@phdthesis{Dannehl2013, author = {Dannehl, Claudia}, title = {Fragments of the human antimicrobial LL-37 and their interaction with model membranes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68144}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {A detailed description of the characteristics of antimicrobial peptides (AMPs) is highly demanded, since the resistance against traditional antibiotics is an emerging problem in medicine. They are part of the innate immune system in every organism, and they are very efficient in the protection against bacteria, viruses, fungi and even cancer cells. Their advantage is that their target is the cell membrane, in contrast to antibiotics which disturb the metabolism of the respective cell type. This allows AMPs to be more active and faster. The lack of an efficient therapy for some cancer types and the evolvement of resistance against existing antitumor agents make AMPs promising in cancer therapy besides being an alternative to traditional antibiotics. The aim of this work was the physical-chemical characterization of two fragments of LL-37, a human antimicrobial peptide from the cathelicidin family. The fragments LL-32 and LL-20 exhibited contrary behavior in biological experiments concerning their activity against bacterial cells, human cells and human cancer cells. LL-32 had even a higher activity than LL-37, while LL-20 had almost no effect. The interaction of the two fragments with model membranes was systematically studied in this work to understand their mode of action. Planar lipid films were mainly applied as model systems in combination with IR-spectroscopy and X-ray scattering methods. Circular Dichroism spectroscopy in bulk systems completed the results. In the first approach, the structure of the peptides was determined in aqueous solution and compared to the structure of the peptides at the air/water interface. In bulk, both peptides are in an unstructured conformation. Adsorbed and confined to at the air-water interface, the peptides differ drastically in their surface activity as well as in the secondary structure. While LL-32 transforms into an α-helix lying flat at the water surface, LL-20 stays partly unstructured. This is in good agreement with the high antimicrobial activity of LL-32. In the second approach, experiments with lipid monolayers as biomimetic models for the cell membrane were performed. It could be shown that the peptides fluidize condensed monolayers of negatively charged DPPG which can be related to the thinning of a bacterial cell membrane. An interaction of the peptides with zwitterionic PCs, as models for mammalian cells, was not clearly observed, even though LL-32 is haemolytic. In the third approach, the lipid monolayers were more adapted to the composition of human erythrocyte membranes by incorporating sphingomyelin (SM) into the PC monolayers. Physical-chemical properties of the lipid films were determined and the influence of the peptides on them was studied. It could be shown that the interaction of the more active LL-32 is strongly increased for heterogeneous lipid films containing both gel and fluid phases, while the interaction of LL-20 with the monolayers was unaffected. The results indicate an interaction of LL-32 with the membrane in a detergent-like way. Additionally, the modelling of the peptide interaction with cancer cells was performed by incorporating some negatively charged lipids into the PC/SM monolayers, but the increased charge had no effect on the interaction of LL-32. It was concluded, that the high anti-cancer activity of the peptide originates from the changed fluidity of cell membrane rather than from the increased surface charge. Furthermore, similarities to the physical-chemical properties of melittin, an AMP from the bee venom, were demonstrated.  }, language = {en} } @misc{Laschewsky1991, author = {Laschewsky, Andr{\´e}}, title = {Oligoethyleneoxide spacer groups in polymerizable surfactants}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17221}, year = {1991}, abstract = {Cationic and zwitterionic polymerizable surfactants bearing tri- and tetraethyleneglycol spacer groups between the polymerizable moiety and the surfactant structure were prepared and polymerized. Monomers and polymers were investigated with respect to their aggregation behavior in aqueous systems and compared to analogous monomers and polymers lacking spacer groups. In the case of the monomeric surfactants, the spacer groups depress both the Kraffttemperature and the critical micelle concentration. the area occupied per molecule at the air-water interface is substantially enlarged by the spacers, whereas the depression of surface tension is nearly constant. Although the monomers with and without spacers are true surfactants, all the polymers are water-insoluble, but form monomolecular layers at the air-water interface. In analogy to the monomer behavior, the incorporation of the spacer groups increases the area occupied per repeat unit at the air-water interface substantially, but hardly affects the surface activity.}, language = {en} }