@phdthesis{HolzgrefeLang2017, author = {Holzgrefe-Lang, Julia}, title = {Prosodic phrase boundary perception in adults and infants}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-405943}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 141}, year = {2017}, abstract = {Prosody is a rich source of information that heavily supports spoken language comprehension. In particular, prosodic phrase boundaries divide the continuous speech stream into chunks reflecting the semantic and syntactic structure of an utterance. This chunking or prosodic phrasing plays a critical role in both spoken language processing and language acquisition. Aiming at a better understanding of the underlying processing mechanisms and their acquisition, the present work investigates factors that influence prosodic phrase boundary perception in adults and infants. Using the event-related potential (ERP) technique, three experimental studies examined the role of prosodic context (i.e., phrase length) in German phrase boundary perception and of the main prosodic boundary cues, namely pitch change, final lengthening, and pause. With regard to the boundary cues, the dissertation focused on the questions which cues or cue combination are essential for the perception of a prosodic boundary and on whether and how this cue weighting develops during infancy. Using ERPs is advantageous because the technique captures the immediate impact of (linguistic) information during on-line processing. Moreover, as it can be applied independently of specific task demands or an overt response performance, it can be used with both infants and adults. ERPs are particularly suitable to study the time course and underlying mechanisms of boundary perception, because a specific ERP component, the Closure Positive Shift (CPS) is well established as neuro-physiological indicator of prosodic boundary perception in adults. The results of the three experimental studies first underpin that the prosodic context plays an immediate role in the processing of prosodic boundary information. Moreover, the second study reveals that adult listeners perceive a prosodic boundary also on the basis of a sub-set of the boundary cues available in the speech signal. Both ERP and simultaneously collected behavioral data (i.e., prosodic judgements) suggest that the combination of pitch change and final lengthening triggers boundary perception; however, when presented as single cues, neither pitch change nor final lengthening were sufficient. Finally, testing six- and eight-month-old infants shows that the early sensitivity for prosodic information is reflected in a brain response resembling the adult CPS. For both age groups, brain responses to prosodic boundaries cued by pitch change and final lengthening revealed a positivity that can be interpreted as a CPS-like infant ERP component. In contrast, but comparable to the adults' response pattern, pitch change as a single cue does not provoke an infant CPS. These results show that infant phrase boundary perception is not exclusively based on pause detection and hint at an early ability to exploit subtle, relational prosodic cues in speech perception.}, language = {en} }