@phdthesis{Wittenbecher2017, author = {Wittenbecher, Clemens}, title = {Linking whole-grain bread, coffee, and red meat to the risk of type 2 diabetes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404592}, school = {Universit{\"a}t Potsdam}, pages = {XII, 194, ii}, year = {2017}, abstract = {Background: Consumption of whole-grain, coffee, and red meat were consistently related to the risk of developing type 2 diabetes in prospective cohort studies, but potentially underlying biological mechanisms are not well understood. Metabolomics profiles were shown to be sensitive to these dietary exposures, and at the same time to be informative with respect to the risk of type 2 diabetes. Moreover, graphical network-models were demonstrated to reflect the biological processes underlying high-dimensional metabolomics profiles. Aim: The aim of this study was to infer hypotheses on the biological mechanisms that link consumption of whole-grain bread, coffee, and red meat, respectively, to the risk of developing type 2 diabetes. More specifically, it was aimed to consider network models of amino acid and lipid profiles as potential mediators of these risk-relations. Study population: Analyses were conducted in the prospective EPIC-Potsdam cohort (n = 27,548), applying a nested case-cohort design (n = 2731, including 692 incident diabetes cases). Habitual diet was assessed with validated semiquantitative food-frequency questionnaires. Concentrations of 126 metabolites (acylcarnitines, phosphatidylcholines, sphingomyelins, amino acids) were determined in baseline-serum samples. Incident type 2 diabetes cases were assed and validated in an active follow-up procedure. The median follow-up time was 6.6 years. Analytical design: The methodological approach was conceptually based on counterfactual causal inference theory. Observations on the network-encoded conditional independence structure restricted the space of possible causal explanations of observed metabolomics-data patterns. Given basic directionality assumptions (diet affects metabolism; metabolism affects future diabetes incidence), adjustment for a subset of direct neighbours was sufficient to consistently estimate network-independent direct effects. Further model-specification, however, was limited due to missing directionality information on the links between metabolites. Therefore, a multi-model approach was applied to infer the bounds of possible direct effects. All metabolite-exposure links and metabolite-outcome links, respectively, were classified into one of three categories: direct effect, ambiguous (some models indicated an effect others not), and no-effect. Cross-sectional and longitudinal relations were evaluated in multivariable-adjusted linear regression and Cox proportional hazard regression models, respectively. Models were comprehensively adjusted for age, sex, body mass index, prevalence of hypertension, dietary and lifestyle factors, and medication. Results: Consumption of whole-grain bread was related to lower levels of several lipid metabolites with saturated and monounsaturated fatty acids. Coffee was related to lower aromatic and branched-chain amino acids, and had potential effects on the fatty acid profile within lipid classes. Red meat was linked to lower glycine levels and was related to higher circulating concentrations of branched-chain amino acids. In addition, potential marked effects of red meat consumption on the fatty acid composition within the investigated lipid classes were identified. Moreover, potential beneficial and adverse direct effects of metabolites on type 2 diabetes risk were detected. Aromatic amino acids and lipid metabolites with even-chain saturated (C14-C18) and with specific polyunsaturated fatty acids had adverse effects on type 2 diabetes risk. Glycine, glutamine, and lipid metabolites with monounsaturated fatty acids and with other species of polyunsaturated fatty acids were classified as having direct beneficial effects on type 2 diabetes risk. Potential mediators of the diet-diabetes links were identified by graphically overlaying this information in network models. Mediation analyses revealed that effects on lipid metabolites could potentially explain about one fourth of the whole-grain bread effect on type 2 diabetes risk; and that effects of coffee and red meat consumption on amino acid and lipid profiles could potentially explain about two thirds of the altered type 2 diabetes risk linked to these dietary exposures. Conclusion: An algorithm was developed that is capable to integrate single external variables (continuous exposures, survival time) and high-dimensional metabolomics-data in a joint graphical model. Application to the EPIC-Potsdam cohort study revealed that the observed conditional independence patterns were consistent with the a priori mediation hypothesis: Early effects on lipid and amino acid metabolism had the potential to explain large parts of the link between three of the most widely discussed diabetes-related dietary exposures and the risk of developing type 2 diabetes.}, language = {en} } @phdthesis{Polemiti2022, author = {Polemiti, Elli}, title = {Identifying risk of microvascular and macrovascular complications of type 2 diabetes}, doi = {10.25932/publishup-57103}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571038}, school = {Universit{\"a}t Potsdam}, pages = {xii, 292}, year = {2022}, abstract = {Diabetes is hallmarked by high blood glucose levels, which cause progressive generalised vascular damage, leading to microvascular and macrovascular complications. Diabetes-related complications cause severe and prolonged morbidity and are a major cause of mortality among people with diabetes. Despite increasing attention to risk factors of type 2 diabetes, existing evidence is scarce or inconclusive regarding vascular complications and research investigating both micro- and macrovascular complications is lacking. This thesis aims to contribute to current knowledge by identifying risk factors - mainly related to lifestyle - of vascular complications, addressing methodological limitations of previous literature and providing comparative data between micro- and macrovascular complications. To address this overall aim, three specific objectives were set. The first was to investigate the effects of diabetes complication burden and lifestyle-related risk factors on the incidence of (further) complications. Studies suggest that diabetes complications are interrelated. However, they have been studied mainly independently of individuals' complication burden. A five-state time-to-event model was constructed to examine the longitudinal patterns of micro- (kidney disease, neuropathy and retinopathy) and macrovascular complications (myocardial infarction and stroke) and their association with the occurrence of subsequent complications. Applying the same model, the effect of modifiable lifestyle factors, assessed alone and in combination with complication load, on the incidence of diabetes complications was studied. The selected lifestyle factors were body mass index (BMI), waist circumference, smoking status, physical activity, and intake of coffee, red meat, whole grains, and alcohol. Analyses were conducted in a cohort of 1199 participants with incident type 2 diabetes from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam, who were free of vascular complications at diabetes diagnosis. During a median follow-up time of 11.6 years, 96 cases of macrovascular complications (myocardial infarction and stroke) and 383 microvascular complications (kidney disease, neuropathy and retinopathy) were identified. In multivariable-adjusted models, the occurrence of a microvascular complication was associated with a higher incidence of further micro- (Hazard ratio [HR] 1.90; 95\% Confidence interval [CI] 0.90, 3.98) and macrovascular complications (HR 4.72; 95\% CI 1.25, 17.68), compared with persons without a complication burden. In addition, participants who developed a macrovascular event had a twofold higher risk of future microvascular complications (HR 2.26; 95\% CI 1.05, 4.86). The models were adjusted for age, sex, state duration, education, lifestyle, glucose-lowering medication, and pre-existing conditions of hypertension and dyslipidaemia. Smoking was positively associated with macrovascular disease, while an inverse association was observed with higher coffee intake. Whole grain and alcohol intake were inversely associated with microvascular complications, and a U-shaped association was observed for red meat intake. BMI and waist circumference were positively associated with microvascular events. The associations between lifestyle factors and incidence of complications were not modified by concurrent complication burden, except for red meat intake and smoking status, where the associations were attenuated among individuals with a previous complication. The second objective was to perform an in-depth investigation of the association between BMI and BMI change and risk of micro- and macrovascular complications. There is an ongoing debate on the association between obesity and risk of macrovascular and microvascular outcomes in type 2 diabetes, with studies suggesting a protective effect among people with overweight or obesity. These findings, however, might be limited due to suboptimal control for smoking, pre-existing chronic disease, or short-follow-up. After additional exclusion of persons with cancer history at diabetes onset, the associations between pre-diagnosis BMI and relative annual change between pre- and post-diagnosis BMI and incidence of complications were evaluated in multivariable-adjusted Cox models. The analyses were adjusted for age, sex, education, smoking status and duration, physical activity, alcohol consumption, adherence to the Mediterranean diet, and family history of diabetes and cardiovascular disease (CVD). Among 1083 EPIC-Potsdam participants, 85 macrovascular and 347 microvascular complications were identified during a median follow-up period of 10.8 years. Higher pre-diagnosis BMI was associated with an increased risk of total microvascular complications (HR per 5 kg/m2 1.21; 95\% CI 1.07, 1.36), kidney disease (HR 1.39; 95\% CI 1.21, 1.60) and neuropathy (HR 1.12; 95\% CI 0.96, 1.31); but no association was observed for macrovascular complications (HR 1.05; 95\% CI 0.81, 1.36). Effect modification was not evident by sex, smoking status, or age groups. In analyses according to BMI change categories, BMI loss of more than 1\% indicated a decreased risk of total microvascular complications (HR 0.62; 95\% CI 0.47, 0.80), kidney disease (HR 0.57; 95\% CI 0.40, 0.81) and neuropathy (HR 0.73; 95\% CI 0.52, 1.03), compared with participants with a stable BMI. No clear association was observed for macrovascular complications (HR 1.04; 95\% CI 0.62, 1.74). The impact of BMI gain on diabetes-related vascular disease was less evident. Associations were consistent across strata of age, sex, pre-diagnosis BMI, or medication but appeared stronger among never-smokers than current or former smokers. The last objective was to evaluate whether individuals with a high-risk profile for diabetes and cardiovascular disease (CVD) also have a greater risk of complications. Within the EPIC-Potsdam study, two accurate prognostic tools were developed, the German Diabetes Risk Score (GDRS) and the CVD Risk Score (CVDRS), which predict the 5-year type 2 diabetes risk and 10-year CVD risk, respectively. Both scores provide a non-clinical and clinical version. Components of the risk scores include age, sex, waist circumference, prevalence of hypertension, family history of diabetes or CVD, lifestyle factors, and clinical factors (only in clinical versions). The association of the risk scores with diabetes complications and their discriminatory performance for complications were assessed. In crude Cox models, both versions of GDRS and CVDRS were positively associated with macrovascular complications and total microvascular complications, kidney disease and neuropathy. Higher GDRS was also associated with an elevated risk of retinopathy. The discrimination of the scores (clinical and non-clinical) was poor for all complications, with the C-index ranging from 0.58 to 0.66 for macrovascular complications and from 0.60 to 0.62 for microvascular complications. In conclusion, this work illustrates that the risk of complication development among individuals with type 2 diabetes is related to the existing complication load, and attention should be given to regular monitoring for future complications. It underlines the importance of weight management and adherence to healthy lifestyle behaviours, including high intake of whole grains, moderation in red meat and alcohol consumption and avoidance of smoking to prevent major diabetes-associated complications, regardless of complication burden. Risk scores predictive for type 2 diabetes and CVD were related to elevated risks of complications. By optimising several lifestyle and clinical factors, the risk score can be improved and may assist in lowering complication risk.}, language = {en} }