@article{LohrenBornhorstGallaetal.2015, author = {Lohren, Hanna and Bornhorst, Julia and Galla, Hans-Joachim and Schwerdtle, Tanja}, title = {The blood-cerebrospinal fluid barrier}, series = {Metallomics : integrated biometal science}, volume = {10}, journal = {Metallomics : integrated biometal science}, number = {7}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-5901}, doi = {10.1039/C5MT00171D}, pages = {1420 -- 1430}, year = {2015}, abstract = {Exposure to organic mercury compounds promotes primarily neurological effects. Although methylmercury is recognized as a potent neurotoxicant, its transfer into the central nervous system (CNS) is not fully evaluated. While methylmercury and thiomersal pass the blood-brain barrier, limited data are available regarding the second brain regulating interface, the blood-cerebrospinal fluid (CSF) barrier. This novel study was designed to investigate the effects of organic as well as inorganic mercury compounds on, and their transfer across, a porcine in vitro model of the blood-CSF barrier for the first time. The barrier system is significantly more sensitive towards organic Hg compounds as compared to inorganic compounds regarding the endpoints cytotoxicity and barrier integrity. Whereas there are low transfer rates from the blood side to the CSF side, our results strongly indicate an active transfer of the organic mercury compounds out of the CSF. These results are the first to demonstrate an efflux of organic mercury compounds regarding the CNS and provide a completely new approach in the understanding of mercury compounds specific transport.}, language = {en} } @article{MeyerRaberEbertetal.2015, author = {Meyer, S. and Raber, G. and Ebert, Franziska and Leffers, L. and M{\"u}ller, Sandra Marie and Taleshi, M. S. and Francesconi, Kevin A. and Schwerdtle, Tanja}, title = {In vitro toxicological characterisation of arsenic-containing fatty acids and three of their metabolites}, series = {Toxicology research}, volume = {5}, journal = {Toxicology research}, number = {4}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2045-4538}, doi = {10.1039/c5tx00122f}, pages = {1289 -- 1296}, year = {2015}, abstract = {Arsenic-containing fatty acids are a group of fat-soluble arsenic species (arsenolipids) which are present in marine fish and other seafood. Recently, it has been shown that arsenic-containing hydrocarbons, another group of arsenolipids, exert toxicity in similar concentrations comparable to arsenite although the toxic modes of action differ. Hence, a risk assessment of arsenolipids is urgently needed. In this study the cellular toxicity of a saturated (AsFA 362) and an unsaturated (AsFA 388) arsenic-containing fatty acid and three of their proposed metabolites (DMAV, DMAPr and thio-DMAPr) were investigated in human liver cells (HepG2). Even though both arsenic-containing fatty acids were less toxic as compared to arsenic-containing hydrocarbons and arsenite, significant effects were observable at μM concentrations. DMAV causes effects in a similar concentration range and it could be seen that it is metabolised to its highly toxic thio analogue thio-DMAV in HepG2 cells. Nevertheless, DMAPr and thio-DMAPr did not exert any cytotoxicity. In summary, our data indicate that risks to human health related to the presence of arsenic-containing fatty acids in marine food cannot be excluded. This stresses the need for a full in vitro and in vivo toxicological characterisation of these arsenolipids.}, language = {en} } @article{CroneAschnerSchwerdtleetal.2015, author = {Crone, Barbara and Aschner, Michael A. and Schwerdtle, Tanja and Karst, Uwe and Bornhorst, Julia}, title = {Elemental bioimaging of Cisplatin in Caenorhabditis elegans by LA-ICP-MS}, series = {Metallomics}, volume = {2015}, journal = {Metallomics}, number = {7}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-591X}, doi = {10.1039/c5mt00096c}, pages = {1189 -- 1195}, year = {2015}, abstract = {cis-Diamminedichloroplatinum(II) (Cisplatin) is one of the most important and frequently used cytostatic drugs for the treatment of various solid tumors. Herein, a laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method incorporating a fast and simple sample preparation protocol was developed for the elemental mapping of Cisplatin in the model organism Caenorhabditis elegans (C. elegans). The method allows imaging of the spatially-resolved elemental distribution of platinum in the whole organism with respect to the anatomic structure in L4 stage worms at a lateral resolution of 5 μm. In addition, a dose- and time-dependent Cisplatin uptake was corroborated quantitatively by a total reflection X-ray fluorescence spectroscopy (TXRF) method, and the elemental mapping indicated that Cisplatin is located in the intestine and in the head of the worms. Better understanding of the distribution of Cisplatin in this well-established model organism will be instrumental in deciphering Cisplatin toxicity and pharmacokinetics. Since the cytostatic effect of Cisplatin is based on binding the DNA by forming intra- and interstrand crosslinks, the response of poly(ADP-ribose)metabolism enzyme 1 (pme-1) deletion mutants to Cisplatin was also examined. Loss of pme-1, which is the C. elegans ortholog of human poly(ADP-ribose) polymerase 1 (PARP-1) led to disturbed DNA damage response. With respect to survival and brood size, pme-1 deletion mutants were more sensitive to Cisplatin as compared to wildtype worms, while Cisplatin uptake was indistinguishable.}, language = {en} }