@phdthesis{RudolphMohr2013, author = {Rudolph-Mohr, Nicole}, title = {A novel non-invasive optical method for quantitative visualization of pH and oxygen dynamics in soils}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66993}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {In soils and sediments there is a strong coupling between local biogeochemical processes and the distribution of water, electron acceptors, acids and nutrients. Both sides are closely related and affect each other from small scale to larger scales. Soil structures such as aggregates, roots, layers or macropores enhance the patchiness of these distributions. At the same time it is difficult to access the spatial distribution and temporal dynamics of these parameter. Noninvasive imaging techniques with high spatial and temporal resolution overcome these limitations. And new non-invasive techniques are needed to study the dynamic interaction of plant roots with the surrounding soil, but also the complex physical and chemical processes in structured soils. In this study we developed an efficient non-destructive in-situ method to determine biogeochemical parameters relevant to plant roots growing in soil. This is a quantitative fluorescence imaging method suitable for visualizing the spatial and temporal pH changes around roots. We adapted the fluorescence imaging set-up and coupled it with neutron radiography to study simultaneously root growth, oxygen depletion by respiration activity and root water uptake. The combined set up was subsequently applied to a structured soil system to map the patchy structure of oxic and anoxic zones induced by a chemical oxygen consumption reaction for spatially varying water contents. Moreover, results from a similar fluorescence imaging technique for nitrate detection were complemented by a numerical modeling study where we used imaging data, aiming to simulate biodegradation under anaerobic, nitrate reducing conditions.}, language = {en} } @phdthesis{Bissinger2003, author = {Bissinger, Vera}, title = {Factors determining growth and vertical distribution of planktonic algae in extremely acidic mining lakes (pH 2.7)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000695}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Die vorliegende Dissertation besch{\"a}ftigt sich mit den Faktoren, die das Wachstum und die Vertikalverteilung von Planktonalgen in extrem sauren Tagebaurestseen (TBS; pH 2-3) beeinflussen. Im exemplarisch untersuchten TBS 111 (pH 2.7; Lausitzer Revier) dominiert die Goldalge Ochromonas sp. in oberen und die Gr{\"u}nalge Chlamydomonas sp. in tieferen Wasserschichten, wobei letztere ein ausgepr{\"a}gtes Tiefenchlorophyll-Maximum (DCM) ausbildet. Es wurde ein deutlicher Einfluss von Limitation durch anorganischen Kohlenstoff (IC) auf das phototrophe Wachstum von Chlamydomonas sp. in oberen Wasserschichten nachgewiesen, die mit zunehmender Tiefe von Lichtlimitation abgel{\"o}st wird. Im Vergleich mit Arbeiten aus neutralen Seen zeigte Chlamydomonas sp. erniedrigte maximale Wachstumsraten, einen gesteigerten Kompensationspunkt und erh{\"o}hte Dunkelrespirationsraten, was auf gesteigerte metabolische Kosten unter den extremen physikalisch-chemischen Bedingungen hinweist. Die Photosyntheseleistungen von Chlamydomonas sp. waren in Starklicht-adaptierten Zellen durch IC-Limitation deutlich verringert. Außerdem ergaben die ermittelten minimalen Zellquoten f{\"u}r Phosphor (P) einen erh{\"o}hten P-Bedarf unter IC-Limitation. Anschließend konnte gezeigt werden, dass Chlamydomonas sp. ein mixotropher Organismus ist, der seine Wachstumsraten {\"u}ber die osmotrophe Aufnahme gel{\"o}sten organischen Kohlenstoffs (DOC) erh{\"o}hen kann. Dadurch ist dieser Organismus f{\"a}hig, in tieferen, Licht-limitierten Wasserschichten zu {\"u}berleben, die einen h{\"o}heren DOC-Gehalt aufweisen. Da die Vertikalverteilung der Algen im TBS 111 jedoch weder durch IC-Limitation, P-Verf{\"u}gbarkeit noch die in situ DOC-Konzentrationen abschließend erkl{\"a}rt werden konnte (bottom-up Kontrolle), wurde eine neue Theorie zur Entstehung der Vertikalverteilung gepr{\"u}ft. Grazing der phagotrophen und phototrophen Alge Ochromonas sp. auf der phototrophen Alge Chlamydomonas sp. erwies sich als herausragender Faktor, der {\"u}ber top-down Kontrolle die Abundanz der Beute in h{\"o}heren Wasserschichten beeinflussen kann. Gemeinsam mit der Tatsache, dass Chlamydomonas sp. DOC zur Wachstumssteigerung verwendet, f{\"u}hrt dies zu einer Akkumulation von Chlamydomonas sp. in der Tiefe, ausgepr{\"a}gt als DCM. Daher erscheint grazing als der Hauptfaktor, der die beobachtete Vertikalschichtung der Algen im TBS 111 hervorruft. Die erzielten Ergebnisse liefern grundlegende Informationen, um die Auswirkungen von Strategien zur Neutralisierung der TBS auf das Nahrungsnetz absch{\"a}tzen zu k{\"o}nnen.}, language = {en} }