pages = {354}, year = {2015}, abstract = {Spectroscopy is the preferred way to study the physical and wind properties of Wolf-Rayet (WR) stars, but with decreasing brightness and increasing distance of the object spectroscopy become very expensive. However, photometry still delivers a high signal to noise ratio. Current and past astronomical surveys and space missions provide large data sets, that can be harvested to discover new WR stars and study them over a wide metallicity range with the help of state of the art stellar atmosphere and evolutionary models.}, language = {en} } @article{BibbySharaZureketal.2015, author = {Bibby, J. and Shara, M. and Zurek, D. and Crowther, P. A. and Moffat, Anthony F. J. and Drissen, L. and Wilde, M.}, title = {The Distribution of Massive Stars in M101}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88402}, pages = {355}, year = {2015}, abstract = {75 WR stars and 164 RSGs are identified in a single WFC3 pointing of our M101 survey. We find that within it's large star-forming complex NGC 5462 WR stars are preferentially located in the core whilst RSGs are found in the halo, suggesting two bursts of star-formation. A review of our WR candidates reveals that only ∼30\% are detected in the archival broad-band ACS imaging whilst only ∼50\% are associated with HII regions.}, language = {en} } @article{BomansBeckerKleemannetal.2015, author = {Bomans, Dominik J. and Becker, Andrew C. and Kleemann, B. and Weis, K. and Pasquali, A.}, title = {Luminous Wolf-Rayet stars at low metallicity}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87635}, pages = {51 -- 54}, year = {2015}, abstract = {The evolution of massive stars in very low metallicity galaxies is less well observationally constrained than in environments more similar to the Milky Way, M33, or the LMC. We discuss in this contribution the current state of our program to search for and characterize Wolf-Rayet stars (and other massive emission line stars) in low metallicity galaxies in the Local Volume.}, language = {en} } @article{CalderonBalloneCuadraetal.2015, author = {Calder{\´o}n, D. and Ballone, A. and Cuadra, J. and Schartmann, M. and Burkert, Andreas and Gillessen, S.}, title = {Formation of the infalling Galactic Centre cloud G2 by collision of stellar winds}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88412}, pages = {356}, year = {2015}, abstract = {The gas cloud G2 is currently being tidally disrupted by the Galactic Centre super-massive black hole, Sgr A*. The region around the black hole is populated by ∼ 30 Wolf-Rayet stars, which produce strong outflows. Here we explore the possibility that gas clumps like G2 originate from the collision of stellar winds via the non-linear thin shell instability.}, language = {en} } @article{CheneWyrickBorissovaetal.2015, author = {Chen{\´e}, A.-N. and Wyrick, D. and Borissova, J. and Kuhn, M. and Herv{\´e}, A. and Ram{\´i}rez Alegr{\´i}a, S. and Bonatto, C. and Bouret, J.-C. and Kurtev, R.}, title = {Improving distances to Galactic Wolf-Rayet stars}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87759}, pages = {97 -- 100}, year = {2015}, abstract = {Before GAIA improves the HIPPARCOS survey, direct determination of the distance via parallax is only possible for γ Vel, but the analysis of the cluster or association to which WR stars are associated can give distances with a 50\% to a 10\% accuracy. The list of Galactic clusters, associations and clusters/association candidates has grown significantly in the last decade with the numerous deep, high resolution surveys of the Milky Way. In this work, we revisit the fundamental parameters of known clusters with WR stars, and we present the search for new ones. All our work is based on the catalogs from the VVV (from the VISTA telescope) and the UKIDS (from the UKIRT telescope) near infrared surveys. Finally, the relations between the fundamental parameters of clusters with WR stars are explored.}, language = {en} } @article{Cherchneff2015, author = {Cherchneff, I.}, title = {Dust formation in carbon-rich Wolf-Rayet colliding winds}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88177}, pages = {269 -- 274}, year = {2015}, abstract = {Carbon-rich Wolf-Rayet stars are efficient carbon dust makers. Despite the strong evidence for dust formation in these objects provided by infrared thermal emission from dust, the routes to nucleation and condensation and the physical conditions required for dust production are still poorly understood. We discuss here the potential routes to carbon dust and the possible locations conducive to dust formation in the colliding winds of WC binaries.}, language = {en} } @article{Conti2015, author = {Conti, P. S.}, title = {Concluding Remarks}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88347}, pages = {347 -- 350}, year = {2015}, abstract = {Selected remarks concerning Wolf-Rayet (W-R) stars in the framework of this workshop are given. The rich history of international conferences over the past four or so decades is summarized, important issues concerning W-R stars are considered, and some outstanding problems are reviewed.}, language = {en} } @article{Crowther2015, author = {Crowther, P. A.}, title = {Wolf-Rayet content of the Milky Way}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87562}, pages = {21 -- 26}, year = {2015}, abstract = {An overview of the known Wolf-Rayet (WR) population of the Milky Way is presented, including a brief overview of historical catalogues and recent advances based on infrared photometric and spectroscopic observations resulting in the current census of 642 (vl.13 online catalogue). The observed distribution of WR stars is considered with respect to known star clusters, given that ≤20\% of WR stars in the disk are located in clusters. WN stars outnumber WC stars at all galactocentric radii, while early-type WC stars are strongly biased against the inner Milky Way. Finally, recent estimates of the global WR population in the Milky Way are reassessed, with 1,200±100 estimated, such that the current census may be 50\% complete. A characteristic WR lifetime of 0.25 Myr is inferred for an initial mass threshold of 25 M⊙.}, language = {en} } @article{Dessart2015, author = {Dessart, L.}, title = {Wolf-Rayet stars as supernova progenitors}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88133}, pages = {245 -- 250}, year = {2015}, abstract = {In this review, I discuss the suitability of massive star progenitors, evolved in isolation or in interacting binaries, for the production of observed supernovae (SNe) IIb, Ib, Ic. These SN types can be explained through variations in composition. The critical need of non-thermal effects to produce He I lines favours low-mass He-rich ejecta (in which ^56 Ni can be more easily mixed with He) for the production of SNe IIb/Ib, which thus may arise preferentially from moderate-mass donors in interacting binaries. SNe Ic may instead arise from higher mass progenitors, He-poor or not, because their larger CO cores prevent efficient non-thermal excitation of He i lines. However, current single star evolution models tend to produce Wolf-Rayet (WR) stars at death that have a final mass of > 10 M⊙. Single WR star explosion models produce ejecta that are too massive to match the observed light curve widths and rise times of SNe IIb/Ib/Ic, unless their kinetic energy is systematically and far greater than the canonical value of 10^56 erg. Future work is needed to evaluate the energy/mass degeneracy in light curve properties. Alternatively, a greater mass loss during the WR phase, perhaps in the form of eruptions, as evidenced in SNe Ibn, may reduce the final WR mass. If viable, such explosions would nonetheless favour a SN Ic, not a Ib.}, language = {en} } @article{DwarkadasRosenberg2015, author = {Dwarkadas, Vikram V. and Rosenberg, D.}, title = {X-ray Emission from Ionized Wind-Bubbles around Wolf-Rayet Stars}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88301}, pages = {329 -- 332}, year = {2015}, abstract = {Using a code that employs a self-consistent method for computing the effects of photoionization on circumstellar gas dynamics, we model the formation of wind-driven nebulae around massive Wolf-Rayet (W-R) stars. Our algorithm incorporates a simplified model of the photo-ionization source, computes the fractional ionization of hydrogen due to the photoionizing flux and recombination, and determines self-consistently the energy balance due to ionization, photo-heating and radiative cooling. We take into account changes in stellar properties and mass-loss over the star's evolution. Our multi-dimensional simulations clearly reveal the presence of strong ionization front instabilities. Using various X-ray emission models, and abundances consistent with those derived for W-R nebulae, we compute the X-ray flux and spectra from our wind bubble models. We show the evolution of the X-ray spectral features with time over the evolution of the star, taking the absorption of the X-rays by the ionized bubble into account. Our simulated X-ray spectra compare reasonably well with observed spectra of Wolf-Rayet bubbles. They suggest that X-ray nebulae around massive stars may not be easily detectable, consistent with observations.∗}, language = {en} } @article{EldridgeMcClellandXiaoetal.2015, author = {Eldridge, J. J. and McClelland, L. A. S. and Xiao, L. and Stanway, E. R. and Bray, J.}, title = {The importance of getting single-star and binary physics correct}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87966}, pages = {177 -- 182}, year = {2015}, abstract = {We discuss the uncertainties that need to be considered when creating numerical models of WR stars. We pay close attention to inflation and duplicity of the stellar models, highlighting several observational tests that show these are key to understanding WR stellar populations.}, language = {en} } @article{EversbergAldorettaKnapenetal.2015, author = {Eversberg, T. and Aldoretta, E. J. and Knapen, J. H. and Moffat, Anthony F. J. and Morel, T. and Ramiaramanantsoa, T. and Rauw, G. and Richardson, N. D. and St-Louis, N. and Teodoro, M.}, title = {World-wide amateur observations}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87705}, pages = {71 -- 74}, year = {2015}, abstract = {For some years now, spectroscopic measurements of massive stars in the amateur domain have been fulfilling professional requirements. Various groups in the northern and southern hemispheres have been established, running successful professional-amateur (ProAm) collaborative campaigns, e.g., on WR, O and B type stars. Today high quality data (echelle and long-slit) are regularly delivered and corresponding results published. Night-to-night long-term observations over months to years open a new opportunity for massive-star research. We introduce recent and ongoing sample campaigns (e.g. ∊ Aur, WR 134, ζ Pup), show respective results and highlight the vast amount of data collected in various data bases. Ultimately it is in the time-dependent domain where amateurs can shine most.}, language = {en} } @article{FalcetaGoncalves2015, author = {Falceta-Goncalves, D.}, title = {Magnetic fields, non-thermal radiation and particle acceleration in colliding winds of WR-O stars}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88211}, pages = {289 -- 292}, year = {2015}, abstract = {Non-thermal emission has been detected in WR-stars for many years at long wavelengths spectral range, in general attributed to synchrotron emission. Two key ingredients are needed to explain such emissions, namely magnetic fields and relativistic particles. Particles can be accelerated to relativistic speeds by Fermi processes at strong shocks. Therefore, strong synchrotron emission is usually attributed to WR binarity. The magnetic field may also be amplified at shocks, however the actual picture of the magnetic field geometry, intensity, and its role on the acceleration of particles at WR binary systems is still unclear. In this work we discuss the recent developments in MHD modelling of wind-wind collision regions by means of numerical simulations, and the coupled particle acceleration processes related.}, language = {en} } @article{GeorgyEkstroemHirschietal.2015, author = {Georgy, C. and Ekstr{\"o}m, S. and Hirschi, R. and Meynet, G. and Groh, J. H. and Eggenberger, P.}, title = {Wolf-Rayet stars as an evolved stage of stellar life}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88097}, pages = {229 -- 232}, year = {2015}, abstract = {Wolf-Rayet (WR) stars, as they are advanced stages of the life of massive stars, provide a good test for various physical processes involved in the modelling of massive stars, such as rotation and mass loss. In this paper, we show the outputs of the latest grids of single massive stars computed with the Geneva stellar evolution code, and compare them with some observations. We present a short discussion on the shortcomings of single stars models and we also briefly discuss the impact of binarity on the WR populations.}, language = {en} } @article{GormazMatamalaHerveCheneetal.2015, author = {Gormaz-Matamala, A. C. and Herv{\´e}, A. and Chen{\´e}, A.-N. and Cur{\´e}, M. and Mennickent, R. E.}, title = {Results Of The Spectroscopic Analysis Of WR6 Using CMFGEN}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88422}, pages = {357}, year = {2015}, abstract = {Using ESPaDOnS optical spectra of WR6, we search variations on the stellar wind parameters during the different phases of the spectral variations. We use the radiative transfer code CMFGEN (Hillier \& Miller 1998) to determine the wind parameters. Our work gives mean parameters for WR6, Teff = 55 kK, M = 2.7 × 10^-5 M⊙/yr and v∞ =1700 km/s. Furthermore the line profiles variations at different phases are the consequence of a variation of mass loss rate and temperature un the winds. Effective temperature reaches 59 kK at the highest intensity, whereas the mass-loss rate decreases to 2.5 × 10^-5 M⊙/yr in that case. On the other hand, effective temperature decreases to 52.5 kK and the mass-loss rate increases to 3 × 10^-5 M/⊙yr when the line profile reach its minimum intensity. Results confirm the variable nature of the stellar wind, presented in this case on two of its fundamental parameters: temperature and mass-loss; which could be used to constrain the nature of the instability at the basis of the wind.}, language = {en} } @article{Gosset2015, author = {Gosset, E.}, title = {Studies of WR+O colliding-wind binaries}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88247}, pages = {305 -- 308}, year = {2015}, abstract = {Two of the main physical parameters that govern the massive star evolution, the mass and the mass-loss rate, are still poorly determined from the observational point of view. Only binary systems could provide well constrained masses and colliding-wind binaries could bring some constraints on the mass-loss rate. Therefore, colliding-wind binaries turn out to be very promising objects. In this framework, we present detailed studies of basic observational data obtained with the XMM-Newton facility and combined with ground-based observations and other data. We expose the results for two particularly interesting WR+O colliding-wind binaries: WR22 and WR21a.}, language = {en} } @article{GrassitelliLangerSanyaletal.2015, author = {Grassitelli, L. and Langer, N. and Sanyal, D. and Fossati, Luca and Bestenlehner, J. M.}, title = {Instabilities in the envelope of Wolf-Rayet stars}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88024}, pages = {201 -- 204}, year = {2015}, abstract = {Wolf-Rayet stars are very hot stars close to the Eddington limit. In the conditions encountered in their radiation pressure dominated outer layers several instabilities are expected to arise. These instabilities could influence both the dynamic of their optically thick winds and the observed spectral lines introducing small and large scale variability. We investigate the conditions in the convective envelopes of our helium star models and relate them to the appearance of a high number of stochastic density inhomogeneities, i.e. clumping in the optically thick wind. We also investigate the pulsational stability of these envelope, considering the effect of the high stellar wind mass loss rates.}, language = {en} } @article{Groh2015, author = {Groh, J. H.}, title = {The end stages of massive star evolution}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88115}, pages = {237 -- 240}, year = {2015}, abstract = {The morphological appearance of massive stars across their post-Main Sequence evolution and before the SN event is very uncertain, both from a theoretical and observational perspective. We recently developed coupled stellar evolution and atmospheric modeling of stars done with the Geneva and CMFGEN codes, for initial masses between 9 and 120 M⊙. We are able to predict the observables such as the high-resolution spectrum and broadband photometry. Here I discuss how the spectrum of a massive star changes across its evolution and before death, with focus on the WR stage. Our models indicate that single stars with initial masses larger than 30 M⊙ end their lives as WR stars. Depending on rotation, the spectrum of the star can either be that of a WN or WO subtype at the pre-SN stage. Our models allow, for the first time, direct comparison between predictions from stellar evolution models and observations of SN progenitors.}, language = {en} } @article{Guerrero2015, author = {Guerrero, Mart{\´i}n A.}, title = {Planetary nebulae and Their Central Stars in X-rays}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88160}, pages = {263 -- 266}, year = {2015}, abstract = {Two types of X-ray sources are mostly found in planetary nebulae (PNe): point sources at their central stars and diffuse emission inside hot bubbles. Here we describe these two types of sources based on the most recent observations obtained in the framework of the Chandra Planetary Nebula Survey, ChanPlaNS, an X-ray survey targeting a volume-limited sample of PNe. Diffuse X-ray emission is found preferentially in young PNe with sharp, closed inner shells. Point sources of X-ray emission at the central stars reveal magnetically active binary companions and shock-in stellar winds.}, language = {en} } @article{Gull2015, author = {Gull, T. R.}, title = {Eta Carinae}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87876}, pages = {149 -- 154}, year = {2015}, abstract = {Since Augusto Damineli's demonstration in 1996 that Eta Carinae is a binary with a 5.52 year period, many innovative observations and increasingly advanced three-dimensional models have led to considerable insight on this massive system that ejected at least ten, possibly forty, solar masses in the nineteenth century. Here we present a review of our current understanding of this complex system and point out continuing puzzles.}, language = {en} } @article{GomezGonzalezMayyaRosaGonzalez2015, author = {G{\´o}mez-Gonz{\´a}lez, V{\´i}ctor Mauricio Alfonso and Mayya, Yalia Divakara and Rosa-Gonz{\´a}lez, D.}, title = {Detection and Characterization of Wolf-Rayet stars in M81 with GTC/OSIRIS spectra and HST images}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87604}, pages = {43 -- 46}, year = {2015}, abstract = {Here we investigate a sample of young star clusters (YSCs) and other regions of recent star formation with Wolf-Rayet (W-R) features detected in the relatively nearby spiral galaxy M81 by analysing long-slit (LS) and Multi-Object Spectroscopy (MOS) spectra obtained with the OSIRIS instrument at the 10.4-m Gran Telescopio Canarias (GTC). We take advantage of the synergy between GTC spectra and Hubble Space Telescope (HST) images to also reveal their spatial localization and the environments hosting these stars. We finally discuss and comment on the next steps of our study.}, language = {en} } @article{HainichRuehlingPasemannetal.2015, author = {Hainich, Rainer and R{\"u}hling, U. and Pasemann, D. and Hamann, Wolf-Rainer}, title = {The WN population in the Magellanic Clouds}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87806}, pages = {117 -- 120}, year = {2015}, abstract = {A detailed and comprehensive study of the Wolf-Rayet stars of the nitrogen sequence (WN stars) in the Small Magellanic Cloud (SMC) and the Large Magellanic Cloud (LMC) is presented. We derived the fundamental stellar and wind parameters for more than 100 massive stars, encompassing almost the whole WN population in the Magellanic Clouds (MCs). The observations are fitted with synthetic spectra, using the PotsdamWolf-Rayet model atmosphere code (PoWR). For this purpose, large grids of line-blanket models for different metallicities have been calculated, covering a wide range of stellar temperatures, mass-loss rates, and hydrogen abundances. Our comprehensive sample facilitates statistical studies of the WN properties in the MCs without selection bias. To investigate the impact of the low LMC metallicity and the even lower SMC metallicity, we compare our new results to previous analyses of the Galactic WN population and the late type WN stars from M31. Based on these studies we derived an empirical relation between the WN mass-loss rates and the metallicity. Current stellar evolution tracks, even when accounting for rotationally induced mixing, partly fail to reproduce the observed ranges of luminosities and initial masses.}, language = {en} } @article{HamaguchiCorcoran2015, author = {Hamaguchi, K. and Corcoran, M. F.}, title = {Extremely Hard X-ray Emission from η Car Observed with XMM-Newton and NuSTAR around Periastron in 2014.6}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87926}, pages = {159 -- 162}, year = {2015}, abstract = {The super massive binary system, η Car, experienced periastron passage in the summer of 2014. We observed the star twice around the maximum (forb =0.97, 2014 June 6) and just before the minimum (ϕorb =0.99, 2014 July 28) of its wind-wind colliding (WWC) X-ray emis-sion using the XMM-Newton and NuSTAR observatories, the latter of which is equipped with extremely hard X-ray (>10 keV) focusing mirrors. In both observations, NuSTAR detected the thermal X-ray tail up to 40-50 keV. The hard slope is consistent with an electron tem- perature of ∼6 keV, which is significantly higher than the ionization temperature (kT ∼4 keV) measured from the Fe K emission lines, assuming collisional equilibrium plasma. The spectrum did not show a hard power-law component above this energy range, unlike earlier detections with INTEGRAL and Suzaku. In the second NuSTAR observation, the X-ray flux above 5 keV declined gradually in ∼1 day. This result suggests that the WWC apex was gradually hidden behind the optically thick primary wind around conjunction.}, language = {en} } @article{Hamann2015, author = {Hamann, Wolf-Rainer}, title = {Wind models and spectral analyses}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87748}, pages = {91 -- 96}, year = {2015}, abstract = {The emission-line dominated spectra of Wolf-Rayet stars are formed in expanding layers of their atmosphere, i.e. in their strong stellar wind. Adequate modeling of such spectra has to face a couple of difficulties. Because of the supersonic motion, the radiative transfer is preferably formulated in the co-moving frame. The strong deviations from local thermodynamical equilibrium (LTE) require to solve the equations of statistical equilibrium for the population numbers, accounting for many hundred atomic energy levels and thousands of line transitions. Moreover, millions of lines from iron-group elements must be taken into account for their blanketing effect. Model atmospheres of the described kind can reproduce the observed WR spectra satisfyingly, and have been widely applied for corresponding spectral analyses.}, language = {en} } @article{HendrixKeppens2015, author = {Hendrix, T. and Keppens, R.}, title = {Modelling colliding wind binaries in 2D}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88198}, pages = {279 -- 282}, year = {2015}, abstract = {We look at how the dynamics of colliding wind binaries (CWB) can be investigated in 2D, and how several parameters influence the dynamics of the small scale structures inside the colliding wind and the shocked regions, as well as in how the dynamics influence the shape of the collision region at large distances. The parameters we adopt are based on the binary system WR98a, one of the few Wolf-Rayet (WR) dusty pinwheels known.}, language = {en} } @article{Hillier2015, author = {Hillier, D. J.}, title = {Spectrum formation in Wolf-Rayet stars}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87669}, pages = {65 -- 70}, year = {2015}, abstract = {We highlight the basic physics that allows fundamental parameters, such as the effective temperature, luminosity, abundances, and mass-loss rate, of Wolf-Rayet (W-R) stars to be determined. Since the temperature deduced from the spectrum of a W-R star is an ionization temperature, a detailed discussion of the ionization structure of W-R winds, and how it is set, is given. We also provide an overview of line and continuum formation in W-R stars. Mechanisms that contribute to the strength of different emission lines, such as collisional excitation, radiative recombination, dielectronic recombination, and continuum uorescence, are discussed.}, language = {en} } @article{HoffmanLomax2015, author = {Hoffman, J. L. and Lomax, J. R.}, title = {Structure and fate of binary WR stars}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87737}, pages = {85 -- 88}, year = {2015}, abstract = {Because most massive stars have been or will be affected by a companion during the course of their evolution, we cannot afford to neglect binaries when discussing the progenitors of supernovae and GRBs. Analyzing linear polarization in the emission lines of close binary systems allows us to probe the structures of these systems' winds and mass flows, making it possible to map the complex morphologies of the mass loss and mass transfer structures that shape their subsequent evolution. In Wolf-Rayet (WR) binaries, line polarization variations with orbital phase distinguish polarimetric signatures arising from lines that scatter near the stars from those that scatter far from the orbital plane. These far-scattering lines may form the basis for a "binary line-effect method" of identifying rapidly rotating WR stars (and hence GRB progenitor candidates) in binary systems.}, language = {en} } @article{HuenemoerderGayleyHamannetal.2015, author = {Huenemoerder, D. and Gayley, K. and Hamann, Wolf-Rainer and Ignace, R. and Nichols, J. and Oskinova, Lida and Pollock, A. M. T. and Schulz, N.}, title = {High Resolution X-Ray Spectra of WR 6}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88236}, pages = {301 -- 304}, year = {2015}, abstract = {As WR 6 is a putatively single WN4 star, and is relatively bright (V = 6.9), it is an ideal case for studying the wind mechanisms in these extremely luminous stars. To obtain higher resolution spectra at higher energy (above 1 keV) than previously obtained with the XMM/Newton RGS, we have observed WR 6 with the Chandra High Energy Transmission Grating Spectrometer for 450 ks. We have resolved emission lines of S, Si, Mg, Ne, and Fe, which all show a "fin"-shaped prole, characteristic of a self-absorbed uniformly expanding shell. Steep blue edges gives robust maximal expansion velocities of about 2000 km/s, somewhat larger than the 1700km/s derived from UV lines. The He-like lines all indicate that X-ray emitting plasmas are far from the photosphere - even at the higher energies where opacity is lowest { as was also the case for the longer wavelength lines observed with XMM-Newton/RGS. Abundances determined from X-ray spectral modeling indicate enhancements consistent with nucleosynthesis. The star was also variable in X-rays and in simultaneous optical photometry obtained with Chandra aspect camera, but not coherently with the optically known period of 3.765 days.}, language = {en} } @article{IgnaceToalaOskinova2015, author = {Ignace, R. and Toal{\´a}, Jes{\´u}s Alberto and Oskinova, Lida}, title = {Inversion of Intensity Profiles for Bubble Emissivity}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88432}, pages = {358}, year = {2015}, abstract = {Under the assumption of spherical symmetry, the run of intensity with impact parameter for a spatially resolved and optically thin bubble can be inverted for an "effective emissivity" as a function of radius. The effective emissivity takes into account instrumental sensitivity and even interstellar absorption. This work was supported by a grant from NASA (G03-14008X).}, language = {en} } @article{KanarekSharaFahertyetal.2015, author = {Kanarek, G. and Shara, M. and Faherty, J. and Zurek, D. and Moffat, Anthony F. J.}, title = {New Galactic Wolf-Rayet Stars}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88448}, pages = {359}, year = {2015}, abstract = {Over the course of 6 months in 2013, we observed nearly 400 Wolf-Rayet candidates in the Galactic plane. Preliminary results from this dataset are presented.}, language = {en} } @article{KehrigVilchezPerezMonteroetal.2015, author = {Kehrig, C. and V{\´i}lchez, J. M. and P{\´e}rez-Montero, E. and Iglesias-P{\´a}ramo, J. and Brinchmann, Jarle and Crowther, P. A. and Durret, F. and Kunth, D.}, title = {PopIII-star siblings in IZw18 and metal-poor WR galaxies unveiled from integral field spectroscopy}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87648}, pages = {55 -- 58}, year = {2015}, abstract = {Here, we highlight our recent results from the IFS study of Mrk178, the closest metal-poor WR galaxy, and of IZw18, the most metal-poor star-forming galaxy known in the local Universe. The IFS data of Mrk178 show the importance of aperture effects on the search for WR features, and the extent to which physical variations in the ISM properties can be detected. Our IFS data of IZw18 reveal its entire nebular HeIIλ4686-emitting region, and indicate for the very first time that peculiar, hot (nearly) metal-free ionizing stars (called here PopIII-star siblings) might hold the key to the HeII-ionization in IZw18.}, language = {en} } @article{KochiashviliBeradzeKochiashvilietal.2015, author = {Kochiashvili, N. and Beradze, S. and Kochiashvili, I. and Natsvlishvili, R. and Vardosanidze, M.}, title = {New Photometric Observations of P Cygni}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88452}, pages = {360}, year = {2015}, abstract = {We present the results of the new photometric observations of the famous hypergiant PCygni. New observations were obtained in 2014 using the 48 cm Cassegrain telescope of the Abastumani Astrophysical Observatory, Georgia. We reveal some interesting behaviors of the B,V,R,I light curves, and also report new results on the periodicity of PCygni's variation. The latter result is based on the analysis of the photometric data (U,B,V filters) collected at the Abastumani Observatory between 1937 and 1983.}, language = {en} } @article{Koenigsberger2015, author = {Koenigsberger, C.}, title = {HD5980}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87954}, pages = {171 -- 174}, year = {2015}, abstract = {HD5980 is a multiple system containing at least 3 very massive and luminous stars. Located in the Small Magellanic Cloud, it is an ideal system for studying the massive star structure and evolutionary processes in low-metallicity environments. Intensely observed over the past few decades, HD5980 is a treasure trove of information on stellar wind structure, on wind-wind collisions and on the formation of wind-blown circumstellar structures. In addition, its characteristics suggest that the eclipsing WR+LBV stars of the system are the product of quasihomogeneous chemical evolution, thus making them candidate pair production supernovae or GRB progenitors. This paper summarizes some of the outstanding results derived from half a century of observations and recent theoretical studies.}, language = {en} } @article{KourniotisBonanosNajarro2015, author = {Kourniotis, M. and Bonanos, A. and Najarro, F.}, title = {Accurate parameters of massive binaries in the Danks clusters}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87819}, pages = {121 -- 124}, year = {2015}, abstract = {We present results from our near-infrared spectroscopy with VLT/ISAAC of four, massive eclipsing binary systems in the young, heavily reddened, massive Danks clusters. We derive accurate fundamental parameters and the distance to these massive systems, which comprise of OIf+, WR and O-type stars. Our goal is to increase the sample of well-studied WR stars and constrain their physics by comparison with evolutionary models.}, language = {en} } @article{KubatovaHamannTodtetal.2015, author = {Kub{\´a}tov{\´a}, Brankica and Hamann, Wolf-Rainer and Todt, Helge Tobias and Sander, A. and Steinke, M. and Hainich, Rainer and Shenar, Tomer}, title = {Macroclumping in WR 136}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87823}, pages = {125 -- 128}, year = {2015}, abstract = {Macroclumping proved to resolve the discordance between different mass-loss rate diagnostics for O-type stars, in particular between Hα and the P v resonance lines. In this paper, we report first results from a corresponding investigation for WR stars. We apply our detailed 3-D Monte Carlo (MC) line formation code to the P v resonance doublet and show, for the Galactic WNL star WR136, that macroclumping is require to bring this line in accordance with the mass-loss rate derived from the emission-line spectrum.}, language = {en} } @article{Kueker2015, author = {K{\"u}ker, Manfred}, title = {Magnetospheres of massive stars}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87864}, pages = {143 -- 146}, year = {2015}, abstract = {We study the interaction of line-driven winds from massive stars with the magnetic field rooted in these stars by carrying out numerical simulations using the Nirvana MHD code in 2D in spherical polar coordinates. The code's adaptive mesh refinement feature allows high spatial resolution across the whole simulation box. We study both O and Wolf-Rayet stars for a range of magnetic field strengths from weak to strong as measured by the confinement parameter. For weak fields our simulations show that the initially dipolar field opens up far away from the star and a thin disk-like structure forms in the equatorial plane of the magnetic field. For stronger fields the disk is disrupted close to the stellar surface and closed field lines persist at low latitudes. For very strong fields a pronounced magnetosphere forms where the gas is forced to move along the field lines and eventually falls back to the stellar surface.}, language = {en} } @article{LangerSanyalGrassitellietal.2015, author = {Langer, N. and Sanyal, D. and Grassitelli, L. and Sz{\´e}sci, D.}, title = {The stellar Eddington limit}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88121}, pages = {241 -- 244}, year = {2015}, abstract = {It is often assumed that when stars reach their Eddington limit, strong outflows are initiated, and that this happens only for extreme stellar masses. We discuss here that in models of up to 500 M⊙, the Eddington limit is never reached at the stellar surface. Instead, we argue that the Eddington limit is reached inside the stellar envelope in hydrogen-rich stars above ∼ 30 M⊙ and in Wolf-Rayet stars above ∼ 7 M⊙, with drastic effects for their struture and stability.}, language = {en} } @article{Liermann2015, author = {Liermann, A.}, title = {Evolution of Wolf-Rayet spectra}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87830}, pages = {129 -- 132}, year = {2015}, abstract = {Wolf-Rayet stars are important sources for the enrichment of the ISM with nuclear processed elements, UV photons and momentum. They are descendants of high-mass stars for which short lifetimes and transition times can hamper the spectral classification of the stars in their different evolutionary phases. The expanded stellar atmospheres of Wolf-Rayet stars can show spectra which seem inconsistent with the anticipated underlying evolution phase, for example in late hydrogen-burning WN stars and Of/WN transition stars. We present a sequence of synthetic spectra of the Potsdam Wolf-Rayet models based on the latest Geneva stellar evolution models. This will visualize the changes in stellar spectra over a full stellar lifetime. Direct comparison with observed stellar spectra, as well as the evolution of diagnostic line ratios will improve the connection of spectral classification and evolution phase.}, language = {en} } @article{MaduraClementelGulletal.2015, author = {Madura, T. I. and Clementel, N. and Gull, T. R. and Kruip, C. J. H. and Paardekooper, J.-P. and Icke, V.}, title = {3D hydrodynamical and radiative transfer modeling of η Carinae's colliding winds}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87930}, pages = {163 -- 166}, year = {2015}, abstract = {We present results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system η Carinae. We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We investigate several computational domain sizes and Luminous Blue Variable primary star mass-loss rates. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing. While we initially focus on η Car, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty `pinwheel' (WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulations have the potential to help determine the regions where various observed time-variable emission and absorption lines form in these unique objects.}, language = {en} } @article{MarstonMauerhanMorrisetal.2015, author = {Marston, A. P. and Mauerhan, J. and Morris, P. W. and Van Dyk, S.}, title = {Finding Wolf-Rayet Stars in the Milky Way}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87577}, pages = {27 -- 30}, year = {2015}, abstract = {The total population of Wolf-Rayet (WR) stars in the Galaxy is predicted by models to be as many as ~6000 stars, and yet the number of catalogued WR stars as a result of optical surveys was far lower than this (~200) at the turn of this century. When beginning our WR searches using infrared techniques it was not clear whether WR number predictions were too optimistic or whether there was more hidden behind interstellar and circumstellar extinction. During the last decade we pioneered a technique of exploiting the near- and mid-infrared continuum colours for individual point sources provided by large-format surveys of the Galaxy, including 2MASS and Spitzer/GLIMPSE, to pierce through the dust and reveal newly discovered WR stars throughout the Galactic Plane. The key item to the colour discrimination is via the characteristic infrared spectral index produced by the strong winds of the WR stars, combined with dust extinction, which place WR stars in a relatively depopulated area of infrared colour-colour diagrams. The use of the Spitzer/GLIMPSE 8µm and, more recently, WISE 22µm fluxes together with cross-referencing with X-ray measurements in selected Galactic regions have enabled improved candidate lists that increased our confirmation success rate, achieved via follow-up infrared and optical spectroscopy. To date a total of 102 new WR stars have been found with many more candidates still available for follow-up. This constitutes an addition of ~16\% to the current inventory of 642 Galactic WR stars. In this talk we review our methods and provide some new results and a preliminary review of their stellar and interstellar medium environments. We provide a roadmap for the future of this search, including statistical modeling, and what we can add to star formation and high mass star evolution studies.}, language = {en} } @article{MaryevaPolcaroRossietal.2015, author = {Maryeva, O. and Polcaro, V. F. and Rossi, C. and Viotti, R.}, title = {Modeling of spectral variability of Romano's star}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88462}, pages = {361}, year = {2015}, abstract = {We present results of investigation of spectral variability of one of the most interesting massive stars, Romano's star (M33/V532 or GR290), located in the M33 galaxy. Brightness of the star changes together with its spectral class, which varies from WN11 to WN8. Using CMFGEN code we estimated parameters of stellar atmosphere and found that during last ten years bolometric luminosity of the star changed synchronously with stellar magnitude. Our calculations argue in favor of the hypothesis of a post-LBV status of GR290.}, language = {en} } @article{MasseyNeugentMorrell2015, author = {Massey, P. and Neugent, K. F. and Morrell, N. I.}, title = {Finding Wolf-Rayet Stars in the Local Group}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87592}, pages = {35 -- 42}, year = {2015}, abstract = {We summarize past and current surveys for WRs among the Local Group galaxies, empha- sizing both the why and how. Such studies are invaluable for helping us learn about massive star evolution, and for providing sensitive tests of the stellar evolution models. But for such surveys to be useful, the completeness limits must be well understood. We illustrate that point by following the "evolution" of the observed WC/WN ratio in nearby galaxies. We end by examining our new survey for WR stars in the Magellanic Clouds, which has revealed a new type of WN star, never before seen.}, language = {en} } @article{McClellandEldridge2015, author = {McClelland, L. A. S. and Eldridge, J. J.}, title = {Helium stars}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88010}, pages = {197 -- 200}, year = {2015}, abstract = {There are outstanding problems in trying to reproduce the observed nature of Wolf-Rayet stars from theoretical stellar models. We have investigated the effects of uncertainties, such as composition and mass-loss rate, on the evolution and structure of Wolf-Rayet stars and their lower mass brethren. We find that the normal Conti scenario needs to be altered, with different WR types being due to different initial masses as well as different stages of evolution.}, language = {en} } @article{MesaDelgadoEstebanGarciaRojas2015, author = {Mesa-Delgado, A. and Esteban, C. and Garc{\´i}a-Rojas, J.}, title = {Ring Nebulae}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88299}, pages = {325 -- 328}, year = {2015}, abstract = {Preliminary results are presented from spectroscopic data in the optical range of the Galactic ring nebulae NGC 6888, G2:4+1:4, RCW 58 and Sh2-308. Deep observations with long exposure times were carried out at the 6.5m Clay Telescope and at the 10.4m Gran Telescopio Canarias. In NGC 6888, recombination lines of C ii, O ii and N ii are detected with signal-to-noise ratios higher than 8. The chemical content of NGC 6888 is discussed within the chemical enrichment predicted by evolution models of massive stars. For all nebulae, a forthcoming work will content in-depth details about observations, analysis and final results (Esteban et al. 2015, in prep.).}, language = {en} } @article{MeynetGeorgyMaederetal.2015, author = {Meynet, G. and Georgy, C. and Maeder, A. and Ekstr{\"o}m, S. and Groh, J. H. and Barblan, F. and Song, H. F. and Eggenberger, P.}, title = {Physics of massive stars relevant for the modeling of Wolf-Rayet populations}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87971}, pages = {183 -- 188}, year = {2015}, abstract = {Key physical ingredients governing the evolution of massive stars are mass losses, convection and mixing in radiative zones. These effects are important both in the frame of single and close binary evolution. The present paper addresses two points: 1) the differences between two families of rotating models, i.e. the family of models computed with and without an efficient transport of angular momentum in radiative zones; 2) The impact of the mass losses in single and in close binary models.}, language = {en} } @article{MiszalskiManickMcBride2015, author = {Miszalski, B. and Manick, R. and McBride, V.}, title = {Post-common-envelope Wolf-Rayet central stars of planetary nebulae}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88156}, pages = {259 -- 262}, year = {2015}, abstract = {Nearly 50 post-common-envelope (post-CE) close binary central stars of planetary nebulae (CSPNe) are now known. Most contain either main sequence or white dwarf (WD) companions that orbit the WD primary in around 0.1-1.0 days. Only PN G222.8-04.2 and NGC 5189 have post-CE CSPNe with a Wolf-Rayet star primary (denoted [WR]), the low-mass analogues of massive Wolf-Rayet stars. It is not well understood how H-deficient [WR] CSPNe form, even though they are relatively common, appearing in over 100 PNe. The discovery and characterisation of post-CE [WR] CSPNe is essential to determine whether proposed binary formation scenarios are feasible to explain this enigmatic class of stars. The existence of post-CE [WR] binaries alone suggests binary mergers are not necessarily a pathway to form [WR] stars. Here we give an overview of the initial results of a radial velocity monitoring programme of [WR] CSPNe to search for new binaries. We discuss the motivation for the survey and the associated strong selection effects. The mass functions determined for PN G222.8-04.2 and NGC 5189, together with literature photometric variability data of other [WR] CSPNe, suggest that of the post-CE [WR] CSPNe yet to be found, most will have WD or subdwarf O/B-type companions in wider orbits than typical post-CE CSPNe (several days or months c.f. less than a day).}, language = {en} }